risk-network 0.0.11__tar.gz → 0.0.12__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- risk_network-0.0.12/PKG-INFO +122 -0
- {risk_network-0.0.11 → risk_network-0.0.12}/README.md +7 -7
- {risk_network-0.0.11 → risk_network-0.0.12}/pyproject.toml +21 -5
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/__init__.py +1 -1
- risk_network-0.0.12/src/risk/annotation/__init__.py +10 -0
- risk_network-0.0.11/risk/annotations/annotations.py → risk_network-0.0.12/src/risk/annotation/annotation.py +44 -44
- {risk_network-0.0.11/risk/annotations → risk_network-0.0.12/src/risk/annotation}/io.py +93 -92
- {risk_network-0.0.11/risk/annotations → risk_network-0.0.12/src/risk/annotation}/nltk_setup.py +6 -5
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/log/__init__.py +1 -1
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/log/parameters.py +26 -27
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/neighborhoods/__init__.py +0 -1
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/neighborhoods/api.py +38 -38
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/neighborhoods/community.py +33 -4
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/neighborhoods/domains.py +26 -28
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/neighborhoods/neighborhoods.py +8 -2
- risk_network-0.0.12/src/risk/neighborhoods/stats/__init__.py +13 -0
- risk_network-0.0.12/src/risk/neighborhoods/stats/permutation/__init__.py +6 -0
- {risk_network-0.0.11/risk → risk_network-0.0.12/src/risk/neighborhoods}/stats/permutation/permutation.py +24 -21
- {risk_network-0.0.11/risk → risk_network-0.0.12/src/risk/neighborhoods}/stats/permutation/test_functions.py +4 -4
- risk_network-0.0.11/risk/stats/stat_tests.py → risk_network-0.0.12/src/risk/neighborhoods/stats/tests.py +62 -54
- risk_network-0.0.12/src/risk/network/__init__.py +4 -0
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/graph/__init__.py +0 -2
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/graph/api.py +19 -19
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/graph/graph.py +73 -68
- risk_network-0.0.11/risk/stats/significance.py → risk_network-0.0.12/src/risk/network/graph/stats.py +2 -2
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/graph/summary.py +12 -13
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/io.py +163 -20
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/__init__.py +0 -2
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/api.py +1 -1
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/canvas.py +36 -36
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/contour.py +14 -15
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/labels.py +303 -294
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/network.py +6 -6
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/plotter.py +8 -10
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/utils/colors.py +15 -8
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/network/plotter/utils/layout.py +3 -3
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/risk.py +6 -6
- risk_network-0.0.12/src/risk_network.egg-info/PKG-INFO +122 -0
- risk_network-0.0.12/src/risk_network.egg-info/SOURCES.txt +50 -0
- risk_network-0.0.12/tests/test_load_annotation.py +291 -0
- risk_network-0.0.12/tests/test_load_graph.py +420 -0
- risk_network-0.0.12/tests/test_load_io_combinations.py +95 -0
- risk_network-0.0.12/tests/test_load_neighborhoods.py +455 -0
- risk_network-0.0.12/tests/test_load_network.py +401 -0
- risk_network-0.0.12/tests/test_load_plotter.py +1483 -0
- risk_network-0.0.12/tests/test_log.py +72 -0
- risk_network-0.0.11/MANIFEST.in +0 -20
- risk_network-0.0.11/PKG-INFO +0 -798
- risk_network-0.0.11/risk/annotations/__init__.py +0 -7
- risk_network-0.0.11/risk/network/__init__.py +0 -6
- risk_network-0.0.11/risk/network/geometry.py +0 -150
- risk_network-0.0.11/risk/stats/__init__.py +0 -15
- risk_network-0.0.11/risk/stats/permutation/__init__.py +0 -6
