returnn 1.20250904.193235__tar.gz → 1.20250905.121049__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

Files changed (476) hide show
  1. {returnn-1.20250904.193235/returnn.egg-info → returnn-1.20250905.121049}/PKG-INFO +1 -1
  2. returnn-1.20250905.121049/_setup_info_generated.py +2 -0
  3. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/nested.py +1 -0
  4. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/_dim_extra.py +3 -1
  5. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/frontend/_backend.py +2 -0
  6. {returnn-1.20250904.193235 → returnn-1.20250905.121049/returnn.egg-info}/PKG-INFO +1 -1
  7. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_decoder_transformer.py +249 -0
  8. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_encoder_conformer.py +85 -23
  9. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_tensor.py +13 -0
  10. returnn-1.20250904.193235/_setup_info_generated.py +0 -2
  11. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/.editorconfig +0 -0
  12. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/.gitignore +0 -0
  13. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/.gitmodules +0 -0
  14. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/.kateconfig +0 -0
  15. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/CHANGELOG.md +0 -0
  16. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/CODEOWNERS +0 -0
  17. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/CONTRIBUTING.md +0 -0
  18. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/LICENSE +0 -0
  19. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/MANIFEST.in +0 -0
  20. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/README.rst +0 -0
  21. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/__init__.py +0 -0
  22. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/12AX.cluster_map +0 -0
  23. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/_setup_returnn_env.py +0 -0
  24. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-fwd.config +0 -0
  25. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-horovod-mpi.py +0 -0
  26. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-horovod-mpi.py.sh +0 -0
  27. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-horovod-mpi.sh +0 -0
  28. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-hyper-param-tuning.config +0 -0
  29. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-iter-dataset.py +0 -0
  30. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-list-devices.py +0 -0
  31. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-lua-torch-layer.config +0 -0
  32. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-pretrain.config +0 -0
  33. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-record-and-push-to-webserver.py +0 -0
  34. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-returnn-as-framework.py +0 -0
  35. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-rf-pt-benchmark.py +0 -0
  36. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-rf.config +0 -0
  37. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-rhn-enwik8.config +0 -0
  38. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-sprint-interface.py +0 -0
  39. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-att-copy.config +0 -0
  40. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-attention.config +0 -0
  41. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
  42. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
  43. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-enc-dec.config +0 -0
  44. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-hard-att-copy.config +0 -0
  45. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-lstm-benchmark.py +0 -0
  46. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
  47. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
  48. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-native-lstm.12ax.config +0 -0
  49. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-native-lstm2.12ax.config +0 -0
  50. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
  51. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-neural-transducer.12ax.config +0 -0
  52. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-rec-explicit-lstm.config +0 -0
  53. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-rec-explicit-rnn.config +0 -0
  54. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-rec-self-att.config +0 -0
  55. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-search-compiled-graph.py +0 -0
  56. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
  57. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-timit-lstm-ctc.config +0 -0
  58. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-torch.config +0 -0
  59. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
  60. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/demo.sh +0 -0
  61. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
  62. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
  63. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
  64. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/README.txt +0 -0
  65. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/chars.txt +0 -0
  66. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/config_demo +0 -0
  67. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/config_fwd +0 -0
  68. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/config_real +0 -0
  69. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
  70. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/decode.py +0 -0
  71. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
  72. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/go.sh +0 -0
  73. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/lines.txt +0 -0
  74. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/split/eval.txt +0 -0
  75. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/split/train.txt +0 -0
  76. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/IAM/split/valid.txt +0 -0
  77. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/README.md +0 -0
  78. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial/create_test_h5.py +0 -0
  79. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial/forwardconfig +0 -0
  80. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial/go.sh +0 -0
  81. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial/trainconfig +0 -0
  82. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
  83. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
  84. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial_rgb/go.sh +0 -0
  85. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
  86. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/pyproject.toml +0 -0
  87. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/requirements.txt +0 -0
  88. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/__init__.py +0 -0
  89. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/__main__.py +0 -0
  90. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/__old_mod_loader__.py +0 -0
  91. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/__setup__.py +0 -0
  92. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/config.py +0 -0
  93. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/__init__.py +0 -0
  94. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/audio.py +0 -0
  95. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/basic.py +0 -0
  96. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/bundle_file.py +0 -0
  97. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/cached.py +0 -0
  98. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/cached2.py +0 -0
  99. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/distrib_files.py +0 -0
  100. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/generating.py +0 -0
  101. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/hdf.py +0 -0
  102. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/lm.py +0 -0
