rgwfuncs 0.0.3__tar.gz → 0.0.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: rgwfuncs
3
- Version: 0.0.3
3
+ Version: 0.0.5
4
4
  Summary: A functional programming paradigm for mathematical modelling and data science
5
5
  Home-page: https://github.com/ryangerardwilson/rgwfunc
6
6
  Author: Ryan Gerard Wilson
@@ -24,12 +24,10 @@ Requires-Dist: requests
24
24
  Requires-Dist: slack-sdk
25
25
  Requires-Dist: google-api-python-client
26
26
 
27
- RGWML
27
+ # RGWFUNCS
28
28
 
29
29
  ***By Ryan Gerard Wilson (https://ryangerardwilson.com)***
30
30
 
31
- # RGWFuncs
32
-
33
31
  This library provides a variety of functions for manipulating and analyzing pandas DataFrames.
34
32
 
35
33
  --------------------------------------------------------------------------------
@@ -37,33 +35,29 @@ This library provides a variety of functions for manipulating and analyzing pand
37
35
  ## Installation
38
36
 
39
37
  Install the package using:
40
- ```bash
38
+ bash
41
39
  pip install rgwfuncs
42
- ```
40
+
43
41
 
44
42
  --------------------------------------------------------------------------------
45
43
 
46
44
  ## Basic Usage
47
45
 
48
46
  Import the library:
49
- ```
47
+
50
48
  import rgwfuncs
51
- ```
52
49
 
53
50
  View available function docstrings in alphabetical order:
54
- ```
51
+
55
52
  rgwfuncs.docs()
56
- ```
57
53
 
58
54
  View specific docstrings by providing a filter (comma-separated). For example, to display docstrings about "numeric_clean":
59
- ```
55
+
60
56
  rgwfuncs.docs(method_type_filter='numeric_clean')
61
- ```
62
57
 
63
58
  To display all docstrings, use:
64
- ```
59
+
65
60
  rgwfuncs.docs(method_type_filter='*')
66
- ```
67
61
 
68
62
  --------------------------------------------------------------------------------
69
63
 
@@ -124,14 +118,14 @@ Limit the DataFrame to a specified number of rows.
124
118
  - pd.DataFrame: A new DataFrame limited to the specified number of rows.
125
119
 
126
120
  • Example:
127
- ```
121
+
128
122
  from rgwfuncs import limit_dataframe
129
123
  import pandas as pd
130
124
 
131
125
  df = pd.DataFrame({'A': range(10), 'B': range(10, 20)})
132
126
  df_limited = limit_dataframe(df, 5)
133
127
  print(df_limited)
134
- ```
128
+
135
129
  --------------------------------------------------------------------------------
136
130
 
137
131
  ### 4. `from_raw_data`
@@ -145,7 +139,7 @@ Create a DataFrame from raw data.
145
139
  - pd.DataFrame: A DataFrame created from the raw data.
146
140
 
147
141
  • Example:
148
- ```
142
+
149
143
  from rgwfuncs import from_raw_data
150
144
 
151
145
  headers = ["Name", "Age"]
@@ -157,7 +151,7 @@ Create a DataFrame from raw data.
157
151
 
158
152
  df = from_raw_data(headers, data)
159
153
  print(df)
160
- ```
154
+
161
155
  --------------------------------------------------------------------------------
162
156
 
163
157
  ### 5. `append_rows`
@@ -171,7 +165,7 @@ Append rows to the DataFrame.
171
165
  - pd.DataFrame: A new DataFrame with appended rows.
172
166
 
173
167
  • Example:
174
- ```
168
+
175
169
  from rgwfuncs import append_rows
176
170
  import pandas as pd
177
171
 
@@ -182,7 +176,7 @@ Append rows to the DataFrame.
182
176
  ]
183
177
  df_appended = append_rows(df, new_rows)
184
178
  print(df_appended)
185
- ```
179
+
186
180
  --------------------------------------------------------------------------------
187
181
 
188
182
  ### 6. `append_columns`
@@ -196,14 +190,14 @@ Append new columns to the DataFrame with None values.
196
190
  - pd.DataFrame: A new DataFrame with the new columns appended.
197
191
 
198
192
  • Example:
199
- ```
193
+
200
194
  from rgwfuncs import append_columns
201
195
  import pandas as pd
202
196
 
203
197
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25]})
204
198
  df_new = append_columns(df, ['Salary', 'Department'])
205
199
  print(df_new)
206
- ```
200
+
207
201
  --------------------------------------------------------------------------------
208
202
 
