rgwfuncs 0.0.34__tar.gz → 0.0.35__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {rgwfuncs-0.0.34/src/rgwfuncs.egg-info → rgwfuncs-0.0.35}/PKG-INFO +5 -28
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/README.md +4 -27
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/pyproject.toml +1 -1
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/setup.cfg +1 -1
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35/src/rgwfuncs.egg-info}/PKG-INFO +5 -28
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/LICENSE +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs/__init__.py +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs/algebra_lib.py +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs/df_lib.py +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs/docs_lib.py +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs/interactive_shell_lib.py +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs/str_lib.py +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs.egg-info/SOURCES.txt +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs.egg-info/dependency_links.txt +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs.egg-info/entry_points.txt +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs.egg-info/requires.txt +0 -0
- {rgwfuncs-0.0.34 → rgwfuncs-0.0.35}/src/rgwfuncs.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.35
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -135,7 +135,7 @@ To display all docstrings, use:
|
|
135
135
|
|
136
136
|
--------------------------------------------------------------------------------
|
137
137
|
|
138
|
-
## Documentation Access
|
138
|
+
## Documentation Access
|
139
139
|
|
140
140
|
### 1. docs
|
141
141
|
Print a list of available function names in alphabetical order. If a filter is provided, print the docstrings of functions containing the term.
|
@@ -150,15 +150,13 @@ Print a list of available function names in alphabetical order. If a filter is p
|
|
150
150
|
|
151
151
|
--------------------------------------------------------------------------------
|
152
152
|
|
153
|
-
## Interactive Shell
|
153
|
+
## Interactive Shell
|
154
154
|
|
155
155
|
This section includes functions that facilitate launching an interactive Python shell to inspect and modify local variables within the user's environment.
|
156
156
|
|
157
157
|
### 1. `interactive_shell`
|
158
158
|
|
159
|
-
|
160
|
-
|
161
|
-
Launches an interactive prompt for inspecting and modifying local variables, making all methods in the rgwfuncs library available by default. This REPL (Read-Eval-Print Loop) environment supports command history and autocompletion, making it easier to interact with your Python code.
|
159
|
+
Launches an interactive prompt for inspecting and modifying local variables, making all methods in the rgwfuncs library available by default. This REPL (Read-Eval-Print Loop) environment supports command history and autocompletion, making it easier to interact with your Python code. This function is particularly useful for debugging purposes when you want real-time interaction with your program's execution environment.
|
162
160
|
|
163
161
|
• Parameters:
|
164
162
|
- `local_vars` (dict, optional): A dictionary of local variables to be accessible within the interactive shell. If not provided, defaults to an empty dictionary.
|
@@ -180,18 +178,10 @@ Launches an interactive prompt for inspecting and modifying local variables, mak
|
|
180
178
|
'city': ['New York', 'Los Angeles', 'Chicago', 'San Francisco', 'Boston']
|
181
179
|
})
|
182
180
|
|
183
|
-
# Function to retrieve the first n rows of a DataFrame
|
184
|
-
def first_n_rows(df, n):
|
185
|
-
return df.head(n).to_dict('records')
|
186
|
-
|
187
181
|
# Launch the interactive shell with local variables
|
188
182
|
interactive_shell(locals())
|
189
183
|
|
190
|
-
|
191
|
-
|
192
|
-
#### Interactive Shell Example Sessions
|
193
|
-
|
194
|
-
1. DataFrame Inspection with Pandas:
|
184
|
+
Subsequently, in the interactive shell you can use any library in your python file, as well as all rgwfuncs methods (even if they are not imported). Notice, that while pandas and numpy are available in the shell as a result of importing them in the above script, the rgwfuncs method `first_n_rows` was not imported - yet is available for use.
|
195
185
|
|
196
186
|
Welcome to the rgwfuncs interactive shell.
|
197
187
|
>>> pirst_n_rows(df, 2)
|
@@ -208,23 +198,10 @@ Launches an interactive prompt for inspecting and modifying local variables, mak
|
|
208
198
|
2 3 Charlie 35 Chicago
|
209
199
|
3 4 David 28 San Francisco
|
210
200
|
4 5 Eva 22 Boston
|
211
|
-
|
212
|
-
2. Array Operations with NumPy:
|
213
|
-
|
214
|
-
Welcome to the rgwfuncs interactive shell.
|
215
201
|
>>> arr = np.array([1, 2, 3, 4, 5])
|
216
202
|
>>> arr
|
217
203
|
array([1, 2, 3, 4, 5])
|
218
204
|
|
219
|
-
These examples illustrate how you can use functions and variables within the interactive shell, handle errors with meaningful suggestions, and perform operations using external libraries like pandas and numpy.