  103. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/map.py +0 -0
  104. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/meta.py +0 -0
  105. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/multi_proc.py +0 -0
  106. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/normalization_data.py +0 -0
  107. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/numpy_dump.py +0 -0
  108. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/postprocessing.py +0 -0
  109. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/raw_wav.py +0 -0
  110. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/sprint.py +0 -0
  111. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/stereo.py +0 -0
  112. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/text_dict.py +0 -0
  113. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/util/__init__.py +0 -0
  114. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/util/feature_extraction.py +0 -0
  115. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/util/strings.py +0 -0
  116. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/datasets/util/vocabulary.py +0 -0
  117. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/engine/__init__.py +0 -0
  118. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/engine/base.py +0 -0
  119. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/engine/batch.py +0 -0
  120. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/__init__.py +0 -0
  121. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/__main__.py +0 -0
  122. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/.git +0 -0
  123. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
  124. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
  125. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
  126. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
  127. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
  128. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
  129. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
  130. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
  131. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
  132. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
  133. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
  134. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
  135. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
  136. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
  137. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
  138. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
  139. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
  140. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
  141. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
  142. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
  143. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
  144. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
  145. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
  146. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
  147. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/__init__.py +0 -0
  148. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/README.md +0 -0
  149. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/__init__.py +0 -0
  150. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/edit.py +0 -0
  151. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/reroute.py +0 -0
  152. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/select.py +0 -0
  153. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/subgraph.py +0 -0
  154. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/transform.py +0 -0
  155. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/extern/graph_editor/util.py +0 -0
  156. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/forward_iface.py +0 -0
  157. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/__init__.py +0 -0
  158. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_backend.py +0 -0
  159. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_cache.py +0 -0
  160. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/__init__.py +0 -0
  161. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/backend.cpp +0 -0
  162. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/backend.hpp +0 -0
  163. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/module.cpp +0 -0
  164. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/module.hpp +0 -0
  165. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/py_utils.hpp +0 -0
  166. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/tensor_ops.cpp +0 -0
  167. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_native/tensor_ops.hpp +0 -0
  168. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_numpy_backend.py +0 -0
  169. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_random_journal.py +0 -0
  170. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/_utils.py +0 -0
  171. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/array_.py +0 -0
  172. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/attention.py +0 -0
  173. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/audio/__init__.py +0 -0
  174. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/audio/mel.py +0 -0
  175. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/audio/specaugment.py +0 -0
  176. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/backend.py +0 -0
  177. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/build_from_dict.py +0 -0
  178. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/cond.py +0 -0
  179. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/const.py +0 -0
  180. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/container.py +0 -0
  181. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/control_flow_ctx.py +0 -0
  182. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/conv.py +0 -0
  183. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/conversions/__init__.py +0 -0
  184. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
  185. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/conversions/hf_llama.py +0 -0
  186. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/conversions/torch_nn.py +0 -0
  187. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/decoder/__init__.py +0 -0
  188. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/decoder/transformer.py +0 -0
  189. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/device.py +0 -0
  190. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/dims.py +0 -0
  191. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/dropout.py +0 -0
  192. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/dtype.py +0 -0
  193. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/encoder/__init__.py +0 -0
  194. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/encoder/base.py +0 -0
  195. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/encoder/conformer.py +0 -0
  196. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/encoder/conformer_v2.py +0 -0
  197. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/encoder/e_branchformer.py +0 -0
  198. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/encoder/transformer.py +0 -0
  199. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/gradient.py +0 -0
  200. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/graph.py +0 -0
  201. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/hooks.py +0 -0
  202. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/init.py +0 -0
  203. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/label_smoothing.py +0 -0
  204. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/linear.py +0 -0
  205. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/loop.py +0 -0
  206. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/loss.py +0 -0
  207. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/math_.py +0 -0
  208. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/matmul.py +0 -0
