risk-network 0.0.9b15__tar.gz → 0.0.9b17__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/PKG-INFO +5 -3
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/README.md +1 -1
- risk_network-0.0.9b17/risk/__init__.py +10 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/contour.py +7 -9
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/risk.py +4 -4
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/permutation/permutation.py +3 -1
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk_network.egg-info/PKG-INFO +5 -3
- risk_network-0.0.9b15/risk/__init__.py +0 -10
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/LICENSE +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/MANIFEST.in +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/pyproject.toml +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/annotations/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/annotations/annotations.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/annotations/io.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/constants.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/log/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/log/console.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/log/parameters.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/neighborhoods/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/neighborhoods/community.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/neighborhoods/domains.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/neighborhoods/neighborhoods.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/geometry.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/graph/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/graph/network.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/graph/summary.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/io.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/canvas.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/labels.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/network.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/plotter.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/utils/colors.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/network/plot/utils/layout.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/hypergeom.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/permutation/__init__.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/permutation/test_functions.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/poisson.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk/stats/stats.py +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk_network.egg-info/SOURCES.txt +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk_network.egg-info/dependency_links.txt +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk_network.egg-info/requires.txt +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/risk_network.egg-info/top_level.txt +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/setup.cfg +0 -0
- {risk_network-0.0.9b15 → risk_network-0.0.9b17}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.2
|
2
2
|
Name: risk-network
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.9b17
|
4
4
|
Summary: A Python package for biological network analysis
|
5
5
|
Author: Ira Horecka
|
6
6
|
Author-email: Ira Horecka <ira89@icloud.com>
|
@@ -710,6 +710,8 @@ Requires-Dist: scipy
|
|
710
710
|
Requires-Dist: statsmodels
|
711
711
|
Requires-Dist: threadpoolctl
|
712
712
|
Requires-Dist: tqdm
|
713
|
+
Dynamic: author
|
714
|
+
Dynamic: requires-python
|
713
715
|
|
714
716
|
# RISK Network
|
715
717
|
|
@@ -726,7 +728,7 @@ Requires-Dist: tqdm
|
|
726
728
|

|
727
729
|

|
728
730
|
|
729
|
-
**RISK (
|
731
|
+
**RISK** (Regional Inference of Significant Kinships) is a next-generation tool designed to streamline the analysis of biological and non-biological networks. RISK enhances network analysis with its modular architecture, extensive file format support, and advanced clustering algorithms. It simplifies the creation of publication-quality figures, making it an important tool for researchers across disciplines.
|
730
732
|
|
731
733
|
## Documentation and Tutorial
|
732
734
|
|
@@ -13,7 +13,7 @@
|
|
13
13
|