- risk_network-0.0.11/risk_network.egg-info/PKG-INFO +0 -798
- risk_network-0.0.11/risk_network.egg-info/SOURCES.txt +0 -46
- risk_network-0.0.11/setup.py +0 -67
- {risk_network-0.0.11 → risk_network-0.0.12}/LICENSE +0 -0
- {risk_network-0.0.11 → risk_network-0.0.12}/setup.cfg +0 -0
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk/log/console.py +0 -0
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk_network.egg-info/dependency_links.txt +0 -0
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk_network.egg-info/requires.txt +0 -0
- {risk_network-0.0.11 → risk_network-0.0.12/src}/risk_network.egg-info/top_level.txt +0 -0
@@ -0,0 +1,122 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: risk-network
|
3
|
+
Version: 0.0.12
|
4
|
+
Summary: A Python package for biological network analysis
|
5
|
+
Author-email: Ira Horecka <ira89@icloud.com>
|
6
|
+
License: GPL-3.0-or-later
|
7
|
+
Project-URL: Homepage, https://github.com/riskportal/network
|
8
|
+
Classifier: Intended Audience :: Developers
|
9
|
+
Classifier: Intended Audience :: Science/Research
|
10
|
+
Classifier: Operating System :: OS Independent
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
12
|
+
Classifier: Programming Language :: Python :: 3.8
|
13
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
14
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
15
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: Visualization
|
17
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
18
|
+
Classifier: Development Status :: 4 - Beta
|
19
|
+
Requires-Python: >=3.8
|
20
|
+
Description-Content-Type: text/markdown
|
21
|
+
License-File: LICENSE
|
22
|
+
Requires-Dist: ipywidgets
|
23
|
+
Requires-Dist: leidenalg
|
24
|
+
Requires-Dist: markov_clustering
|
25
|
+
Requires-Dist: matplotlib
|
26
|
+
Requires-Dist: networkx
|
27
|
+
Requires-Dist: nltk
|
28
|
+
Requires-Dist: numpy
|
29
|
+
Requires-Dist: openpyxl
|
30
|
+
Requires-Dist: pandas
|
31
|
+
Requires-Dist: python-igraph
|
32
|
+
Requires-Dist: python-louvain
|
33
|
+
Requires-Dist: scikit-learn
|
34
|
+
Requires-Dist: scipy
|
35
|
+
Requires-Dist: statsmodels
|
36
|
+
Requires-Dist: threadpoolctl
|
37
|
+
Requires-Dist: tqdm
|
38
|
+
Dynamic: license-file
|
39
|
+
|
40
|
+
# RISK Network
|
41
|
+
|
42
|
+
<p align="center">
|
43
|
+
<img src="https://i.imgur.com/8TleEJs.png" width="50%" />
|
44
|
+
</p>
|
45
|
+
|
46
|
+
<br>
|
47
|
+
|
48
|
+

|
49
|
+
[](https://pypi.python.org/pypi/risk-network)
|
50
|
+

|
51
|
+
[](https://doi.org/10.5281/zenodo.xxxxxxx)
|
52
|
+

|
53
|
+

|
54
|
+
|
55
|
+
**RISK** (Regional Inference of Significant Kinships) is a next-generation tool for biological network annotation and visualization. RISK integrates community detection-based clustering, rigorous statistical enrichment analysis, and a modular framework to uncover biologically meaningful relationships and generate high-resolution visualizations. RISK supports diverse data formats and is optimized for large-scale network analysis, making it a valuable resource for researchers in systems biology and beyond.
|
56
|
+
|
57
|
+
## Documentation and Tutorial
|
58
|
+
|
59
|
+
Full documentation is available at:
|
60
|
+
|
61
|
+
- **Docs:** [https://riskportal.github.io/network-tutorial](https://riskportal.github.io/network-tutorial)
|
62
|
+
- **Tutorial Jupyter Notebook Repository:** [https://github.com/riskportal/network-tutorial](https://github.com/riskportal/network-tutorial)
|
63
|
+
|
64
|
+
## Installation
|
65
|
+
|
66
|
+
RISK is compatible with Python 3.8 or later and runs on all major operating systems. To install the latest version of RISK, run:
|
67
|
+
|
68
|
+
```bash
|
69
|
+
pip install risk-network --upgrade
|
70
|
+
```
|
71
|
+
|
72
|
+
## Features
|
73
|
+
|
74
|
+
- **Comprehensive Network Analysis**: Analyze biological networks (e.g., protein–protein interaction and genetic interaction networks) as well as non-biological networks.