209
203
  ### 7. `update_rows`
@@ -218,14 +212,14 @@ Update specific rows in the DataFrame based on a condition.
218
212
  - pd.DataFrame: A new DataFrame with updated rows.
219
213
 
220
214
  • Example:
221
- ```
215
+
222
216
  from rgwfuncs import update_rows
223
217
  import pandas as pd
224
218
 
225
219
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25]})
226
220
  df_updated = update_rows(df, "Name == 'Alice'", {'Age': 31})
227
221
  print(df_updated)
228
- ```
222
+
229
223
  --------------------------------------------------------------------------------
230
224
 
231
225
  ### 8. `delete_rows`
@@ -239,14 +233,14 @@ Delete rows from the DataFrame based on a condition.
239
233
  - pd.DataFrame: The DataFrame with specified rows deleted.
240
234
 
241
235
  • Example:
242
- ```
236
+
243
237
  from rgwfuncs import delete_rows
244
238
  import pandas as pd
245
239
 
246
240
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25]})
247
241
  df_deleted = delete_rows(df, "Age < 28")
248
242
  print(df_deleted)
249
- ```
243
+
250
244
  --------------------------------------------------------------------------------
251
245
 
252
246
  ### 9. `drop_duplicates`
@@ -259,14 +253,14 @@ Drop duplicate rows in the DataFrame, retaining the first occurrence.
259
253
  - pd.DataFrame: A new DataFrame with duplicates removed.
260
254
 
261
255
  • Example:
262
- ```
256
+
263
257
  from rgwfuncs import drop_duplicates
264
258
  import pandas as pd
265
259
 
266
260
  df = pd.DataFrame({'A': [1,1,2,2], 'B': [3,3,4,4]})
267
261
  df_no_dupes = drop_duplicates(df)
268
262
  print(df_no_dupes)
269
- ```
263
+
270
264
  --------------------------------------------------------------------------------
271
265
 
272
266
  ### 10. `drop_duplicates_retain_first`
@@ -280,14 +274,14 @@ Drop duplicate rows based on specified columns, retaining the first occurrence.
280
274
  - pd.DataFrame: A new DataFrame with duplicates removed.
281
275
 
282
276
  • Example:
283
- ```
277
+
284
278
  from rgwfuncs import drop_duplicates_retain_first
285
279
  import pandas as pd
286
280
 
287
281
  df = pd.DataFrame({'A': [1,1,2,2], 'B': [3,3,4,4]})
288
282
  df_no_dupes = drop_duplicates_retain_first(df, 'A')
289
283
  print(df_no_dupes)
290
- ```
284
+
291
285
  --------------------------------------------------------------------------------
292
286
 
293
287
  ### 11. `drop_duplicates_retain_last`
@@ -301,14 +295,14 @@ Drop duplicate rows based on specified columns, retaining the last occurrence.
301
295
  - pd.DataFrame: A new DataFrame with duplicates removed.
302
296
 
303
297
  • Example:
304
- ```
298
+
305
299
  from rgwfuncs import drop_duplicates_retain_last
306
300
  import pandas as pd
307
301
 
308
302
  df = pd.DataFrame({'A': [1,1,2,2], 'B': [3,3,4,4]})
309
303
  df_no_dupes = drop_duplicates_retain_last(df, 'A')
310
304
  print(df_no_dupes)
311
- ```
305
+
312
306
 
313
307
  --------------------------------------------------------------------------------
314
308
 
@@ -324,7 +318,7 @@ Load data from a database query into a DataFrame based on a configuration preset
324
318
  - pd.DataFrame: A DataFrame containing the query result.
325
319
 
326
320
  • Example:
327
- ```
321
+
328
322
  from rgwfuncs import load_data_from_query
329
323
 
330
324
  df = load_data_from_query(
@@ -333,7 +327,7 @@ Load data from a database query into a DataFrame based on a configuration preset
333
327
  config_file_name="rgwml.config"
334
328
  )
335
329
  print(df)
336
- ```
330
+
337
331
 
338
332
  --------------------------------------------------------------------------------
339
333
 
@@ -347,12 +341,12 @@ Load data from a file into a DataFrame based on the file extension.
347
341
  - pd.DataFrame: A DataFrame containing the loaded data.
348
342
 
