rnow 0.3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rnow-0.3.1/LICENSE +21 -0
- rnow-0.3.1/PKG-INFO +147 -0
- rnow-0.3.1/README.md +117 -0
- rnow-0.3.1/pyproject.toml +81 -0
- rnow-0.3.1/rnow/__init__.py +5 -0
- rnow-0.3.1/rnow/__main__.py +7 -0
- rnow-0.3.1/rnow/cli/__init__.py +6 -0
- rnow-0.3.1/rnow/cli/auth.py +67 -0
- rnow-0.3.1/rnow/cli/blob.py +98 -0
- rnow-0.3.1/rnow/cli/commands.py +2329 -0
- rnow-0.3.1/rnow/cli/common.py +28 -0
- rnow-0.3.1/rnow/cli/cube.py +255 -0
- rnow-0.3.1/rnow/cli/main.py +49 -0
- rnow-0.3.1/rnow/cli/test.py +712 -0
- rnow-0.3.1/rnow/cli/token_count.py +295 -0
- rnow-0.3.1/rnow/core/__init__.py +33 -0
- rnow-0.3.1/rnow/core/reward.py +333 -0
- rnow-0.3.1/rnow/core/tool.py +494 -0
- rnow-0.3.1/rnow/models.py +330 -0
- rnow-0.3.1/rnow/templates/deepseek-aha/config.yml +26 -0
- rnow-0.3.1/rnow/templates/deepseek-aha/rewards.py +36 -0
- rnow-0.3.1/rnow/templates/deepseek-aha/train.jsonl +1000 -0
- rnow-0.3.1/rnow/templates/mcp-tavily/config.yml +29 -0
- rnow-0.3.1/rnow/templates/mcp-tavily/requirements.txt +1 -0
- rnow-0.3.1/rnow/templates/mcp-tavily/rewards.py +25 -0
- rnow-0.3.1/rnow/templates/mcp-tavily/train.jsonl +500 -0
- rnow-0.3.1/rnow/templates/new/config.yml +26 -0
- rnow-0.3.1/rnow/templates/new/requirements.txt +1 -0
- rnow-0.3.1/rnow/templates/new/rewards.py +0 -0
- rnow-0.3.1/rnow/templates/new/train.jsonl +0 -0
- rnow-0.3.1/rnow/templates/rl-nextjs/config.yml +27 -0
- rnow-0.3.1/rnow/templates/rl-nextjs/requirements.txt +2 -0
- rnow-0.3.1/rnow/templates/rl-nextjs/rewards.py +446 -0
- rnow-0.3.1/rnow/templates/rl-nextjs/train.jsonl +1000 -0
- rnow-0.3.1/rnow/templates/rl-single/config.yml +27 -0
- rnow-0.3.1/rnow/templates/rl-single/requirements.txt +1 -0
- rnow-0.3.1/rnow/templates/rl-single/rewards.py +14 -0
- rnow-0.3.1/rnow/templates/rl-single/train.jsonl +92 -0
- rnow-0.3.1/rnow/templates/rl-tools/config.yml +27 -0
- rnow-0.3.1/rnow/templates/rl-tools/env.py +38 -0
- rnow-0.3.1/rnow/templates/rl-tools/requirements.txt +3 -0
- rnow-0.3.1/rnow/templates/rl-tools/rewards.py +25 -0
- rnow-0.3.1/rnow/templates/rl-tools/train.jsonl +500 -0
- rnow-0.3.1/rnow/templates/sft/config.yml +20 -0
- rnow-0.3.1/rnow/templates/sft/train.jsonl +100 -0
- rnow-0.3.1/rnow/templates/tutorial-reward/config.yml +27 -0
- rnow-0.3.1/rnow/templates/tutorial-reward/requirements.txt +1 -0
- rnow-0.3.1/rnow/templates/tutorial-reward/rewards.py +15 -0
- rnow-0.3.1/rnow/templates/tutorial-reward/train.jsonl +92 -0
- rnow-0.3.1/rnow/templates/tutorial-tool/config.yml +27 -0
- rnow-0.3.1/rnow/templates/tutorial-tool/env.py +7 -0
- rnow-0.3.1/rnow/templates/tutorial-tool/requirements.txt +3 -0
- rnow-0.3.1/rnow/templates/tutorial-tool/rewards.py +7 -0
- rnow-0.3.1/rnow/templates/tutorial-tool/train.jsonl +1266 -0
- rnow-0.3.1/rnow.egg-info/PKG-INFO +147 -0
- rnow-0.3.1/rnow.egg-info/SOURCES.txt +59 -0
- rnow-0.3.1/rnow.egg-info/dependency_links.txt +1 -0
- rnow-0.3.1/rnow.egg-info/entry_points.txt +2 -0
- rnow-0.3.1/rnow.egg-info/requires.txt +25 -0
- rnow-0.3.1/rnow.egg-info/top_level.txt +1 -0
- rnow-0.3.1/setup.cfg +4 -0