|
75
|
+
- **Advanced Clustering Algorithms**: Supports Louvain, Leiden, Markov Clustering, Greedy Modularity, Label Propagation, Spinglass, and Walktrap for identifying structured network regions.
|
76
|
+
- **Flexible Visualization**: Produce customizable, high-resolution network visualizations with kernel density estimate overlays, adjustable node and edge attributes, and export options in SVG, PNG, and PDF formats.
|
77
|
+
- **Efficient Data Handling**: Supports multiple input/output formats, including JSON, CSV, TSV, Excel, Cytoscape, and GPickle.
|
78
|
+
- **Statistical Analysis**: Assess functional enrichment using hypergeometric, permutation (network-aware), binomial, chi-squared, Poisson, and z-score tests, ensuring statistical adaptability across datasets.
|
79
|
+
- **Cross-Domain Applicability**: Suitable for network analysis across biological and non-biological domains, including social and communication networks.
|
80
|
+
|
81
|
+
## Example Usage
|
82
|
+
|
83
|
+
We applied RISK to a *Saccharomyces cerevisiae* protein–protein interaction network from Michaelis et al. (2023), filtering for proteins with six or more interactions to emphasize core functional relationships. RISK identified compact, statistically enriched clusters corresponding to biological processes such as ribosomal assembly and mitochondrial organization.
|
84
|
+
|
85
|
+
[](https://i.imgur.com/lJHJrJr.jpeg)
|
86
|
+
|
87
|
+
This figure highlights RISK’s capability to detect both established and novel functional modules within the yeast interactome.
|
88
|
+
|
89
|
+
## Citation
|
90
|
+
|
91
|
+
If you use RISK in your research, please cite:
|
92
|
+
|
93
|
+
**Horecka et al.**, "RISK: a next-generation tool for biological network annotation and visualization", **Bioinformatics**, 2025. DOI: [10.1234/zenodo.xxxxxxx](https://doi.org/10.1234/zenodo.xxxxxxx)
|
94
|
+
|
95
|
+
## Software Architecture and Implementation
|
96
|
+
|
97
|
+
RISK features a streamlined, modular architecture designed to meet diverse research needs. RISK’s modular design enables users to run individual components—such as clustering, statistical testing, or visualization—independently or in combination, depending on the analysis workflow. It includes dedicated modules for:
|
98
|
+
|
99
|
+
- **Data I/O**: Supports JSON, CSV, TSV, Excel, Cytoscape, and GPickle formats.
|
100
|
+
- **Clustering**: Supports multiple clustering methods, including Louvain, Leiden, Markov Clustering, Greedy Modularity, Label Propagation, Spinglass, and Walktrap. Provides flexible distance metrics tailored to network structure.
|
101
|
+
- **Statistical Analysis**: Provides a suite of tests for overrepresentation analysis of annotations.
|
102
|
+
- **Visualization**: Offers customizable, high-resolution output in multiple formats, including SVG, PNG, and PDF.
|
103
|
+
- **Configuration Management**: Centralized parameters in risk.params ensure reproducibility and easy tuning for large-scale analyses.
|
104
|
+
|
105
|
+
## Performance and Efficiency
|
106
|
+
|
107
|
+
Benchmarking results demonstrate that RISK efficiently scales to networks exceeding hundreds of thousands of edges, maintaining low execution times and optimal memory usage across statistical tests.
|
108
|
+
|
109
|
+
## Contributing
|
110
|
+
|
111
|
+
We welcome contributions from the community:
|
112
|
+
|
113
|
+
- [Issues Tracker](https://github.com/riskportal/network/issues)
|
114
|
+
- [Source Code](https://github.com/riskportal/network/tree/main/risk)
|
115
|
+
|
116
|
+
## Support
|
117
|
+
|
118
|
+
If you encounter issues or have suggestions for new features, please use the [Issues Tracker](https://github.com/riskportal/network/issues) on GitHub.
