rgwfuncs 0.0.8__tar.gz → 0.0.10__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {rgwfuncs-0.0.8/src/rgwfuncs.egg-info → rgwfuncs-0.0.10}/PKG-INFO +25 -1
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/README.md +24 -0
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/pyproject.toml +1 -1
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/setup.cfg +1 -1
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs/__init__.py +1 -1
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs/df_lib.py +75 -2
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10/src/rgwfuncs.egg-info}/PKG-INFO +25 -1
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/LICENSE +0 -0
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs.egg-info/SOURCES.txt +0 -0
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs.egg-info/dependency_links.txt +0 -0
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs.egg-info/entry_points.txt +0 -0
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs.egg-info/requires.txt +0 -0
- {rgwfuncs-0.0.8 → rgwfuncs-0.0.10}/src/rgwfuncs.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.10
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -1151,6 +1151,30 @@ Perform a right join on two DataFrames.
|
|
1151
1151
|
|
1152
1152
|
--------------------------------------------------------------------------------
|
1153
1153
|
|
1154
|
+
### 45. `sync_dataframe_to_sqlite_database`
|
1155
|
+
Processes and saves a DataFrame to an SQLite database, adding a timestamp column and replacing the existing table if needed. Creates the table if it does not exist.
|
1156
|
+
|
1157
|
+
• Parameters:
|
1158
|
+
- `db_path` (str): Path to the SQLite database file.
|
1159
|
+
- `tablename` (str): The name of the table in the database.
|
1160
|
+
- `df` (pd.DataFrame): The DataFrame to be processed and saved.
|
1161
|
+
|
1162
|
+
• Returns:
|
1163
|
+
- None
|
1164
|
+
|
1165
|
+
• Example:
|
1166
|
+
|
1167
|
+
from rgwfuncs import sync_dataframe_to_sqlite_database
|
1168
|
+
import pandas as pd
|
1169
|
+
|
1170
|
+
df = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1171
|
+
db_path = 'my_database.db'
|
1172
|
+
tablename = 'my_table'
|
1173
|
+
|
1174
|
+
sync_dataframe_to_sqlite_database(db_path, tablename, df)
|
1175
|
+
|
1176
|
+
--------------------------------------------------------------------------------
|
1177
|
+
|
1154
1178
|
## Additional Info
|
1155
1179
|
|
1156
1180
|
For more information, refer to each function’s docstring by calling:
|
@@ -1125,6 +1125,30 @@ Perform a right join on two DataFrames.
|
|
1125
1125
|
|
1126
1126
|
--------------------------------------------------------------------------------
|
1127
1127
|
|
1128
|
+
### 45. `sync_dataframe_to_sqlite_database`
|
1129
|
+
Processes and saves a DataFrame to an SQLite database, adding a timestamp column and replacing the existing table if needed. Creates the table if it does not exist.
|
1130
|
+
|
1131
|
+
• Parameters:
|
1132
|
+
- `db_path` (str): Path to the SQLite database file.
|
1133
|
+
- `tablename` (str): The name of the table in the database.
|
1134
|
+
- `df` (pd.DataFrame): The DataFrame to be processed and saved.