rnow-0.3.1/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 ReinforceNow
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
rnow-0.3.1/PKG-INFO
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: rnow
|
|
3
|
+
Version: 0.3.1
|
|
4
|
+
Summary: ReinforceNow CLI - Reinforcement Learning platform command-line interface
|
|
5
|
+
Requires-Python: <3.15,>=3.10
|
|
6
|
+
Description-Content-Type: text/markdown
|
|
7
|
+
License-File: LICENSE
|
|
8
|
+
Requires-Dist: click>=8.0.0
|
|
9
|
+
Requires-Dist: requests>=2.25.0
|
|
10
|
+
Requires-Dist: httpx>=0.24.0
|
|
11
|
+
Requires-Dist: pydantic>=2.0.0
|
|
12
|
+
Requires-Dist: pyyaml>=5.4.0
|
|
13
|
+
Requires-Dist: packaging>=21.0
|
|
14
|
+
Requires-Dist: prompt_toolkit>=3.0.0
|
|
15
|
+
Requires-Dist: tokenizers>=0.15.0
|
|
16
|
+
Requires-Dist: openai-harmony>=0.0.8
|
|
17
|
+
Provides-Extra: test
|
|
18
|
+
Requires-Dist: tinker-cookbook>=0.1.0; extra == "test"
|
|
19
|
+
Provides-Extra: api
|
|
20
|
+
Requires-Dist: fastapi>=0.68.0; extra == "api"
|
|
21
|
+
Requires-Dist: uvicorn>=0.15.0; extra == "api"
|
|
22
|
+
Provides-Extra: mcp
|
|
23
|
+
Requires-Dist: fastmcp>=0.1.0; extra == "mcp"
|
|
24
|
+
Provides-Extra: all
|
|
25
|
+
Requires-Dist: tinker-cookbook>=0.1.0; extra == "all"
|
|
26
|
+
Requires-Dist: fastapi>=0.68.0; extra == "all"
|
|
27
|
+
Requires-Dist: uvicorn>=0.15.0; extra == "all"
|
|
28
|
+
Requires-Dist: fastmcp>=0.1.0; extra == "all"
|
|
29
|
+
Dynamic: license-file
|
|
30
|
+
|
|
31
|
+
<div align="center">
|
|
32
|
+
<img
|
|
33
|
+
alt="ReinforceNow CLI"
|
|
34
|
+
src="./assets/header.png"
|
|
35
|
+
width="100%"
|
|
36
|
+
>
|
|
37
|
+
<br><br>
|
|
38
|
+
|
|
39
|
+
[](https://pypi.org/project/rnow/)
|
|
40
|
+
[](https://reinforcenow.ai/docs)
|
|
41
|
+
[](https://x.com/reinforcenow)
|
|
42
|
+
[](./LICENSE)
|
|
43
|
+
|
|
44
|
+
</div>
|
|
45
|
+
|
|
46
|
+
# Documentation
|
|
47
|
+
|
|
48
|
+
See the [documentation](https://www.reinforcenow.ai/docs/getting-started/quickstart) for a technical overview of the platform and [train your first agent](https://www.reinforcenow.ai/docs/getting-started/first-agent)
|
|
49
|
+
|
|
50
|
+
# Quick Start
|
|
51
|
+
|
|
52
|
+
### 1. Install uv (Python package manager)
|
|
53
|
+
|
|
54
|
+
```bash
|
|
55
|
+
# macOS/Linux:
|
|
56
|
+
$ curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
57
|
+
|
|
58
|
+
# Windows:
|
|
59
|
+
PS> powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
### 2. Install ReinforceNow
|
|
63
|
+
|
|
64
|
+
```bash
|
|
65
|
+
uv init && uv venv --python 3.11
|
|
66
|
+
source .venv/bin/activate # Windows: .\.venv\Scripts\Activate.ps1
|
|
67
|
+
uv pip install rnow
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
### 3. Authenticate
|
|
71
|
+
|
|
72
|
+
```bash
|
|
73
|
+
rnow login
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
### 4. Create & Run Your First Project
|
|
77
|
+
|
|
78
|
+
```bash
|
|
79
|
+
rnow init --template sft
|
|
80
|
+
rnow run
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
That's it! Your training run will start on ReinforceNow's infrastructure. Monitor progress in the [dashboard](https://reinforcenow.ai/home).