|
119
|
+
|
120
|
+
## License
|
121
|
+
|
122
|
+
RISK is open source under the [GNU General Public License v3.0](https://www.gnu.org/licenses/gpl-3.0.en.html).
|
@@ -17,7 +17,10 @@
|
|
17
17
|
|
18
18
|
## Documentation and Tutorial
|
19
19
|
|
20
|
-
|
20
|
+
Full documentation is available at:
|
21
|
+
|
22
|
+
- **Docs:** [https://riskportal.github.io/network-tutorial](https://riskportal.github.io/network-tutorial)
|
23
|
+
- **Tutorial Jupyter Notebook Repository:** [https://github.com/riskportal/network-tutorial](https://github.com/riskportal/network-tutorial)
|
21
24
|
|
22
25
|
## Installation
|
23
26
|
|
@@ -33,7 +36,7 @@ pip install risk-network --upgrade
|
|
33
36
|
- **Advanced Clustering Algorithms**: Supports Louvain, Leiden, Markov Clustering, Greedy Modularity, Label Propagation, Spinglass, and Walktrap for identifying structured network regions.
|
34
37
|
- **Flexible Visualization**: Produce customizable, high-resolution network visualizations with kernel density estimate overlays, adjustable node and edge attributes, and export options in SVG, PNG, and PDF formats.
|
35
38
|
- **Efficient Data Handling**: Supports multiple input/output formats, including JSON, CSV, TSV, Excel, Cytoscape, and GPickle.
|
36
|
-
- **Statistical Analysis**: Assess functional enrichment using hypergeometric, permutation, binomial, chi-squared, Poisson, and z-score tests, ensuring statistical adaptability across datasets.
|
39
|
+
- **Statistical Analysis**: Assess functional enrichment using hypergeometric, permutation (network-aware), binomial, chi-squared, Poisson, and z-score tests, ensuring statistical adaptability across datasets.
|
37
40
|
- **Cross-Domain Applicability**: Suitable for network analysis across biological and non-biological domains, including social and communication networks.
|
38
41
|
|
39
42
|
## Example Usage
|
@@ -52,12 +55,13 @@ If you use RISK in your research, please cite:
|
|
52
55
|
|
53
56
|
## Software Architecture and Implementation
|
54
57
|
|
55
|
-
RISK features a streamlined, modular architecture designed to meet diverse research needs. It includes dedicated modules for:
|
58
|
+
RISK features a streamlined, modular architecture designed to meet diverse research needs. RISK’s modular design enables users to run individual components—such as clustering, statistical testing, or visualization—independently or in combination, depending on the analysis workflow. It includes dedicated modules for:
|
56
59
|
|
57
60
|
- **Data I/O**: Supports JSON, CSV, TSV, Excel, Cytoscape, and GPickle formats.
|
58
61
|
- **Clustering**: Supports multiple clustering methods, including Louvain, Leiden, Markov Clustering, Greedy Modularity, Label Propagation, Spinglass, and Walktrap. Provides flexible distance metrics tailored to network structure.
|
59
62
|
- **Statistical Analysis**: Provides a suite of tests for overrepresentation analysis of annotations.
|
60
63
|
- **Visualization**: Offers customizable, high-resolution output in multiple formats, including SVG, PNG, and PDF.
|
64
|
+
- **Configuration Management**: Centralized parameters in risk.params ensure reproducibility and easy tuning for large-scale analyses.
|
61
65
|
|
62
66
|
## Performance and Efficiency
|
63
67
|
|
@@ -77,7 +81,3 @@ If you encounter issues or have suggestions for new features, please use the [Is
|
|
77
81
|
## License
|
78
82
|
|
79
83
|
RISK is open source under the [GNU General Public License v3.0](https://www.gnu.org/licenses/gpl-3.0.en.html).