  209. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/module.py +0 -0
  210. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/normalization.py +0 -0
  211. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/parameter.py +0 -0
  212. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/parametrizations.py +0 -0
  213. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/parametrize.py +0 -0
  214. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/piecewise_linear.py +0 -0
  215. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/rand.py +0 -0
  216. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/rec.py +0 -0
  217. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/reduce.py +0 -0
  218. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/run_ctx.py +0 -0
  219. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/signal.py +0 -0
  220. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/state.py +0 -0
  221. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/stepwise_scheduler.py +0 -0
  222. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/tensor_array.py +0 -0
  223. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/frontend/types.py +0 -0
  224. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/import_/__init__.py +0 -0
  225. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/import_/common.py +0 -0
  226. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/import_/git.py +0 -0
  227. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/import_/import_.py +0 -0
  228. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/learning_rate_control.py +0 -0
  229. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/log.py +0 -0
  230. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/native_op.cpp +0 -0
  231. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/native_op.py +0 -0
  232. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/pretrain.py +0 -0
  233. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/sprint/__init__.py +0 -0
  234. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/sprint/cache.py +0 -0
  235. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/sprint/control.py +0 -0
  236. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/sprint/error_signals.py +0 -0
  237. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/sprint/extern_interface.py +0 -0
  238. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/sprint/interface.py +0 -0
  239. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/README.md +0 -0
  240. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/__init__.py +0 -0
  241. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/_tensor_extra.py +0 -0
  242. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/_tensor_mixin_base.py +0 -0
  243. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/_tensor_op_overloads.py +0 -0
  244. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/control_flow_ctx.py +0 -0
  245. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/dim.py +0 -0
  246. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/marked_dim.py +0 -0
  247. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/tensor.py +0 -0
  248. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/tensor_dict.py +0 -0
  249. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tensor/utils.py +0 -0
  250. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/__init__.py +0 -0
  251. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/compat.py +0 -0
  252. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/data_pipeline.py +0 -0
  253. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/distributed.py +0 -0
  254. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/engine.py +0 -0
  255. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/README.md +0 -0
  256. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/__init__.py +0 -0
  257. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/_backend.py +0 -0
  258. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/_utils.py +0 -0
  259. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/cond.py +0 -0
  260. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
  261. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
  262. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/dims.py +0 -0
  263. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/layer.py +0 -0
  264. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/loop.py +0 -0
  265. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/make_layer.py +0 -0
  266. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/masked_computation.py +0 -0
  267. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
  268. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
  269. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_low_level/__init__.py +0 -0
  270. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/frontend_low_level/_backend.py +0 -0
  271. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/horovod.py +0 -0
  272. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/hyper_param_tuning.py +0 -0
  273. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/__init__.py +0 -0
  274. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/base.py +0 -0
  275. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/basic.py +0 -0
  276. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/rec.py +0 -0
  277. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/segmental_model.py +0 -0
  278. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/signal_processing.py +0 -0
  279. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/layers/variable.py +0 -0
  280. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/native_op.py +0 -0
  281. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/network.py +0 -0
  282. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/sprint.py +0 -0
  283. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/updater.py +0 -0
  284. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/util/__init__.py +0 -0
  285. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/util/basic.py +0 -0
  286. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/util/data.py +0 -0
  287. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/util/gradient_checkpoint.py +0 -0
  288. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/util/ken_lm.py +0 -0
  289. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/tf/util/open_fst.py +0 -0
  290. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/README.md +0 -0
  291. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/__init__.py +0 -0
  292. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/data/__init__.py +0 -0
  293. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/data/extern_data.py +0 -0
  294. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/data/pipeline.py +0 -0
  295. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/data/queued_data_iter.py +0 -0
  296. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
  297. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/data/tensor_utils.py +0 -0
  298. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/distributed.py +0 -0
  299. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/engine.py +0 -0
  300. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/frontend/__init__.py +0 -0
  301. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/frontend/_rand.py +0 -0
  302. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/frontend/bridge.py +0 -0
  303. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/frontend/raw_ops.py +0 -0
  304. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/optim/README.md +0 -0
  305. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/optim/__init__.py +0 -0
  306. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/optim/lion.py +0 -0
  307. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/updater.py +0 -0