|
|
84
|
+
|
|
85
|
+

|
|
86
|
+
|
|
87
|
+
# Core Concepts
|
|
88
|
+
|
|
89
|
+
Go from raw data to a reliable AI agent in production. ReinforceNow gives you the flexibility to define:
|
|
90
|
+
|
|
91
|
+
### 1. Reward Functions
|
|
92
|
+
|
|
93
|
+
Define how your model should be evaluated using the `@reward` decorator:
|
|
94
|
+
|
|
95
|
+
```python
|
|
96
|
+
from rnow.core import reward, RewardArgs
|
|
97
|
+
|
|
98
|
+
@reward
|
|
99
|
+
async def accuracy(args: RewardArgs, messages: list) -> float:
|
|
100
|
+
"""Check if the model's answer matches ground truth."""
|
|
101
|
+
response = messages[-1]["content"]
|
|
102
|
+
expected = args.metadata["answer"]
|
|
103
|
+
return 1.0 if expected in response else 0.0
|
|
104
|
+
```
|
|
105
|
+
|
|
106
|
+
→ [Write your first reward function](https://www.reinforcenow.ai/docs/getting-started/first-reward)
|
|
107
|
+
|
|
108
|
+
### 2. Tools (for Agents)
|
|
109
|
+
|
|
110
|
+
Give your model the ability to call functions during training:
|
|
111
|
+
|
|
112
|
+
```python
|
|
113
|
+
from rnow.core import tool
|
|
114
|
+
|
|
115
|
+
@tool
|
|
116
|
+
def search(query: str, max_results: int = 5) -> dict:
|
|
117
|
+
"""Search the web for information."""
|
|
118
|
+
# Your implementation here
|
|
119
|
+
return {"results": [...]}
|
|
120
|
+
```
|
|
121
|
+
|
|
122
|
+
→ [Train an agent with custom tools](https://www.reinforcenow.ai/docs/getting-started/first-agent)
|
|
123
|
+
|
|
124
|
+
### 3. Training Data
|
|
125
|
+
|
|
126
|
+
Create a `train.jsonl` file with your prompts and reward assignments:
|
|
127
|
+
|
|
128
|
+
```json
|
|
129
|
+
{"messages": [{"role": "user", "content": "Balance the equation: Fe + O2 → Fe2O3"}], "rewards": ["accuracy"], "metadata": {"answer": "4Fe + 3O2 → 2Fe2O3"}}
|
|
130
|
+
{"messages": [{"role": "user", "content": "Balance the equation: H2 + O2 → H2O"}], "rewards": ["accuracy"], "metadata": {"answer": "2H2 + O2 → 2H2O"}}
|
|
131
|
+
{"messages": [{"role": "user", "content": "Balance the equation: N2 + H2 → NH3"}], "rewards": ["accuracy"], "metadata": {"answer": "N2 + 3H2 → 2NH3"}}
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
→ [Learn about training data format](https://www.reinforcenow.ai/docs/cli-reference/train-data)
|
|
135
|
+
|
|
136
|
+
# Contributing
|
|
137
|
+
|
|
138
|
+
We welcome contributions! ❤️ Please open an issue to discuss your ideas before submitting a PR
|
|
139
|
+
|
|
140
|
+
<br>
|
|
141
|
+
<div align="center">
|
|
142
|
+
<img
|
|
143
|
+
alt="ReinforceNow"
|
|
144
|
+
src="./assets/footer.png"
|
|
145
|
+
width="100%"
|
|
146
|
+
>
|
|
147
|
+
</div>
|
rnow-0.3.1/README.md
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
<div align="center">
|
|
2
|
+
<img
|
|
3
|
+
alt="ReinforceNow CLI"
|
|
4
|
+
src="./assets/header.png"
|