|
80
|
-
|
81
|
-
---
|
82
|
-
|
83
|
-
**Note**: For detailed documentation and to access the interactive tutorial, please visit the links above.
|
@@ -1,20 +1,19 @@
|
|
1
1
|
[build-system]
|
2
|
-
requires = ["setuptools", "
|
2
|
+
requires = ["setuptools", "numpy"]
|
3
3
|
build-backend = "setuptools.build_meta"
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "risk-network"
|
7
|
-
dynamic = ["version"]
|
7
|
+
dynamic = ["version"]
|
8
8
|
description = "A Python package for biological network analysis"
|
9
9
|
authors = [
|
10
10
|
{ name = "Ira Horecka", email = "ira89@icloud.com" },
|
11
11
|
]
|
12
12
|
readme = "README.md"
|
13
|
-
|
13
|
+
requires-python = ">=3.8"
|
14
14
|
classifiers = [
|
15
15
|
"Intended Audience :: Developers",
|
16
16
|
"Intended Audience :: Science/Research",
|
17
|
-
"License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)",
|
18
17
|
"Operating System :: OS Independent",
|
19
18
|
"Programming Language :: Python :: 3",
|
20
19
|
"Programming Language :: Python :: 3.8",
|
@@ -43,4 +42,21 @@ dependencies = [
|
|
43
42
|
"threadpoolctl",
|
44
43
|
"tqdm",
|
45
44
|
]
|
46
|
-
|
45
|
+
|
46
|
+
[project.license]
|
47
|
+
text = "GPL-3.0-or-later"
|
48
|
+
|
49
|
+
[project.urls]
|
50
|
+
"Homepage" = "https://github.com/riskportal/network"
|
51
|
+
|
52
|
+
[tool.setuptools]
|
53
|
+
package-dir = {"" = "src"}
|
54
|
+
|
55
|
+
[tool.setuptools.packages.find]
|
56
|
+
where = ["src"]
|
57
|
+
|
58
|
+
[tool.setuptools.dynamic]
|
59
|
+
version = { attr = "risk.__version__" }
|
60
|
+
|
61
|
+
[tool.pytest.ini_options]
|
62
|
+
pythonpath = ["src"]
|
@@ -1,6 +1,6 @@
|
|
1
1
|
"""
|
2
|
-
risk/
|
3
|
-
|
2
|
+
risk/annotation/annotation
|
3
|
+
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
4
4
|
"""
|
5
5
|
|
6
6
|
import re
|
@@ -14,7 +14,7 @@ import pandas as pd
|
|
14
14
|
from nltk.tokenize import word_tokenize
|
15
15
|
from scipy.sparse import coo_matrix
|
16
16
|
|
17
|
-
from risk.
|
17
|
+
from risk.annotation.nltk_setup import setup_nltk_resources
|
18
18
|
from risk.log import logger
|
19
19
|
|
20
20
|
|
@@ -35,14 +35,14 @@ def initialize_nltk():
|
|
35
35
|
initialize_nltk()
|
36
36
|
|
37
37
|
|
38
|
-
def
|
39
|
-
network: nx.Graph,
|
38
|
+
def load_annotation(
|
39
|
+
network: nx.Graph, annotation_input: Dict[str, Any], min_nodes_per_term: int = 2
|
40
40
|
) -> Dict[str, Any]:
|
41
|
-
"""Convert
|
41
|
+
"""Convert annotation input to a sparse matrix and reindex based on the network's node labels.
|
42
42
|
|
43
43
|
Args:
|
44
44
|
network (nx.Graph): The network graph.
|
45
|
-
|
45
|
+
annotation_input (Dict[str, Any]): An annotation dictionary.
|
46
46
|
min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
|
47
47
|
term to be included. Defaults to 2.
|
48
48
|
|
@@ -51,18 +51,18 @@ def load_annotations(
|
|
51
51
|
matrix.
|
52
52
|
|
53
53
|
Raises:
|
54
|
-
ValueError: If no
|
55
|
-
ValueError: If no
|
54
|
+
ValueError: If no annotation is found for the nodes in the network.