|
1135
|
+
|
1136
|
+
• Returns:
|
1137
|
+
- None
|
1138
|
+
|
1139
|
+
• Example:
|
1140
|
+
|
1141
|
+
from rgwfuncs import sync_dataframe_to_sqlite_database
|
1142
|
+
import pandas as pd
|
1143
|
+
|
1144
|
+
df = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1145
|
+
db_path = 'my_database.db'
|
1146
|
+
tablename = 'my_table'
|
1147
|
+
|
1148
|
+
sync_dataframe_to_sqlite_database(db_path, tablename, df)
|
1149
|
+
|
1150
|
+
--------------------------------------------------------------------------------
|
1151
|
+
|
1128
1152
|
## Additional Info
|
1129
1153
|
|
1130
1154
|
For more information, refer to each function’s docstring by calling:
|
@@ -1,4 +1,4 @@
|
|
1
1
|
# This file is automatically generated
|
2
2
|
# Dynamically importing functions from modules
|
3
3
|
|
4
|
-
from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, docs, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, top_n_unique_values, union_join, update_rows
|
4
|
+
from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, docs, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, sync_dataframe_to_sqlite_database, top_n_unique_values, union_join, update_rows
|
@@ -1631,7 +1631,15 @@ def union_join(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
|
|
1631
1631
|
if set(df1.columns) != set(df2.columns):
|
1632
1632
|
raise ValueError("Both DataFrames must have the same columns for a union join")
|
1633
1633
|
|
1634
|
-
|
1634
|
+
# Drop all-NA columns, if any
|
1635
|
+
df1_clean = df1.dropna(axis=1, how='all')
|
1636
|
+
df2_clean = df2.dropna(axis=1, how='all')
|
1637
|
+
|
1638
|
+
# Ensure they still have the same columns after dropping all-NA columns
|
1639
|
+
if set(df1_clean.columns) != set(df2_clean.columns):
|
1640
|
+
raise ValueError("Both DataFrames must have the same columns after dropping all-NA columns")
|
1641
|
+
|
1642
|
+
result_df = pd.concat([df1_clean, df2_clean], ignore_index=True).drop_duplicates()
|
1635
1643
|
return result_df
|
1636
1644
|
|
1637
1645
|
|
@@ -1652,7 +1660,15 @@ def bag_union_join(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
|
|
1652
1660
|
if set(df1.columns) != set(df2.columns):
|
1653
1661
|
raise ValueError("Both DataFrames must have the same columns for a bag union join")
|
1654
1662
|
|
1655
|
-
|
1663
|
+
# Drop all-NA columns, if any
|
1664
|
+
df1_clean = df1.dropna(axis=1, how='all')
|
1665
|
+
df2_clean = df2.dropna(axis=1, how='all')
|
1666
|
+
|
1667
|
+
# Ensure they still have the same columns after dropping all-NA columns
|
1668
|
+
if set(df1_clean.columns) != set(df2_clean.columns):
|
1669
|
+
raise ValueError("Both DataFrames must have the same columns after dropping all-NA columns")
|
1670
|
+
|
1671
|
+
result_df = pd.concat([df1_clean, df2_clean], ignore_index=True)
|
1656
1672
|
return result_df
|
1657
1673
|
|
1658
1674
|
|
@@ -1686,3 +1702,60 @@ def right_join(df1: pd.DataFrame, df2: pd.DataFrame, left_on: str, right_on: str
|
|
1686
1702
|
A new DataFrame as the result of a right join.
|
1687
1703
|
"""
|
1688
1704
|
return df1.merge(df2, how='right', left_on=left_on, right_on=right_on)
|
1705
|
+
|
1706
|
+
def sync_dataframe_to_sqlite_database(db_path: str, tablename: str, df: pd.DataFrame) -> None:
|
1707
|
+
"""
|
1708
|
+
Processes and saves a DataFrame to an SQLite database, adding a timestamp column
|
1709
|
+
and replacing the existing table if needed. Creates the table if it does not exist.
|
1710
|
+
|
1711
|
+
Parameters:
|
1712
|
+
- db_path (str): Path to the SQLite database file.
|
1713
|
+
- tablename (str): The name of the table in the database.
|
1714
|
+
- df (pd.DataFrame): The DataFrame to be processed and saved.
