rgwfuncs 0.0.4__tar.gz → 0.0.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {rgwfuncs-0.0.4/src/rgwfuncs.egg-info → rgwfuncs-0.0.6}/PKG-INFO +99 -4
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/README.md +98 -3
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/pyproject.toml +1 -1
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/setup.cfg +1 -1
- rgwfuncs-0.0.6/src/rgwfuncs/__init__.py +4 -0
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/src/rgwfuncs/df_lib.py +209 -503
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6/src/rgwfuncs.egg-info}/PKG-INFO +99 -4
- rgwfuncs-0.0.4/src/rgwfuncs/__init__.py +0 -3
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/LICENSE +0 -0
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/src/rgwfuncs.egg-info/SOURCES.txt +0 -0
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/src/rgwfuncs.egg-info/dependency_links.txt +0 -0
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/src/rgwfuncs.egg-info/entry_points.txt +0 -0
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/src/rgwfuncs.egg-info/requires.txt +0 -0
- {rgwfuncs-0.0.4 → rgwfuncs-0.0.6}/src/rgwfuncs.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.6
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -24,12 +24,10 @@ Requires-Dist: requests
|
|
24
24
|
Requires-Dist: slack-sdk
|
25
25
|
Requires-Dist: google-api-python-client
|
26
26
|
|
27
|
-
|
27
|
+
# RGWFUNCS
|
28
28
|
|
29
29
|
***By Ryan Gerard Wilson (https://ryangerardwilson.com)***
|
30
30
|
|
31
|
-
# RGWFuncs
|
32
|
-
|
33
31
|
This library provides a variety of functions for manipulating and analyzing pandas DataFrames.
|
34
32
|
|
35
33
|
--------------------------------------------------------------------------------
|
@@ -980,6 +978,103 @@ Retain only rows with uncommon column values between two DataFrames.
|
|
980
978
|
print(df_uncommon)
|
981
979
|
|
982
980
|
|
981
|
+
--------------------------------------------------------------------------------
|
982
|
+
|
983
|
+
### 41. `union_join`
|
984
|
+
Perform a union join, concatenating two DataFrames and dropping duplicates.
|
985
|
+
|
986
|
+
• Parameters:
|
987
|
+
- `df1` (pd.DataFrame): First DataFrame.
|
988
|
+
- `df2` (pd.DataFrame): Second DataFrame.
|
989
|
+
|
990
|
+
• Returns:
|
991
|
+
- pd.DataFrame: A new DataFrame with the union of `df1` and `df2`, without duplicates.
|
992
|
+
|
993
|
+
• Example:
|
994
|
+
|
995
|
+
from rgwfuncs import union_join
|
996
|
+
import pandas as pd
|
997
|
+
|
998
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
999
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Value': [20, 30, 40]})
|
1000
|
+
|
1001
|
+
df_union = union_join(df1, df2)
|
1002
|
+
print(df_union)
|
1003
|
+
|
1004
|
+
--------------------------------------------------------------------------------
|
1005
|
+
|
1006
|
+
### 42. `bag_union_join`
|
1007
|
+
Perform a bag union join, concatenating two DataFrames without dropping duplicates.
|
1008
|
+
|
1009
|
+
• Parameters:
|
1010
|
+
- `df1` (pd.DataFrame): First DataFrame.
|
1011
|
+
- `df2` (pd.DataFrame): Second DataFrame.
|
1012
|
+
|
1013
|
+
• Returns:
|
1014
|
+
- pd.DataFrame: A new DataFrame with the concatenated data of `df1` and `df2`.
|
1015
|
+
|
1016
|
+
• Example:
|
1017
|
+
|
1018
|
+
from rgwfuncs import bag_union_join
|
1019
|
+
import pandas as pd
|
1020
|
+
|
1021
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1022
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Value': [20, 30, 40]})
|
1023
|
+
|
1024
|
+
df_bag_union = bag_union_join(df1, df2)
|
1025
|
+
print(df_bag_union)
|
1026
|
+
|
1027
|
+
--------------------------------------------------------------------------------
|
1028
|
+
|
1029
|
+
### 43. `left_join`
|
1030
|
+
Perform a left join on two DataFrames.