349
343
  • Example:
350
- ```
344
+
351
345
  from rgwfuncs import load_data_from_path
352
346
 
353
347
  df = load_data_from_path("/absolute/path/to/data.csv")
354
348
  print(df)
355
- ```
349
+
356
350
 
357
351
  --------------------------------------------------------------------------------
358
352
 
@@ -367,12 +361,12 @@ Execute a query on a SQLite database file and return the results as a DataFrame.
367
361
  - pd.DataFrame: A DataFrame containing the query results.
368
362
 
369
363
  • Example:
370
- ```
364
+
371
365
  from rgwfuncs import load_data_from_sqlite_path
372
366
 
373
367
  df = load_data_from_sqlite_path("/path/to/database.db", "SELECT * FROM my_table")
374
368
  print(df)
375
- ```
369
+
376
370
 
377
371
  --------------------------------------------------------------------------------
378
372
 
@@ -384,13 +378,13 @@ Display the first n rows of the DataFrame (prints out in dictionary format).
384
378
  - n (int): Number of rows to display.
385
379
 
386
380
  • Example:
387
- ```
381
+
388
382
  from rgwfuncs import first_n_rows
389
383
  import pandas as pd
390
384
 
391
385
  df = pd.DataFrame({'A': [1,2,3], 'B': [4,5,6]})
392
386
  first_n_rows(df, 2)
393
- ```
387
+
394
388
 
395
389
  --------------------------------------------------------------------------------
396
390
 
@@ -402,13 +396,13 @@ Display the last n rows of the DataFrame (prints out in dictionary format).
402
396
  - n (int): Number of rows to display.
403
397
 
404
398
  • Example:
405
- ```
399
+
406
400
  from rgwfuncs import last_n_rows
407
401
  import pandas as pd
408
402
 
409
403
  df = pd.DataFrame({'A': [1,2,3,4,5], 'B': [6,7,8,9,10]})
410
404
  last_n_rows(df, 2)
411
- ```
405
+
412
406
 
413
407
  --------------------------------------------------------------------------------
414
408
 
@@ -421,13 +415,13 @@ Print the top n unique values for specified columns in the DataFrame.
421
415
  - columns (list): List of columns for which to display top unique values.
422
416
 
423
417
  • Example:
424
- ```
418
+
425
419
  from rgwfuncs import top_n_unique_values
426
420
  import pandas as pd
427
421
 
428
422
  df = pd.DataFrame({'Cities': ['NY', 'LA', 'NY', 'SF', 'LA', 'LA']})
429
423
  top_n_unique_values(df, 2, ['Cities'])
430
- ```
424
+
431
425
 
432
426
  --------------------------------------------------------------------------------
433
427
 
@@ -440,13 +434,13 @@ Print the bottom n unique values for specified columns in the DataFrame.
440
434
  - columns (list)
441
435
 
442
436
  • Example:
443
- ```
437
+
444
438
  from rgwfuncs import bottom_n_unique_values
445
439
  import pandas as pd
446
440
 
447
441
  df = pd.DataFrame({'Cities': ['NY', 'LA', 'NY', 'SF', 'LA', 'LA']})
448
442
  bottom_n_unique_values(df, 1, ['Cities'])
449
- ```
443
+
450
444
 
451
445
  --------------------------------------------------------------------------------
452
446
 
@@ -458,7 +452,7 @@ Print correlation for multiple pairs of columns in the DataFrame.
458
452
  - `column_pairs` (list of tuples): E.g., `[('col1','col2'), ('colA','colB')]`.
459
453
 
460
454
  • Example:
461
- ```
455
+
462
456
  from rgwfuncs import print_correlation
463
457
  import pandas as pd
464
458
 
@@ -471,7 +465,7 @@ Print correlation for multiple pairs of columns in the DataFrame.
471
465
 
472
466
  pairs = [('col1','col2'), ('colA','colB')]
473
467
  print_correlation(df, pairs)
474
- ```
468
+
475
469
 
476
470
  --------------------------------------------------------------------------------
477
471
 
@@ -482,13 +476,13 @@ Print the memory usage of the DataFrame in megabytes.
482
476
  - df (pd.DataFrame)
483
477
 
484
478
  • Example:
485
- ```
479
+
486
480
  from rgwfuncs import print_memory_usage
487
481
  import pandas as pd
488
482
 
489
483
  df = pd.DataFrame({'A': range(1000)})
490
484
  print_memory_usage(df)
491
- ```
485
+
492
486
 
493
487
  --------------------------------------------------------------------------------
494
488
 