|
1715
|
+
"""
|
1716
|
+
# Step 1: Add a timestamp column to the dataframe
|
1717
|
+
df['rgwfuncs_sync_timestamp'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
1718
|
+
|
1719
|
+
# Define a simple mapping from pandas dtypes to SQLite types
|
1720
|
+
dtype_mapping = {
|
1721
|
+
'int64': 'INTEGER',
|
1722
|
+
'float64': 'REAL',
|
1723
|
+
'object': 'TEXT',
|
1724
|
+
'datetime64[ns]': 'TEXT', # Dates are stored as text in SQLite
|
1725
|
+
'bool': 'INTEGER', # SQLite does not have a separate Boolean storage class
|
1726
|
+
}
|
1727
|
+
|
1728
|
+
# Helper function to map pandas dtype to SQLite type
|
1729
|
+
def map_dtype(dtype):
|
1730
|
+
return dtype_mapping.get(str(dtype), 'TEXT')
|
1731
|
+
|
1732
|
+
# Step 2: Save df in SQLite3 db as '{tablename}_new'
|
1733
|
+
with sqlite3.connect(db_path) as conn:
|
1734
|
+
new_table_name = f"{tablename}_new"
|
1735
|
+
|
1736
|
+
# Check if the new table already exists, create if not
|
1737
|
+
cursor = conn.cursor()
|
1738
|
+
cursor.execute(f"PRAGMA table_info({new_table_name})")
|
1739
|
+
if cursor.fetchall() == []: # Table does not exist
|
1740
|
+
# Create a table using the DataFrame's column names and types
|
1741
|
+
columns_with_types = ', '.join(
|
1742
|
+
f'"{col}" {map_dtype(dtype)}' for col, dtype in zip(df.columns, df.dtypes)
|
1743
|
+
)
|
1744
|
+
create_table_query = f'CREATE TABLE "{new_table_name}" ({columns_with_types})'
|
1745
|
+
conn.execute(create_table_query)
|
1746
|
+
|
1747
|
+
# Insert data into the new table
|
1748
|
+
df.to_sql(new_table_name, conn, if_exists='replace', index=False)
|
1749
|
+
|
1750
|
+
# Step 3: If '{tablename}_new' is not empty, delete table '{tablename}' (if it exists), and rename '{tablename}_new' to '{tablename}'
|
1751
|
+
# Check if the new table is not empty
|
1752
|
+
cursor.execute(f"SELECT COUNT(*) FROM {new_table_name}")
|
1753
|
+
count = cursor.fetchone()[0]
|
1754
|
+
|
1755
|
+
if count > 0:
|
1756
|
+
# Drop the old table if it exists
|
1757
|
+
conn.execute(f"DROP TABLE IF EXISTS {tablename}")
|
1758
|
+
# Rename the new table to the old table name
|
1759
|
+
conn.execute(f"ALTER TABLE {new_table_name} RENAME TO {tablename}")
|
1760
|
+
|
1761
|
+
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.10
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -1151,6 +1151,30 @@ Perform a right join on two DataFrames.
|
|
1151
1151
|
|
1152
1152
|
--------------------------------------------------------------------------------
|
1153
1153
|
|
1154
|
+
### 45. `sync_dataframe_to_sqlite_database`
|
1155
|
+
Processes and saves a DataFrame to an SQLite database, adding a timestamp column and replacing the existing table if needed. Creates the table if it does not exist.
|
1156
|
+
|
1157
|
+
• Parameters:
|
1158
|
+
- `db_path` (str): Path to the SQLite database file.
|
1159
|
+
- `tablename` (str): The name of the table in the database.
|
1160
|
+
- `df` (pd.DataFrame): The DataFrame to be processed and saved.
|
1161
|
+
|
1162
|
+
• Returns:
|
1163
|
+
- None
|
1164
|
+
|
1165
|
+
• Example:
|
1166
|
+
|
1167
|
+
from rgwfuncs import sync_dataframe_to_sqlite_database
|
1168
|
+
import pandas as pd
|
1169
|
+
|
1170
|
+
df = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1171
|
+
db_path = 'my_database.db'
|
1172
|
+
tablename = 'my_table'
|
1173
|
+
|
1174
|
+
sync_dataframe_to_sqlite_database(db_path, tablename, df)
|
1175
|
+
|
1176
|
+
--------------------------------------------------------------------------------
|
1177
|
+
|
1154
1178
|
## Additional Info
|
1155
1179
|
|
1156
1180
|
For more information, refer to each function’s docstring by calling:
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|