|
5
|
+
width="100%"
|
|
6
|
+
>
|
|
7
|
+
<br><br>
|
|
8
|
+
|
|
9
|
+
[](https://pypi.org/project/rnow/)
|
|
10
|
+
[](https://reinforcenow.ai/docs)
|
|
11
|
+
[](https://x.com/reinforcenow)
|
|
12
|
+
[](./LICENSE)
|
|
13
|
+
|
|
14
|
+
</div>
|
|
15
|
+
|
|
16
|
+
# Documentation
|
|
17
|
+
|
|
18
|
+
See the [documentation](https://www.reinforcenow.ai/docs/getting-started/quickstart) for a technical overview of the platform and [train your first agent](https://www.reinforcenow.ai/docs/getting-started/first-agent)
|
|
19
|
+
|
|
20
|
+
# Quick Start
|
|
21
|
+
|
|
22
|
+
### 1. Install uv (Python package manager)
|
|
23
|
+
|
|
24
|
+
```bash
|
|
25
|
+
# macOS/Linux:
|
|
26
|
+
$ curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
27
|
+
|
|
28
|
+
# Windows:
|
|
29
|
+
PS> powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
|
|
30
|
+
```
|
|
31
|
+
|
|
32
|
+
### 2. Install ReinforceNow
|
|
33
|
+
|
|
34
|
+
```bash
|
|
35
|
+
uv init && uv venv --python 3.11
|
|
36
|
+
source .venv/bin/activate # Windows: .\.venv\Scripts\Activate.ps1
|
|
37
|
+
uv pip install rnow
|
|
38
|
+
```
|
|
39
|
+
|
|
40
|
+
### 3. Authenticate
|
|
41
|
+
|
|
42
|
+
```bash
|
|
43
|
+
rnow login
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
### 4. Create & Run Your First Project
|
|
47
|
+
|
|
48
|
+
```bash
|
|
49
|
+
rnow init --template sft
|
|
50
|
+
rnow run
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
That's it! Your training run will start on ReinforceNow's infrastructure. Monitor progress in the [dashboard](https://reinforcenow.ai/home).
|
|
54
|
+
|
|
55
|
+

|
|
56
|
+
|
|
57
|
+
# Core Concepts
|
|
58
|
+
|
|
59
|
+
Go from raw data to a reliable AI agent in production. ReinforceNow gives you the flexibility to define:
|
|
60
|
+
|
|
61
|
+
### 1. Reward Functions
|
|
62
|
+
|
|
63
|
+
Define how your model should be evaluated using the `@reward` decorator:
|
|
64
|
+
|
|
65
|
+
```python
|
|
66
|
+
from rnow.core import reward, RewardArgs
|
|
67
|
+
|
|
68
|
+
@reward
|
|
69
|
+
async def accuracy(args: RewardArgs, messages: list) -> float:
|
|
70
|
+
"""Check if the model's answer matches ground truth."""
|
|
71
|
+
response = messages[-1]["content"]
|
|
72
|
+
expected = args.metadata["answer"]
|
|
73
|
+
return 1.0 if expected in response else 0.0
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
→ [Write your first reward function](https://www.reinforcenow.ai/docs/getting-started/first-reward)
|
|
77
|
+
|
|
78
|
+
### 2. Tools (for Agents)
|
|
79
|
+
|
|
80
|
+
Give your model the ability to call functions during training:
|
|
81
|
+
|
|
82
|
+
```python
|
|
83
|
+
from rnow.core import tool
|
|
84
|
+
|
|
85
|
+
@tool
|
|
86
|
+
def search(query: str, max_results: int = 5) -> dict:
|
|
87
|
+
"""Search the web for information."""