@@ -503,7 +497,7 @@ Return a new DataFrame filtered by a given query expression.
503
497
  - pd.DataFrame
504
498
 
505
499
  • Example:
506
- ```
500
+
507
501
  from rgwfuncs import filter_dataframe
508
502
  import pandas as pd
509
503
 
@@ -514,7 +508,7 @@ Return a new DataFrame filtered by a given query expression.
514
508
 
515
509
  df_filtered = filter_dataframe(df, "Age > 23")
516
510
  print(df_filtered)
517
- ```
511
+
518
512
 
519
513
  --------------------------------------------------------------------------------
520
514
 
@@ -529,14 +523,14 @@ Filter and return rows containing valid Indian mobile numbers in the specified c
529
523
  - pd.DataFrame
530
524
 
531
525
  • Example:
532
- ```
526
+
533
527
  from rgwfuncs import filter_indian_mobiles
534
528
  import pandas as pd
535
529
 
536
530
  df = pd.DataFrame({'Phone': ['9876543210', '12345', '7000012345']})
537
531
  df_indian = filter_indian_mobiles(df, 'Phone')
538
532
  print(df_indian)
539
- ```
533
+
540
534
 
541
535
  --------------------------------------------------------------------------------
542
536
 
@@ -548,13 +542,13 @@ Print the entire DataFrame and its column types. Optionally print a source path.
548
542
  - source (str, optional)
549
543
 
550
544
  • Example:
551
- ```
545
+
552
546
  from rgwfuncs import print_dataframe
553
547
  import pandas as pd
554
548
 
555
549
  df = pd.DataFrame({'Name': ['Alice'], 'Age': [30]})
556
550
  print_dataframe(df, source='SampleData.csv')
557
- ```
551
+
558
552
 
559
553
  --------------------------------------------------------------------------------
560
554
 
@@ -569,7 +563,7 @@ Send a DataFrame via Telegram using a specified bot configuration.
569
563
  - `remove_after_send` (bool)
570
564
 
571
565
  • Example:
572
- ```
566
+
573
567
  from rgwfuncs import send_dataframe_via_telegram
574
568
 
575
569
  # Suppose your bot config is in "rgwml.config" under [TelegramBots] section
@@ -581,7 +575,7 @@ Send a DataFrame via Telegram using a specified bot configuration.
581
575
  as_file=True,
582
576
  remove_after_send=True
583
577
  )
584
- ```
578
+
585
579
 
586
580
  --------------------------------------------------------------------------------
587
581
 
@@ -598,7 +592,7 @@ Send an email with an optional DataFrame attachment using the Gmail API via a sp
598
592
  - `remove_after_send` (bool)
599
593
 
600
594
  • Example:
601
- ```
595
+
602
596
  from rgwfuncs import send_data_to_email
603
597
 
604
598
  df = ... # Some DataFrame
@@ -611,7 +605,7 @@ Send an email with an optional DataFrame attachment using the Gmail API via a sp
611
605
  as_file=True,
612
606
  remove_after_send=True
613
607
  )
614
- ```
608
+
615
609
 
616
610
  --------------------------------------------------------------------------------
617
611
 
@@ -626,7 +620,7 @@ Send a DataFrame or message to Slack using a specified bot configuration.
626
620
  - `remove_after_send` (bool)
627
621
 
628
622
  • Example:
629
- ```
623
+
630
624
  from rgwfuncs import send_data_to_slack
631
625
 
632
626
  df = ... # Some DataFrame
@@ -637,7 +631,7 @@ Send a DataFrame or message to Slack using a specified bot configuration.
637
631
  as_file=True,
638
632
  remove_after_send=True
639
633
  )
640
- ```
634
+
641
635
 
642
636
  --------------------------------------------------------------------------------
643
637
 
@@ -652,14 +646,14 @@ Reorder the columns of a DataFrame based on a string input.
652
646
  - pd.DataFrame
653
647
 
654
648
  • Example:
655
- ```
649
+
656
650
  from rgwfuncs import order_columns
657
651
  import pandas as pd
658
652
 
659
653
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25], 'Salary': [1000, 1200]})
660
654
  df_reordered = order_columns(df, 'Salary,Name,Age')
661
655
  print(df_reordered)
662
- ```
656
+
663
657
 
664
658
  --------------------------------------------------------------------------------
665
659
 
@@ -676,14 +670,14 @@ Append a ranged classification column to the DataFrame.
676
670
  - pd.DataFrame
677
671
 