|
55
|
+
ValueError: If no annotation has at least min_nodes_per_term nodes in the network.
|
56
56
|
"""
|
57
57
|
# Step 1: Map nodes and annotations to indices
|
58
58
|
node_label_order = [attr["label"] for _, attr in network.nodes(data=True) if "label" in attr]
|
59
59
|
node_to_idx = {node: i for i, node in enumerate(node_label_order)}
|
60
|
-
annotation_to_idx = {annotation: i for i, annotation in enumerate(
|
60
|
+
annotation_to_idx = {annotation: i for i, annotation in enumerate(annotation_input)}
|
61
61
|
# Step 2: Construct a sparse binary matrix directly
|
62
62
|
row = []
|
63
63
|
col = []
|
64
64
|
data = []
|
65
|
-
for annotation, nodes in
|
65
|
+
for annotation, nodes in annotation_input.items():
|
66
66
|
for node in nodes:
|
67
67
|
if node in node_to_idx and annotation in annotation_to_idx:
|
68
68
|
row.append(node_to_idx[node])
|
@@ -71,40 +71,40 @@ def load_annotations(
|
|
71
71
|
|
72
72
|
# Create a sparse binary matrix
|
73
73
|
num_nodes = len(node_to_idx)
|
74
|
-
|
75
|
-
|
74
|
+
num_annotation = len(annotation_to_idx)
|
75
|
+
annotation_pivot = coo_matrix((data, (row, col)), shape=(num_nodes, num_annotation)).tocsr()
|
76
76
|
# Step 3: Filter out annotations with fewer than min_nodes_per_term occurrences
|
77
|
-
|
78
|
-
|
77
|
+
valid_annotation = annotation_pivot.sum(axis=0).A1 >= min_nodes_per_term
|
78
|
+
annotation_pivot = annotation_pivot[:, valid_annotation]
|
79
79
|
# Step 4: Raise errors for empty matrices
|
80
|
-
if
|
80
|
+
if annotation_pivot.nnz == 0:
|
81
81
|
raise ValueError("No terms found in the annotation file for the nodes in the network.")
|
82
82
|
|
83
|
-
|
84
|
-
if
|
83
|
+
num_remaining_annotation = annotation_pivot.shape[1]
|
84
|
+
if num_remaining_annotation == 0:
|
85
85
|
raise ValueError(
|
86
86
|
f"No annotation terms found with at least {min_nodes_per_term} nodes in the network."
|
87
87
|
)
|
88
88
|
|
89
89
|
# Step 5: Extract ordered nodes and annotations
|
90
90
|
ordered_nodes = tuple(node_label_order)
|
91
|
-
|
92
|
-
annotation for annotation, is_valid in zip(annotation_to_idx,
|
91
|
+
ordered_annotation = tuple(
|
92
|
+
annotation for annotation, is_valid in zip(annotation_to_idx, valid_annotation) if is_valid
|
93
93
|
)
|
94
94
|
|
95
95
|
# Log the filtering details
|
96
96
|
logger.info(f"Minimum number of nodes per annotation term: {min_nodes_per_term}")
|
97
|
-
logger.info(f"Number of input annotation terms: {
|
98
|
-
logger.info(f"Number of remaining annotation terms: {
|
97
|
+
logger.info(f"Number of input annotation terms: {num_annotation}")
|
98
|
+
logger.info(f"Number of remaining annotation terms: {num_remaining_annotation}")
|
99
99
|
|
100
100
|
return {
|
101
101
|
"ordered_nodes": ordered_nodes,
|
102
|
-
"
|
103
|
-
"matrix":
|
102
|
+
"ordered_annotation": ordered_annotation,
|
103
|
+
"matrix": annotation_pivot,
|
104
104
|
}
|
105
105
|
|
106
106
|
|
107
|
-
def
|
107
|
+
def define_top_annotation(
|
108
108
|
network: nx.Graph,
|
109
109
|
ordered_annotation_labels: List[str],
|
110
110
|
neighborhood_significance_sums: List[int],
|
@@ -130,7 +130,7 @@ def define_top_annotations(
|
|
130
130
|
# Sum the columns of the significant significance matrix (positive floating point values)
|
131
131
|