|
1031
|
+
|
1032
|
+
• Parameters:
|
1033
|
+
- `df1` (pd.DataFrame): The left DataFrame.
|
1034
|
+
- `df2` (pd.DataFrame): The right DataFrame.
|
1035
|
+
- `left_on` (str): Column name in `df1` to join on.
|
1036
|
+
- `right_on` (str): Column name in `df2` to join on.
|
1037
|
+
|
1038
|
+
• Returns:
|
1039
|
+
- pd.DataFrame: A new DataFrame as the result of a left join.
|
1040
|
+
|
1041
|
+
• Example:
|
1042
|
+
|
1043
|
+
from rgwfuncs import left_join
|
1044
|
+
import pandas as pd
|
1045
|
+
|
1046
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1047
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Extra': ['A', 'B', 'C']})
|
1048
|
+
|
1049
|
+
df_left_join = left_join(df1, df2, 'ID', 'ID')
|
1050
|
+
print(df_left_join)
|
1051
|
+
|
1052
|
+
--------------------------------------------------------------------------------
|
1053
|
+
|
1054
|
+
### 44. `right_join`
|
1055
|
+
Perform a right join on two DataFrames.
|
1056
|
+
|
1057
|
+
• Parameters:
|
1058
|
+
- `df1` (pd.DataFrame): The left DataFrame.
|
1059
|
+
- `df2` (pd.DataFrame): The right DataFrame.
|
1060
|
+
- `left_on` (str): Column name in `df1` to join on.
|
1061
|
+
- `right_on` (str): Column name in `df2` to join on.
|
1062
|
+
|
1063
|
+
• Returns:
|
1064
|
+
- pd.DataFrame: A new DataFrame as the result of a right join.
|
1065
|
+
|
1066
|
+
• Example:
|
1067
|
+
|
1068
|
+
from rgwfuncs import right_join
|
1069
|
+
import pandas as pd
|
1070
|
+
|
1071
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1072
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Extra': ['A', 'B', 'C']})
|
1073
|
+
|
1074
|
+
df_right_join = right_join(df1, df2, 'ID', 'ID')
|
1075
|
+
print(df_right_join)
|
1076
|
+
|
1077
|
+
|
983
1078
|
--------------------------------------------------------------------------------
|
984
1079
|
|
985
1080
|
## Additional Info
|
@@ -1,9 +1,7 @@
|
|
1
|
-
|
1
|
+
# RGWFUNCS
|
2
2
|
|
3
3
|
***By Ryan Gerard Wilson (https://ryangerardwilson.com)***
|
4
4
|
|
5
|
-
# RGWFuncs
|
6
|
-
|
7
5
|
This library provides a variety of functions for manipulating and analyzing pandas DataFrames.
|
8
6
|
|
9
7
|
--------------------------------------------------------------------------------
|
@@ -954,6 +952,103 @@ Retain only rows with uncommon column values between two DataFrames.
|
|
954
952
|
print(df_uncommon)
|
955
953
|
|
956
954
|
|
955
|
+
--------------------------------------------------------------------------------
|
956
|
+
|
957
|
+
### 41. `union_join`
|
958
|
+
Perform a union join, concatenating two DataFrames and dropping duplicates.
|
959
|
+
|
960
|
+
• Parameters:
|
961
|
+
- `df1` (pd.DataFrame): First DataFrame.
|
962
|
+
- `df2` (pd.DataFrame): Second DataFrame.
|
963
|
+
|
964
|
+
• Returns:
|
965
|
+
- pd.DataFrame: A new DataFrame with the union of `df1` and `df2`, without duplicates.