678
672
  • Example:
679
- ```
673
+
680
674
  from rgwfuncs import append_ranged_classification_column
681
675
  import pandas as pd
682
676
 
683
677
  df = pd.DataFrame({'Scores': [5, 12, 25]})
684
678
  df_classified = append_ranged_classification_column(df, '0-10,11-20,21-30', 'Scores', 'ScoreRange')
685
679
  print(df_classified)
686
- ```
680
+
687
681
 
688
682
  --------------------------------------------------------------------------------
689
683
 
@@ -700,14 +694,14 @@ Append a percentile classification column to the DataFrame.
700
694
  - pd.DataFrame
701
695
 
702
696
  • Example:
703
- ```
697
+
704
698
  from rgwfuncs import append_percentile_classification_column
705
699
  import pandas as pd
706
700
 
707
701
  df = pd.DataFrame({'Values': [10, 20, 30, 40, 50]})
708
702
  df_classified = append_percentile_classification_column(df, '25,50,75', 'Values', 'ValuePercentile')
709
703
  print(df_classified)
710
- ```
704
+
711
705
 
712
706
  --------------------------------------------------------------------------------
713
707
 
@@ -724,7 +718,7 @@ Append a ranged date classification column to the DataFrame.
724
718
  - pd.DataFrame
725
719
 
726
720
  • Example:
727
- ```
721
+
728
722
  from rgwfuncs import append_ranged_date_classification_column
729
723
  import pandas as pd
730
724
 
@@ -736,7 +730,7 @@ Append a ranged date classification column to the DataFrame.
736
730
  'DateRange'
737
731
  )
738
732
  print(df_classified)
739
- ```
733
+
740
734
 
741
735
  --------------------------------------------------------------------------------
742
736
 
@@ -751,14 +745,14 @@ Rename columns in the DataFrame.
751
745
  - pd.DataFrame
752
746
 
753
747
  • Example:
754
- ```
748
+
755
749
  from rgwfuncs import rename_columns
756
750
  import pandas as pd
757
751
 
758
752
  df = pd.DataFrame({'OldName': [1,2,3]})
759
753
  df_renamed = rename_columns(df, {'OldName': 'NewName'})
760
754
  print(df_renamed)
761
- ```
755
+
762
756
 
763
757
  --------------------------------------------------------------------------------
764
758
 
@@ -773,7 +767,7 @@ Cascade sort the DataFrame by specified columns and order.
773
767
  - pd.DataFrame
774
768
 
775
769
  • Example:
776
- ```
770
+
777
771
  from rgwfuncs import cascade_sort
778
772
  import pandas as pd
779
773
 
@@ -784,7 +778,7 @@ Cascade sort the DataFrame by specified columns and order.
784
778
 
785
779
  sorted_df = cascade_sort(df, ["Name::ASC", "Age::DESC"])
786
780
  print(sorted_df)
787
- ```
781
+
788
782
 
789
783
  --------------------------------------------------------------------------------
790
784
 
@@ -799,14 +793,14 @@ Append XGB training labels (TRAIN, VALIDATE, TEST) based on a ratio string.
799
793
  - pd.DataFrame
800
794
 
801
795
  • Example:
802
- ```
796
+
803
797
  from rgwfuncs import append_xgb_labels
804
798
  import pandas as pd
805
799
 
806
800
  df = pd.DataFrame({'A': range(10)})
807
801
  df_labeled = append_xgb_labels(df, "7:2:1")
808
802
  print(df_labeled)
809
- ```
803
+
810
804
 
811
805
  --------------------------------------------------------------------------------
812
806
 
@@ -825,7 +819,7 @@ Append XGB regression predictions to the DataFrame. Requires an `XGB_TYPE` colum
825
819
  - pd.DataFrame
826
820
 
827
821
  • Example:
828
- ```
822
+
829
823
  from rgwfuncs import append_xgb_regression_predictions
830
824
  import pandas as pd
831
825
 
@@ -838,7 +832,7 @@ Append XGB regression predictions to the DataFrame. Requires an `XGB_TYPE` colum
838
832
 
839
833
  df_pred = append_xgb_regression_predictions(df, 'Target', 'Feature1,Feature2', 'PredictedTarget')
840
834
  print(df_pred)
841
- ```
835
+
842
836
 
843
837
  --------------------------------------------------------------------------------
844
838
 
@@ -857,7 +851,7 @@ Append XGB logistic regression predictions to the DataFrame. Requires an `XGB_TY
857
851
  - pd.DataFrame
858
852
 