significant_significance_scores = significant_significance_matrix.sum(axis=0)
|
132
132
|
# Create DataFrame to store annotations, their neighborhood significance sums, and significance scores
|
133
|
-
|
133
|
+
annotation_significance_matrix = pd.DataFrame(
|
134
134
|
{
|
135
135
|
"id": range(len(ordered_annotation_labels)),
|
136
136
|
"full_terms": ordered_annotation_labels,
|
@@ -138,29 +138,29 @@ def define_top_annotations(
|
|
138
138
|
"significant_significance_score": significant_significance_scores,
|
139
139
|
}
|
140
140
|
)
|
141
|
-
|
141
|
+
annotation_significance_matrix["significant_annotation"] = False
|
142
142
|
# Apply size constraints to identify potential significant annotations
|
143
|
-
|
143
|
+
annotation_significance_matrix.loc[
|
144
144
|
(
|
145
|
-
|
145
|
+
annotation_significance_matrix["significant_neighborhood_significance_sums"]
|
146
146
|
>= min_cluster_size
|
147
147
|
)
|
148
148
|
& (
|
149
|
-
|
149
|
+
annotation_significance_matrix["significant_neighborhood_significance_sums"]
|
150
150
|
<= max_cluster_size
|
151
151
|
),
|
152
|
-
"
|
152
|
+
"significant_annotation",
|
153
153
|
] = True
|
154
154
|
# Initialize columns for connected components analysis
|
155
|
-
|
156
|
-
|
157
|
-
|
155
|
+
annotation_significance_matrix["num_connected_components"] = 0
|
156
|
+
annotation_significance_matrix["size_connected_components"] = None
|
157
|
+
annotation_significance_matrix["size_connected_components"] = annotation_significance_matrix[
|
158
158
|
"size_connected_components"
|
159
159
|
].astype(object)
|
160
|
-
|
160
|
+
annotation_significance_matrix["num_large_connected_components"] = 0
|
161
161
|
|
162
|
-
for attribute in
|
163
|
-
|
162
|
+
for attribute in annotation_significance_matrix.index.values[
|
163
|
+
annotation_significance_matrix["significant_annotation"]
|
164
164
|
]:
|
165
165
|
# Identify significant neighborhoods based on the binary significance matrix
|
166
166
|
significant_neighborhoods = list(
|
@@ -183,24 +183,24 @@ def define_top_annotations(
|
|
183
183
|
num_large_connected_components = len(filtered_size_connected_components)
|
184
184
|
|
185
185
|
# Assign the number of connected components
|
186
|
-
|
186
|
+
annotation_significance_matrix.loc[attribute, "num_connected_components"] = (
|
187
187
|
num_connected_components
|
188
188
|
)
|
189
189
|
# Filter out attributes with more than one connected component
|
190
|
-
|
191
|
-
|
192
|
-
"
|
190
|
+
annotation_significance_matrix.loc[
|
191
|
+
annotation_significance_matrix["num_connected_components"] > 1,
|
192
|
+
"significant_annotation",
|
193
193
|
] = False
|
194
194
|
# Assign the number of large connected components
|
195
|
-
|
195
|
+
annotation_significance_matrix.loc[attribute, "num_large_connected_components"] = (
|
196
196
|
num_large_connected_components
|
197
197
|
)
|
198
198
|
# Assign the size of connected components, ensuring it is always a list
|
199
|
-
|
199
|
+
annotation_significance_matrix.at[attribute, "size_connected_components"] = (
|
200
200
|
filtered_size_connected_components.tolist()
|
201
201
|
)
|
202
202
|
|
203
|
-
return
|
203
|
+
return annotation_significance_matrix
|
204
204
|
|
205
205
|
|
206
206
|
def get_weighted_description(words_column: pd.Series, scores_column: pd.Series) -> str:
|