|
220
|
-
|
221
|
-
#### Key Features
|
222
|
-
|
223
|
-
- Autocompletion: Uses the `rlcompleter` library to provide tab-completion of variables and functions names, enhancing ease of use.
|
224
|
-
- History Support: Utilizes `readline` for command-line history, allowing you to navigate through previous commands using the arrow keys.
|
225
|
-
|
226
|
-
This function is particularly useful for debugging purposes when you want real-time interaction with your program's execution environment.
|
227
|
-
|
228
205
|
--------------------------------------------------------------------------------
|
229
206
|
|
230
207
|
## Algebra Based Functions
|
@@ -109,7 +109,7 @@ To display all docstrings, use:
|
|
109
109
|
|
110
110
|
--------------------------------------------------------------------------------
|
111
111
|
|
112
|
-
## Documentation Access
|
112
|
+
## Documentation Access
|
113
113
|
|
114
114
|
### 1. docs
|
115
115
|
Print a list of available function names in alphabetical order. If a filter is provided, print the docstrings of functions containing the term.
|
@@ -124,15 +124,13 @@ Print a list of available function names in alphabetical order. If a filter is p
|
|
124
124
|
|
125
125
|
--------------------------------------------------------------------------------
|
126
126
|
|
127
|
-
## Interactive Shell
|
127
|
+
## Interactive Shell
|
128
128
|
|
129
129
|
This section includes functions that facilitate launching an interactive Python shell to inspect and modify local variables within the user's environment.
|
130
130
|
|
131
131
|
### 1. `interactive_shell`
|
132
132
|
|
133
|
-
|
134
|
-
|
135
|
-
Launches an interactive prompt for inspecting and modifying local variables, making all methods in the rgwfuncs library available by default. This REPL (Read-Eval-Print Loop) environment supports command history and autocompletion, making it easier to interact with your Python code.
|
133
|
+
Launches an interactive prompt for inspecting and modifying local variables, making all methods in the rgwfuncs library available by default. This REPL (Read-Eval-Print Loop) environment supports command history and autocompletion, making it easier to interact with your Python code. This function is particularly useful for debugging purposes when you want real-time interaction with your program's execution environment.
|
136
134
|
|
137
135
|
• Parameters:
|
138
136
|
- `local_vars` (dict, optional): A dictionary of local variables to be accessible within the interactive shell. If not provided, defaults to an empty dictionary.
|
@@ -154,18 +152,10 @@ Launches an interactive prompt for inspecting and modifying local variables, mak
|
|
154
152
|
'city': ['New York', 'Los Angeles', 'Chicago', 'San Francisco', 'Boston']
|
155
153
|
})
|
156
154
|
|
157
|
-
# Function to retrieve the first n rows of a DataFrame
|
158
|
-
def first_n_rows(df, n):
|
159
|
-
return df.head(n).to_dict('records')
|
160
|
-
|
161
155
|
# Launch the interactive shell with local variables
|
162
156
|
interactive_shell(locals())
|
163
157
|
|
164
|
-
|
165
|
-
|
166
|
-
#### Interactive Shell Example Sessions
|
167
|
-
|
168
|
-
1. DataFrame Inspection with Pandas:
|
158
|
+
Subsequently, in the interactive shell you can use any library in your python file, as well as all rgwfuncs methods (even if they are not imported). Notice, that while pandas and numpy are available in the shell as a result of importing them in the above script, the rgwfuncs method `first_n_rows` was not imported - yet is available for use.
|
169
159
|
|
170
160
|
Welcome to the rgwfuncs interactive shell.
|
171
161
|
>>> pirst_n_rows(df, 2)
|
@@ -182,23 +172,10 @@ Launches an interactive prompt for inspecting and modifying local variables, mak
|
|
182
172
|
2 3 Charlie 35 Chicago
|
183
173
|
3 4 David 28 San Francisco
|
184
174
|
4 5 Eva 22 Boston
|
185
|
-
|
186
|
-
2. Array Operations with NumPy:
|
187
|
-
|
188
|
-
Welcome to the rgwfuncs interactive shell.
|
189
175
|
>>> arr = np.array([1, 2, 3, 4, 5])
|
190
176
|
>>> arr
|
191
177
|
array([1, 2, 3, 4, 5])
|
192
178
|
|
193
|
-
These examples illustrate how you can use functions and variables within the interactive shell, handle errors with meaningful suggestions, and perform operations using external libraries like pandas and numpy.
|
194
|
-
|
195
|
-
#### Key Features
|
196
|
-
|
197
|
-
- Autocompletion: Uses the `rlcompleter` library to provide tab-completion of variables and functions names, enhancing ease of use.
|
198
|
-
- History Support: Utilizes `readline` for command-line history, allowing you to navigate through previous commands using the arrow keys.