|
|
88
|
+
# Your implementation here
|
|
89
|
+
return {"results": [...]}
|
|
90
|
+
```
|
|
91
|
+
|
|
92
|
+
→ [Train an agent with custom tools](https://www.reinforcenow.ai/docs/getting-started/first-agent)
|
|
93
|
+
|
|
94
|
+
### 3. Training Data
|
|
95
|
+
|
|
96
|
+
Create a `train.jsonl` file with your prompts and reward assignments:
|
|
97
|
+
|
|
98
|
+
```json
|
|
99
|
+
{"messages": [{"role": "user", "content": "Balance the equation: Fe + O2 → Fe2O3"}], "rewards": ["accuracy"], "metadata": {"answer": "4Fe + 3O2 → 2Fe2O3"}}
|
|
100
|
+
{"messages": [{"role": "user", "content": "Balance the equation: H2 + O2 → H2O"}], "rewards": ["accuracy"], "metadata": {"answer": "2H2 + O2 → 2H2O"}}
|
|
101
|
+
{"messages": [{"role": "user", "content": "Balance the equation: N2 + H2 → NH3"}], "rewards": ["accuracy"], "metadata": {"answer": "N2 + 3H2 → 2NH3"}}
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
→ [Learn about training data format](https://www.reinforcenow.ai/docs/cli-reference/train-data)
|
|
105
|
+
|
|
106
|
+
# Contributing
|
|
107
|
+
|
|
108
|
+
We welcome contributions! ❤️ Please open an issue to discuss your ideas before submitting a PR
|
|
109
|
+
|
|
110
|
+
<br>
|
|
111
|
+
<div align="center">
|
|
112
|
+
<img
|
|
113
|
+
alt="ReinforceNow"
|
|
114
|
+
src="./assets/footer.png"
|
|
115
|
+
width="100%"
|
|
116
|
+
>
|
|
117
|
+
</div>
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[tool.setuptools.packages.find]
|
|
6
|
+
where = ["."]
|
|
7
|
+
include = ["rnow*"]
|
|
8
|
+
|
|
9
|
+
[tool.setuptools.package-data]
|
|
10
|
+
rnow = ["templates/**/*"]
|
|
11
|
+
|
|
12
|
+
[project]
|
|
13
|
+
name = "rnow"
|
|
14
|
+
version = "0.3.1"
|
|
15
|
+
description = "ReinforceNow CLI - Reinforcement Learning platform command-line interface"
|
|
16
|
+
readme = "README.md"
|
|
17
|
+
requires-python = ">=3.10,<3.15"
|
|
18
|
+
dependencies = [
|
|
19
|
+
# Core CLI deps - lightweight, cross-platform
|
|
20
|
+
"click>=8.0.0",
|
|
21
|
+
"requests>=2.25.0",
|
|
22
|
+
"httpx>=0.24.0",
|
|
23
|
+
"pydantic>=2.0.0",
|
|
24
|
+
"pyyaml>=5.4.0",
|
|
25
|
+
"packaging>=21.0",
|
|
26
|
+
"prompt_toolkit>=3.0.0",
|
|
27
|
+
# Tokenizers for accurate token counting
|
|
28
|
+
"tokenizers>=0.15.0",
|
|
29
|
+
"openai-harmony>=0.0.8",
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
[project.optional-dependencies]
|
|
33
|
+
# Local testing with ML inference (requires torch)
|
|
34
|
+
test = ["tinker-cookbook>=0.1.0"]
|
|
35
|
+
# API server mode
|
|
36
|
+
api = ["fastapi>=0.68.0", "uvicorn>=0.15.0"]
|
|
37
|
+
# MCP server support (for fetching tool schemas)
|
|
38
|
+
mcp = ["fastmcp>=0.1.0"]
|
|
39
|
+
# All optional features
|
|
40
|
+
all = ["tinker-cookbook>=0.1.0", "fastapi>=0.68.0", "uvicorn>=0.15.0", "fastmcp>=0.1.0"]
|
|
41
|
+
|
|
42
|
+
[project.scripts]
|
|
43
|
+
rnow = "rnow.cli.main:main"
|
|
44
|
+
|
|
45
|
+
# =============================================================================
|
|
46
|
+
# Ruff configuration (linting + formatting)
|
|
47
|
+
# =============================================================================
|
|
48
|
+
[tool.ruff]
|
|
49
|
+
line-length = 100
|
|
50
|
+
target-version = "py310"
|
|
51
|
+
|
|
52
|
+
[tool.ruff.lint]
|
|
53
|
+
select = [
|
|
54
|
+
"E", # pycodestyle errors
|
|
55
|
+
"F", # pyflakes
|
|
56
|
+
"I", # isort
|
|
57
|
+
"W", # pycodestyle warnings
|
|
58
|
+
