rgwfuncs 0.0.61__tar.gz → 0.0.62__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: rgwfuncs
3
- Version: 0.0.61
3
+ Version: 0.0.62
4
4
  Summary: A functional programming paradigm for mathematical modelling and data science
5
5
  Home-page: https://github.com/ryangerardwilson/rgwfunc
6
6
  Author: Ryan Gerard Wilson
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "rgwfuncs"
7
- version = "0.0.61"
7
+ version = "0.0.62"
8
8
  authors = [
9
9
  { name = "Ryan Gerard Wilson", email = "ryangerardwilson@gmail.com" },
10
10
  ]
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = rgwfuncs
3
- version = 0.0.61
3
+ version = 0.0.62
4
4
  author = Ryan Gerard Wilson
5
5
  author_email = ryangerardwilson@gmail.com
6
6
  description = A functional programming paradigm for mathematical modelling and data science
@@ -503,8 +503,7 @@ def load_data_from_path(file_path: str) -> pd.DataFrame:
503
503
  df = pd.read_hdf(file_path, key=key)
504
504
  break
505
505
  else:
506
- print(
507
- f"Key '{key}' is not in the available keys.")
506
+ print(f"Key '{key}' is not in the available keys.")
508
507
  return df
509
508
 
510
509
  # Ensure the file path is absolute
@@ -826,8 +825,7 @@ def print_dataframe(df: pd.DataFrame, source: Optional[str] = None) -> None:
826
825
  """
827
826
  if df is not None:
828
827
  print(df)
829
- columns_with_types = [
830
- f"{col} ({df[col].dtypes})" for col in df.columns]
828
+ columns_with_types = [f"{col} ({df[col].dtypes})" for col in df.columns]
831
829
  print("Columns:", columns_with_types)
832
830
  if source:
833
831
  print(f"Source: {source}")
@@ -1269,10 +1267,8 @@ def append_percentile_classification_column(
1269
1267
 
1270
1268
  if has_decimals:
1271
1269
  percentiles_list = [float(p) for p in percentiles_list]
1272
- max_decimal_length = max(
1273
- len(str(p).split('.')[1]) for p in percentiles_list if '.' in str(p))
1274
- max_integer_length = max(len(str(int(float(p))))
1275
- for p in percentiles_list)
1270
+ max_decimal_length = max(len(str(p).split('.')[1]) for p in percentiles_list if '.' in str(p))
1271
+ max_integer_length = max(len(str(int(float(p)))) for p in percentiles_list)
1276
1272
 
1277
1273
  labels = []
1278
1274
 
@@ -1639,9 +1635,7 @@ def print_n_frequency_cascading(
1639
1635
  if len(columns) > 1:
1640
1636
  sub_report = generate_cascade_report(
1641
1637
  filtered_df, columns[1:], limit, order_by)
1642
- report[value] = {
1643
- "count": str(count), f"sub_distribution({
1644
- columns[1]})": sub_report if sub_report else {}}
1638
+ report[value] = {"count": str(count), f"sub_distribution({columns[1]})": sub_report if sub_report else {}}
1645
1639
  else:
1646
1640
  report[value] = {"count": str(count)}
1647
1641
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: rgwfuncs
3
- Version: 0.0.61
3
+ Version: 0.0.62
4
4
  Summary: A functional programming paradigm for mathematical modelling and data science
5
5
  Home-page: https://github.com/ryangerardwilson/rgwfunc
6
6
  Author: Ryan Gerard Wilson
File without changes
File without changes