|
199
|
-
|
200
|
-
This function is particularly useful for debugging purposes when you want real-time interaction with your program's execution environment.
|
201
|
-
|
202
179
|
--------------------------------------------------------------------------------
|
203
180
|
|
204
181
|
## Algebra Based Functions
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.35
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -135,7 +135,7 @@ To display all docstrings, use:
|
|
135
135
|
|
136
136
|
--------------------------------------------------------------------------------
|
137
137
|
|
138
|
-
## Documentation Access
|
138
|
+
## Documentation Access
|
139
139
|
|
140
140
|
### 1. docs
|
141
141
|
Print a list of available function names in alphabetical order. If a filter is provided, print the docstrings of functions containing the term.
|
@@ -150,15 +150,13 @@ Print a list of available function names in alphabetical order. If a filter is p
|
|
150
150
|
|
151
151
|
--------------------------------------------------------------------------------
|
152
152
|
|
153
|
-
## Interactive Shell
|
153
|
+
## Interactive Shell
|
154
154
|
|
155
155
|
This section includes functions that facilitate launching an interactive Python shell to inspect and modify local variables within the user's environment.
|
156
156
|
|
157
157
|
### 1. `interactive_shell`
|
158
158
|
|
159
|
-
|
160
|
-
|
161
|
-
Launches an interactive prompt for inspecting and modifying local variables, making all methods in the rgwfuncs library available by default. This REPL (Read-Eval-Print Loop) environment supports command history and autocompletion, making it easier to interact with your Python code.
|
159
|
+
Launches an interactive prompt for inspecting and modifying local variables, making all methods in the rgwfuncs library available by default. This REPL (Read-Eval-Print Loop) environment supports command history and autocompletion, making it easier to interact with your Python code. This function is particularly useful for debugging purposes when you want real-time interaction with your program's execution environment.
|
162
160
|
|
163
161
|
• Parameters:
|
164
162
|
- `local_vars` (dict, optional): A dictionary of local variables to be accessible within the interactive shell. If not provided, defaults to an empty dictionary.
|
@@ -180,18 +178,10 @@ Launches an interactive prompt for inspecting and modifying local variables, mak
|
|
180
178
|
'city': ['New York', 'Los Angeles', 'Chicago', 'San Francisco', 'Boston']
|
181
179
|
})
|
182
180
|
|
183
|
-
# Function to retrieve the first n rows of a DataFrame
|
184
|
-
def first_n_rows(df, n):
|
185
|
-
return df.head(n).to_dict('records')
|
186
|
-
|
187
181
|
# Launch the interactive shell with local variables
|
188
182
|
interactive_shell(locals())
|
189
183
|
|
190
|
-
|
191
|
-
|
192
|
-
#### Interactive Shell Example Sessions
|
193
|
-
|
194
|
-
1. DataFrame Inspection with Pandas:
|
184
|
+
Subsequently, in the interactive shell you can use any library in your python file, as well as all rgwfuncs methods (even if they are not imported). Notice, that while pandas and numpy are available in the shell as a result of importing them in the above script, the rgwfuncs method `first_n_rows` was not imported - yet is available for use.
|
195
185
|
|
196
186
|
Welcome to the rgwfuncs interactive shell.
|
197
187
|
>>> pirst_n_rows(df, 2)
|
@@ -208,23 +198,10 @@ Launches an interactive prompt for inspecting and modifying local variables, mak
|
|
208
198
|
2 3 Charlie 35 Chicago
|
209
199
|
3 4 David 28 San Francisco
|
210
200
|
4 5 Eva 22 Boston
|
211
|
-
|
212
|
-
2. Array Operations with NumPy:
|
213
|
-
|
214
|
-
Welcome to the rgwfuncs interactive shell.
|
215
201
|
>>> arr = np.array([1, 2, 3, 4, 5])
|
216
202
|
>>> arr
|
217
203
|
array([1, 2, 3, 4, 5])
|
218
204
|
|
219
|
-
These examples illustrate how you can use functions and variables within the interactive shell, handle errors with meaningful suggestions, and perform operations using external libraries like pandas and numpy.
|
220
|
-
|
221
|
-
#### Key Features
|
222
|
-
|
223
|
-
- Autocompletion: Uses the `rlcompleter` library to provide tab-completion of variables and functions names, enhancing ease of use.
|
224
|
-
- History Support: Utilizes `readline` for command-line history, allowing you to navigate through previous commands using the arrow keys.
|
225
|
-
|
226
|
-
This function is particularly useful for debugging purposes when you want real-time interaction with your program's execution environment.
|
227
|
-
|
228
205
|
--------------------------------------------------------------------------------
|
229
206
|
|
230
207
|
## Algebra Based Functions
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|