"UP", # pyupgrade
|
|
59
|
+
"B", # flake8-bugbear
|
|
60
|
+
"SIM", # flake8-simplify
|
|
61
|
+
]
|
|
62
|
+
ignore = [
|
|
63
|
+
"E501", # line too long (formatter handles)
|
|
64
|
+
"E402", # imports not at top
|
|
65
|
+
"E722", # bare except
|
|
66
|
+
"B008", # function call in default arg
|
|
67
|
+
"B904", # raise from err
|
|
68
|
+
"SIM115", # context manager for open
|
|
69
|
+
]
|
|
70
|
+
|
|
71
|
+
[tool.ruff.lint.isort]
|
|
72
|
+
known-first-party = ["rnow"]
|
|
73
|
+
|
|
74
|
+
# =============================================================================
|
|
75
|
+
# Mypy configuration (type checking)
|
|
76
|
+
# =============================================================================
|
|
77
|
+
[tool.mypy]
|
|
78
|
+
python_version = "3.10"
|
|
79
|
+
warn_return_any = true
|
|
80
|
+
warn_unused_ignores = true
|
|
81
|
+
ignore_missing_imports = true
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
# reinforcenow/cli/auth.py
|
|
2
|
+
|
|
3
|
+
import json
|
|
4
|
+
from pathlib import Path
|
|
5
|
+
|
|
6
|
+
import click
|
|
7
|
+
|
|
8
|
+
# Simple home directory paths
|
|
9
|
+
DATA_DIR = Path.home() / ".reinforcenow"
|
|
10
|
+
CREDS_FILE = DATA_DIR / "credentials.json"
|
|
11
|
+
CONFIG_FILE = DATA_DIR / "config.json"
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def is_authenticated() -> bool:
|
|
15
|
+
"""Check if authenticated."""
|
|
16
|
+
try:
|
|
17
|
+
with open(CREDS_FILE) as f:
|
|
18
|
+
return "api_key" in json.load(f)
|
|
19
|
+
except (FileNotFoundError, json.JSONDecodeError, KeyError):
|
|
20
|
+
return False
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def get_auth_headers() -> dict[str, str]:
|
|
24
|
+
"""Get auth headers."""
|
|
25
|
+
try:
|
|
26
|
+
with open(CREDS_FILE) as f:
|
|
27
|
+
creds = json.load(f)
|
|
28
|
+
return {
|
|
29
|
+
"Content-Type": "application/json",
|
|
30
|
+
"Authorization": f"Bearer {creds['api_key']}",
|
|
31
|
+
}
|
|
32
|
+
except (FileNotFoundError, json.JSONDecodeError, KeyError):
|
|
33
|
+
raise click.ClickException("Not authenticated. Run 'reinforcenow login'")
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def get_active_org_from_config() -> str | None:
|
|
37
|
+
"""Get active organization."""
|
|
38
|
+
try:
|
|
39
|
+
with open(CONFIG_FILE) as f:
|
|
40
|
+
return json.load(f).get("active_organization_id")
|
|
41
|
+
except (FileNotFoundError, json.JSONDecodeError):
|
|
42
|
+
return None
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def set_active_organization(org_id: str) -> None:
|
|
46
|
+
"""Set active organization."""
|
|
47
|
+
DATA_DIR.mkdir(parents=True, exist_ok=True)
|
|
48
|
+
|
|
49
|
+
try:
|
|
50
|
+
with open(CONFIG_FILE) as f:
|
|
51
|
+
config = json.load(f)
|
|
52
|
+
except (FileNotFoundError, json.JSONDecodeError):
|
|
53
|
+
config = {}
|
|
54
|
+
|
|
55
|
+
config["active_organization_id"] = org_id
|
|
56
|
+
|
|
57
|
+
with open(CONFIG_FILE, "w") as f:
|
|
58
|
+
json.dump(config, f, indent=2)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def logout() -> None:
|
|
62
|
+
"""Remove credentials."""
|
|
63
|
+
if CREDS_FILE.exists():
|
|
64
|
+
CREDS_FILE.unlink()
|
|
65
|
+
click.echo("✓ Logged out")
|
|
66
|
+
else:
|
|
67
|
+
click.echo("Not logged in")
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
# reinforcenow/cli/blob.py
|
|
2
|
+
"""Vercel Blob upload support for large files."""