|
14
14
|

|
15
15
|
|
16
|
-
**RISK (
|
16
|
+
**RISK** (Regional Inference of Significant Kinships) is a next-generation tool designed to streamline the analysis of biological and non-biological networks. RISK enhances network analysis with its modular architecture, extensive file format support, and advanced clustering algorithms. It simplifies the creation of publication-quality figures, making it an important tool for researchers across disciplines.
|
17
17
|
|
18
18
|
## Documentation and Tutorial
|
19
19
|
|
@@ -242,7 +242,7 @@ class Contour:
|
|
242
242
|
logger.error("Contour levels must be strictly increasing. Skipping contour plot.")
|
243
243
|
return None
|
244
244
|
|
245
|
-
# Set the contour color and linestyle
|
245
|
+
# Set the contour color, fill, and linestyle
|
246
246
|
contour_colors = [color for _ in range(levels - 1)]
|
247
247
|
# Plot the filled contours using fill_alpha for transparency
|
248
248
|
if fill_alpha and fill_alpha > 0:
|
@@ -258,21 +258,19 @@ class Contour:
|
|
258
258
|
alpha=fill_alpha,
|
259
259
|
)
|
260
260
|
|
261
|
-
# Plot the contour
|
262
|
-
|
261
|
+
# Plot the base contour line with the specified RGBA alpha for transparency
|
262
|
+
base_contour_color = [color]
|
263
|
+
base_contour_level = [contour_levels[0]]
|
264
|
+
ax.contour(
|
263
265
|
x,
|
264
266
|
y,
|
265
267
|
z,
|
266
|
-
levels=
|
267
|
-
colors=
|
268
|
+
levels=base_contour_level,
|
269
|
+
colors=base_contour_color,
|
268
270
|
linestyles=linestyle,
|
269
271
|
linewidths=linewidth,
|
270
272
|
)
|
271
273
|
|
272
|
-
# Set linewidth for the contour lines to 0 for levels other than the base level
|
273
|
-
for i in range(1, len(contour_levels)):
|
274
|
-
c.collections[i].set_linewidth(0)
|
275
|
-
|
276
274
|
def get_annotated_contour_colors(
|
277
275
|
self,
|
278
276
|
cmap: str = "gist_rainbow",
|
@@ -63,7 +63,7 @@ class RISK(NetworkIO, AnnotationsIO):
|
|
63
63
|
network (nx.Graph): The network graph.
|
64
64
|
annotations (Dict[str, Any]): The annotations associated with the network.
|
65
65
|
distance_metric (str, List, Tuple, or np.ndarray, optional): The distance metric(s) to use. Can be a string for one
|
66
|
-
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
|
66
|
+
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'leiden', 'label_propagation',
|
67
67
|
'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
|
68
68
|
louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
|
69
69
|
leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
|
@@ -127,7 +127,7 @@ class RISK(NetworkIO, AnnotationsIO):
|
|
127
127
|
network (nx.Graph): The network graph.
|
128
128
|
annotations (Dict[str, Any]): The annotations associated with the network.
|
129
129
|
distance_metric (str, List, Tuple, or np.ndarray, optional): The distance metric(s) to use. Can be a string for one
|
130
|
-
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
|
130
|
+
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'leiden', 'label_propagation',
|
131
131
|
'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
|
132
132
|
louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
|
133
133
|
leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
|
@@ -194,7 +194,7 @@ class RISK(NetworkIO, AnnotationsIO):
|
|
194
194
|
network (nx.Graph): The network graph.
|
195
195
|
annotations (Dict[str, Any]): The annotations associated with the network.
|
196
196
|
distance_metric (str, List, Tuple, or np.ndarray, optional): The distance metric(s) to use. Can be a string for one
|
197
|
-
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
|
197
|
+
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'leiden', 'label_propagation',
|
198
198
|
'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
|
199
199
|
louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
|
200
200
|
leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
|
@@ -430,7 +430,7 @@ class RISK(NetworkIO, AnnotationsIO):
|
|
430
430
|
network (nx.Graph): The network graph.
|
431
431
|
annotations (pd.DataFrame): The matrix of annotations associated with the network.
|
432
432
|
distance_metric (str, List, Tuple, or np.ndarray, optional): The distance metric(s) to use. Can be a string for one
|
433
|
-
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
|
433
|
+
metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'leiden', 'label_propagation',
|
434
434
|
'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
|
435
435
|
louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
|
436
436
|
leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
|
@@ -192,7 +192,9 @@ def _permutation_process_subset(
|
|
192
192
|
local_counts_depletion = np.zeros(observed_neighborhood_scores.shape)
|
193
193
|
local_counts_enrichment = np.zeros(observed_neighborhood_scores.shape)
|
194
194
|
|
195
|
-
#
|
195
|
+
# Limit the number of threads used by NumPy's BLAS implementation to 1 when more than one worker is used
|
196
|
+
# NOTE: This does not work for Mac M chips due to a bug in the threadpoolctl package
|
197
|
+
# This is currently a known issue and is being addressed by the maintainers [https://github.com/joblib/threadpoolctl/issues/135]
|
196
198
|
limits = None if max_workers == 1 else 1
|
197
199
|
with threadpool_limits(limits=limits, user_api="blas"):
|
198
200
|
# Initialize a local counter for batched progress updates
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.2
|
2
2
|
Name: risk-network
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.9b17
|
4
4
|
Summary: A Python package for biological network analysis
|
5
5
|
Author: Ira Horecka
|
6
6
|
Author-email: Ira Horecka <ira89@icloud.com>
|
@@ -710,6 +710,8 @@ Requires-Dist: scipy
|
|
710
710
|
Requires-Dist: statsmodels
|
711
711
|
Requires-Dist: threadpoolctl
|
712
712
|
Requires-Dist: tqdm
|
713
|
+
Dynamic: author
|
714
|
+
Dynamic: requires-python
|
713
715
|
|
714
716
|
# RISK Network
|
715
717
|
|
@@ -726,7 +728,7 @@ Requires-Dist: tqdm
|
|
726
728
|

|
727
729
|

|
728
730
|
|
729
|
-
**RISK (
|
731
|
+
**RISK** (Regional Inference of Significant Kinships) is a next-generation tool designed to streamline the analysis of biological and non-biological networks. RISK enhances network analysis with its modular architecture, extensive file format support, and advanced clustering algorithms. It simplifies the creation of publication-quality figures, making it an important tool for researchers across disciplines.
|
730
732
|
|
731
733
|
## Documentation and Tutorial
|
732
734
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|