robust-mixed-dist 0.1.0__tar.gz → 0.1.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,41 @@
1
+ Metadata-Version: 2.4
2
+ Name: robust-mixed-dist
3
+ Version: 0.1.2
4
+ Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
5
+ Author: Fabio Scielzo Ortiz
6
+ Author-email: fabio.scielzoortiz@gmail.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.7
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: polars
14
+ Requires-Dist: numpy
15
+ Requires-Dist: pandas
16
+ Requires-Dist: scipy
17
+ Dynamic: author
18
+ Dynamic: author-email
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: home-page
23
+ Dynamic: license-file
24
+ Dynamic: requires-dist
25
+ Dynamic: requires-python
26
+
27
+ # robust_mixed_dist
28
+
29
+ Data scientists address real-world problems using multivariate and heterogeneous
30
+ datasets, characterized by multiple variables of different natures. Selecting a suitable
31
+ distance function between units is crucial, as many statistical techniques and machine
32
+ learning algorithms depend on this concept. Traditional distances, such as Euclidean
33
+ or Manhattan, are unsuitable for mixed-type data, and although Gower distance was
34
+ designed to handle this kind of data, it may lead to suboptimal results in the presence
35
+ of outlying units or underlying correlation structure.
36
+
37
+ In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
38
+ **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
39
+ compute these robust proposals as well as classical ones.
40
+
41
+ The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -0,0 +1,15 @@
1
+ # robust_mixed_dist
2
+
3
+ Data scientists address real-world problems using multivariate and heterogeneous
4
+ datasets, characterized by multiple variables of different natures. Selecting a suitable
5
+ distance function between units is crucial, as many statistical techniques and machine
6
+ learning algorithms depend on this concept. Traditional distances, such as Euclidean
7
+ or Manhattan, are unsuitable for mixed-type data, and although Gower distance was
8
+ designed to handle this kind of data, it may lead to suboptimal results in the presence
9
+ of outlying units or underlying correlation structure.
10
+
11
+ In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
12
+ **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
13
+ compute these robust proposals as well as classical ones.
14
+
15
+ The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -0,0 +1,41 @@
1
+ Metadata-Version: 2.4
2
+ Name: robust-mixed-dist
3
+ Version: 0.1.2
4
+ Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
5
+ Author: Fabio Scielzo Ortiz
6
+ Author-email: fabio.scielzoortiz@gmail.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.7
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: polars
14
+ Requires-Dist: numpy
15
+ Requires-Dist: pandas
16
+ Requires-Dist: scipy
17
+ Dynamic: author
18
+ Dynamic: author-email
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: home-page
23
+ Dynamic: license-file
24
+ Dynamic: requires-dist
25
+ Dynamic: requires-python
26
+
27
+ # robust_mixed_dist
28
+
29
+ Data scientists address real-world problems using multivariate and heterogeneous
30
+ datasets, characterized by multiple variables of different natures. Selecting a suitable
31
+ distance function between units is crucial, as many statistical techniques and machine
32
+ learning algorithms depend on this concept. Traditional distances, such as Euclidean
33
+ or Manhattan, are unsuitable for mixed-type data, and although Gower distance was
34
+ designed to handle this kind of data, it may lead to suboptimal results in the presence
35
+ of outlying units or underlying correlation structure.
36
+
37
+ In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
38
+ **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
39
+ compute these robust proposals as well as classical ones.
40
+
41
+ The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -9,4 +9,5 @@ robust_mixed_dist/quantitative.py
9
9
  robust_mixed_dist.egg-info/PKG-INFO
10
10
  robust_mixed_dist.egg-info/SOURCES.txt
11
11
  robust_mixed_dist.egg-info/dependency_links.txt
12
+ robust_mixed_dist.egg-info/requires.txt
12
13
  robust_mixed_dist.egg-info/top_level.txt
@@ -0,0 +1,4 @@
1
+ polars
2
+ numpy
3
+ pandas
4
+ scipy
@@ -5,10 +5,10 @@ with open("README.md", "r", encoding="utf-8") as fh:
5
5
 
6
6
  setup(
7
7
  name="robust-mixed-dist",
8
- version="0.1.0",
8
+ version="0.1.2",
9
9
  author="Fabio Scielzo Ortiz",
10
10
  author_email="fabio.scielzoortiz@gmail.com",
11
- description="For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html",
11
+ description="",
12
12
  long_description=long_description,
13
13
  long_description_content_type="text/markdown",
14
14
  url="https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package", # add your project URL here
@@ -18,6 +18,6 @@ setup(
18
18
  "License :: OSI Approved :: MIT License",
19
19
  "Operating System :: OS Independent",
20
20
  ],
21
- install_requires=[],
21
+ install_requires=['polars', 'numpy', 'pandas', 'scipy'],
22
22
  python_requires=">=3.7"
23
23
  )
@@ -1,27 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: robust-mixed-dist
3
- Version: 0.1.0
4
- Summary: For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
5
- Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
- Author: Fabio Scielzo Ortiz
7
- Author-email: fabio.scielzoortiz@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Requires-Python: >=3.7
12
- Description-Content-Type: text/markdown
13
- License-File: LICENSE
14
- Dynamic: author
15
- Dynamic: author-email
16
- Dynamic: classifier
17
- Dynamic: description
18
- Dynamic: description-content-type
19
- Dynamic: home-page
20
- Dynamic: license-file
21
- Dynamic: requires-python
22
- Dynamic: summary
23
-
24
- # robust_mixed_dist
25
-
26
- For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
27
-
@@ -1,4 +0,0 @@
1
- # robust_mixed_dist
2
-
3
- For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
4
-
@@ -1,27 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: robust-mixed-dist
3
- Version: 0.1.0
4
- Summary: For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
5
- Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
- Author: Fabio Scielzo Ortiz
7
- Author-email: fabio.scielzoortiz@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Requires-Python: >=3.7
12
- Description-Content-Type: text/markdown
13
- License-File: LICENSE
14
- Dynamic: author
15
- Dynamic: author-email
16
- Dynamic: classifier
17
- Dynamic: description
18
- Dynamic: description-content-type
19
- Dynamic: home-page
20
- Dynamic: license-file
21
- Dynamic: requires-python
22
- Dynamic: summary
23
-
24
- # robust_mixed_dist
25
-
26
- For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
27
-