|
|
3
|
+
|
|
4
|
+
from pathlib import Path
|
|
5
|
+
|
|
6
|
+
import requests
|
|
7
|
+
|
|
8
|
+
from rnow.cli import auth
|
|
9
|
+
|
|
10
|
+
# Size threshold for blob uploads (4MB to stay under 4.5MB limit)
|
|
11
|
+
MAX_INLINE_BYTES = 4 * 1024 * 1024
|
|
12
|
+
|
|
13
|
+
BLOB_API_URL = "https://blob.vercel-storage.com"
|
|
14
|
+
BLOB_API_VERSION = "7"
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def request_blob_client_token(base_url: str, pathname: str) -> str:
|
|
18
|
+
"""
|
|
19
|
+
Request a client upload token from the backend.
|
|
20
|
+
This token allows direct upload to Vercel Blob.
|
|
21
|
+
"""
|
|
22
|
+
headers = auth.get_auth_headers()
|
|
23
|
+
headers["Content-Type"] = "application/json"
|
|
24
|
+
|
|
25
|
+
payload = {
|
|
26
|
+
"type": "blob.generate-client-token",
|
|
27
|
+
"payload": {
|
|
28
|
+
"pathname": pathname,
|
|
29
|
+
"callbackUrl": f"{base_url}/dataset/upload",
|
|
30
|
+
},
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
resp = requests.post(
|
|
34
|
+
f"{base_url}/dataset/upload",
|
|
35
|
+
headers=headers,
|
|
36
|
+
json=payload,
|
|
37
|
+
timeout=30,
|
|
38
|
+
)
|
|
39
|
+
resp.raise_for_status()
|
|
40
|
+
data = resp.json()
|
|
41
|
+
|
|
42
|
+
if data.get("type") != "blob.generate-client-token":
|
|
43
|
+
raise RuntimeError(f"Unexpected response from blob token endpoint: {data}")
|
|
44
|
+
|
|
45
|
+
client_token = data.get("clientToken")
|
|
46
|
+
if not client_token:
|
|
47
|
+
raise RuntimeError("No clientToken returned from blob token endpoint")
|
|
48
|
+
|
|
49
|
+
return client_token
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def upload_file_to_blob(base_url: str, local_path: Path, blob_pathname: str) -> dict:
|
|
53
|
+
"""
|
|
54
|
+
Upload a file directly to Vercel Blob using a client token.
|
|
55
|
+
Returns the blob JSON (contains url, pathname, etc).
|
|
56
|
+
"""
|
|
57
|
+
client_token = request_blob_client_token(base_url, blob_pathname)
|
|
58
|
+
|
|
59
|
+
url = f"{BLOB_API_URL}/{blob_pathname.lstrip('/')}"
|
|
60
|
+
headers = {
|
|
61
|
+
"Authorization": f"Bearer {client_token}",
|
|
62
|
+
"x-api-version": BLOB_API_VERSION,
|
|
63
|
+
"x-content-type": "application/jsonl",
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
with open(local_path, "rb") as f:
|
|
67
|
+
resp = requests.put(url, headers=headers, data=f, timeout=300)
|
|
68
|
+
|
|
69
|
+
resp.raise_for_status()
|
|
70
|
+
return resp.json()
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def maybe_upload_to_blob(
|
|
74
|
+
base_url: str,
|
|
75
|
+
file_path: Path,
|
|
76
|
+
dataset_id: str,
|
|
77
|
+
) -> tuple[str | None, dict | None]:
|
|
78
|
+
"""
|
|
79
|
+
Check if file needs blob upload and handle it.
|
|
80
|
+
|
|
81
|
+
Returns:
|
|
82
|
+
(inline_contents, blob_info)
|
|
83
|
+
- If small: inline_contents is file content, blob_info is None
|
|
84
|
+
- If large: inline_contents is None, blob_info has url/pathname
|
|
85
|
+
"""
|
|
86
|
+
size = file_path.stat().st_size
|
|
87
|
+
|
|
88
|
+
if size <= MAX_INLINE_BYTES:
|
|
89
|
+
# Small file - return contents for inline upload
|
|
90
|
+
return None, None
|
|
91
|
+
|
|
92
|
+
# Large file - upload to blob
|
|
93
|
+
import uuid
|
|
94
|
+
|
|
95
|
+
blob_pathname = f"datasets/{dataset_id}/{uuid.uuid4().hex[:8]}-{file_path.name}"
|
|
96
|
+
|
|
97
|
+
blob = upload_file_to_blob(base_url, file_path, blob_pathname)
|
|
98
|
+
return None, blob
|