|
966
|
+
|
967
|
+
• Example:
|
968
|
+
|
969
|
+
from rgwfuncs import union_join
|
970
|
+
import pandas as pd
|
971
|
+
|
972
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
973
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Value': [20, 30, 40]})
|
974
|
+
|
975
|
+
df_union = union_join(df1, df2)
|
976
|
+
print(df_union)
|
977
|
+
|
978
|
+
--------------------------------------------------------------------------------
|
979
|
+
|
980
|
+
### 42. `bag_union_join`
|
981
|
+
Perform a bag union join, concatenating two DataFrames without dropping duplicates.
|
982
|
+
|
983
|
+
• Parameters:
|
984
|
+
- `df1` (pd.DataFrame): First DataFrame.
|
985
|
+
- `df2` (pd.DataFrame): Second DataFrame.
|
986
|
+
|
987
|
+
• Returns:
|
988
|
+
- pd.DataFrame: A new DataFrame with the concatenated data of `df1` and `df2`.
|
989
|
+
|
990
|
+
• Example:
|
991
|
+
|
992
|
+
from rgwfuncs import bag_union_join
|
993
|
+
import pandas as pd
|
994
|
+
|
995
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
996
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Value': [20, 30, 40]})
|
997
|
+
|
998
|
+
df_bag_union = bag_union_join(df1, df2)
|
999
|
+
print(df_bag_union)
|
1000
|
+
|
1001
|
+
--------------------------------------------------------------------------------
|
1002
|
+
|
1003
|
+
### 43. `left_join`
|
1004
|
+
Perform a left join on two DataFrames.
|
1005
|
+
|
1006
|
+
• Parameters:
|
1007
|
+
- `df1` (pd.DataFrame): The left DataFrame.
|
1008
|
+
- `df2` (pd.DataFrame): The right DataFrame.
|
1009
|
+
- `left_on` (str): Column name in `df1` to join on.
|
1010
|
+
- `right_on` (str): Column name in `df2` to join on.
|
1011
|
+
|
1012
|
+
• Returns:
|
1013
|
+
- pd.DataFrame: A new DataFrame as the result of a left join.
|
1014
|
+
|
1015
|
+
• Example:
|
1016
|
+
|
1017
|
+
from rgwfuncs import left_join
|
1018
|
+
import pandas as pd
|
1019
|
+
|
1020
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1021
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Extra': ['A', 'B', 'C']})
|
1022
|
+
|
1023
|
+
df_left_join = left_join(df1, df2, 'ID', 'ID')
|
1024
|
+
print(df_left_join)
|
1025
|
+
|
1026
|
+
--------------------------------------------------------------------------------
|
1027
|
+
|
1028
|
+
### 44. `right_join`
|
1029
|
+
Perform a right join on two DataFrames.
|
1030
|
+
|
1031
|
+
• Parameters:
|
1032
|
+
- `df1` (pd.DataFrame): The left DataFrame.
|
1033
|
+
- `df2` (pd.DataFrame): The right DataFrame.
|
1034
|
+
- `left_on` (str): Column name in `df1` to join on.
|
1035
|
+
- `right_on` (str): Column name in `df2` to join on.
|
1036
|
+
|
1037
|
+
• Returns:
|
1038
|
+
- pd.DataFrame: A new DataFrame as the result of a right join.
|
1039
|
+
|
1040
|
+
• Example:
|
1041
|
+
|
1042
|
+
from rgwfuncs import right_join
|
1043
|
+
import pandas as pd
|
1044
|
+
|
1045
|
+
df1 = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
|
1046
|
+
df2 = pd.DataFrame({'ID': [2, 3, 4], 'Extra': ['A', 'B', 'C']})
|
1047
|
+
|
1048
|
+
df_right_join = right_join(df1, df2, 'ID', 'ID')
|
1049
|
+
print(df_right_join)
|
1050
|
+
|
1051
|
+
|
957
1052
|
--------------------------------------------------------------------------------
|
958
1053
|
|
959
1054
|
## Additional Info
|
@@ -0,0 +1,4 @@
|
|
1
|
+
# This file is automatically generated
|
2
|
+
# Dynamically importing functions from modules
|
3
|
+
|
4
|
+
from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, docs, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, top_n_unique_values, union_join, update_rows
|