859
853
  • Example:
860
- ```
854
+
861
855
  from rgwfuncs import append_xgb_logistic_regression_predictions
862
856
  import pandas as pd
863
857
 
@@ -870,7 +864,7 @@ Append XGB logistic regression predictions to the DataFrame. Requires an `XGB_TY
870
864
 
871
865
  df_pred = append_xgb_logistic_regression_predictions(df, 'Target', 'Feature1,Feature2', 'PredictedTarget')
872
866
  print(df_pred)
873
- ```
867
+
874
868
 
875
869
  --------------------------------------------------------------------------------
876
870
 
@@ -884,13 +878,13 @@ Print the cascading frequency of top n values for specified columns.
884
878
  - `order_by` (str): `ASC`, `DESC`, `FREQ_ASC`, `FREQ_DESC`.
885
879
 
886
880
  • Example:
887
- ```
881
+
888
882
  from rgwfuncs import print_n_frequency_cascading
889
883
  import pandas as pd
890
884
 
891
885
  df = pd.DataFrame({'City': ['NY','LA','NY','SF','LA','LA']})
892
886
  print_n_frequency_cascading(df, 2, 'City', 'FREQ_DESC')
893
- ```
887
+
894
888
 
895
889
  --------------------------------------------------------------------------------
896
890
 
@@ -904,13 +898,13 @@ Print the linear frequency of top n values for specified columns.
904
898
  - `order_by` (str)
905
899
 
906
900
  • Example:
907
- ```
901
+
908
902
  from rgwfuncs import print_n_frequency_linear
909
903
  import pandas as pd
910
904
 
911
905
  df = pd.DataFrame({'City': ['NY','LA','NY','SF','LA','LA']})
912
906
  print_n_frequency_linear(df, 2, 'City', 'FREQ_DESC')
913
- ```
907
+
914
908
 
915
909
  --------------------------------------------------------------------------------
916
910
 
@@ -925,14 +919,14 @@ Retain specified columns in the DataFrame and drop the others.
925
919
  - pd.DataFrame
926
920
 
927
921
  • Example:
928
- ```
922
+
929
923
  from rgwfuncs import retain_columns
930
924
  import pandas as pd
931
925
 
932
926
  df = pd.DataFrame({'A': [1,2], 'B': [3,4], 'C': [5,6]})
933
927
  df_reduced = retain_columns(df, ['A','C'])
934
928
  print(df_reduced)
935
- ```
929
+
936
930
 
937
931
  --------------------------------------------------------------------------------
938
932
 
@@ -948,7 +942,7 @@ Retain only rows with common column values between two DataFrames.
948
942
  - pd.DataFrame
949
943
 
950
944
  • Example:
951
- ```
945
+
952
946
  from rgwfuncs import mask_against_dataframe
953
947
  import pandas as pd
954
948
 
@@ -957,7 +951,7 @@ Retain only rows with common column values between two DataFrames.
957
951
 
958
952
  df_masked = mask_against_dataframe(df1, df2, 'ID')
959
953
  print(df_masked)
960
- ```
954
+
961
955
 
962
956
  --------------------------------------------------------------------------------
963
957
 
@@ -973,7 +967,7 @@ Retain only rows with uncommon column values between two DataFrames.
973
967
  - pd.DataFrame
974
968
 
975
969
  • Example:
976
- ```
970
+
977
971
  from rgwfuncs import mask_against_dataframe_converse
978
972
  import pandas as pd
979
973
 
@@ -982,20 +976,20 @@ Retain only rows with uncommon column values between two DataFrames.
982
976
 
983
977
  df_uncommon = mask_against_dataframe_converse(df1, df2, 'ID')
984
978
  print(df_uncommon)
985
- ```
979
+
986
980
 
987
981
  --------------------------------------------------------------------------------
988
982
 
989
983
  ## Additional Info
990
984
 
991
985
  For more information, refer to each function’s docstring by calling:
992
- ```
993
- rgwfuncs.docs(method_type_filter='function_name')
994
- ```
986
+
987
+ rgwfuncs.docs(method_type_filter='function_name')
988
+
995
989
  or display all docstrings with:
996
- ```python
997
- rgwfuncs.docs(method_type_filter='*')
998
- ```
990
+
991
+ rgwfuncs.docs(method_type_filter='*')
992
+
999
993
 
1000
994
  --------------------------------------------------------------------------------
1001
995