  308. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/README.md +0 -0
  309. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/__init__.py +0 -0
  310. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/array_.py +0 -0
  311. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/debug_inf_nan.py +0 -0
  312. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/diagnose_gpu.py +0 -0
  313. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/exception_helper.py +0 -0
  314. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/gradient_checkpoint.py +0 -0
  315. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/module.py +0 -0
  316. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/torch/util/scaled_gradient.py +0 -0
  317. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/__init__.py +0 -0
  318. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/basic.py +0 -0
  319. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/better_exchook.py +0 -0
  320. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/bpe.py +0 -0
  321. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/debug.py +0 -0
  322. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/debug_helpers.py +0 -0
  323. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/file_cache.py +0 -0
  324. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/fsa.py +0 -0
  325. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/literal_py_to_pickle.py +0 -0
  326. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/lru_cache.py +0 -0
  327. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/math.py +0 -0
  328. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
  329. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/native_code_compiler.py +0 -0
  330. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/pprint.py +0 -0
  331. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/py-to-pickle.cpp +0 -0
  332. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/py_ext_mod_compiler.py +0 -0
  333. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/result_with_reason.py +0 -0
  334. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/sig_proc.py +0 -0
  335. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/task_system.py +0 -0
  336. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/train_proc_manager.py +0 -0
  337. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn/util/watch_memory.py +0 -0
  338. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn.egg-info/SOURCES.txt +0 -0
  339. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn.egg-info/dependency_links.txt +0 -0
  340. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn.egg-info/requires.txt +0 -0
  341. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/returnn.egg-info/top_level.txt +0 -0
  342. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/rnn.py +0 -0
  343. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/setup.cfg +0 -0
  344. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/setup.py +0 -0
  345. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/DummySprintExec.py +0 -0
  346. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm-inspection-profile.xml +0 -0
  347. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/.gitignore +0 -0
  348. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/.name +0 -0
  349. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
  350. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
  351. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
  352. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
  353. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
  354. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/misc.xml +0 -0
  355. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/modules.xml +0 -0
  356. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/returnn.iml +0 -0
  357. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
  358. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/_set_num_threads1.py +0 -0
  359. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/_setup_returnn_env.py +0 -0
  360. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/_setup_test_env.py +0 -0
  361. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/bpe-unicode-demo.codes +0 -0
  362. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/bpe-unicode-demo.vocab +0 -0
  363. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/lexicon_opt.fst +0 -0
  364. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/lexicon_opt.isyms +0 -0
  365. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/lexicon_opt.jpg +0 -0
  366. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/lexicon_opt.osyms +0 -0
  367. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/lint_common.py +0 -0
  368. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/pycharm-inspect.py +0 -0
  369. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/pylint.py +0 -0
  370. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/returnn-as-framework.py +0 -0
  371. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/rf_utils.py +0 -0
  372. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/spelling.dic +0 -0
  373. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_Config.py +0 -0
  374. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_Dataset.py +0 -0
  375. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_Fsa.py +0 -0
  376. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_GeneratingDataset.py +0 -0
  377. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_HDFDataset.py +0 -0
  378. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_LearningRateControl.py +0 -0
  379. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_Log.py +0 -0
  380. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_MultiProcDataset.py +0 -0
  381. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_Pretrain.py +0 -0
  382. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_ResNet.py +0 -0
  383. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_SprintDataset.py +0 -0
  384. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_SprintInterface.py +0 -0
  385. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFEngine.py +0 -0
  386. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFNativeOp.py +0 -0
  387. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFNetworkLayer.py +0 -0
  388. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFNetworkRecLayer.py +0 -0
  389. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFNetworkSigProcLayer.py +0 -0
  390. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFUpdater.py +0 -0
  391. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TFUtil.py +0 -0
  392. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TF_determinism.py +0 -0
  393. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TaskSystem.py +0 -0
  394. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TaskSystem_SharedMem.py +0 -0
  395. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_TranslationDataset.py +0 -0
  396. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_Util.py +0 -0
  397. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_demos.py +0 -0
  398. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_fork_exec.py +0 -0
  399. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_hdf_dump.py +0 -0
  400. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_array.py +0 -0
  401. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_attention.py +0 -0
  402. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_base.py +0 -0
  403. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_cond.py +0 -0
  404. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_const.py +0 -0
  405. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_container.py +0 -0
  406. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_conv.py +0 -0
  407. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_gradient.py +0 -0
  408. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_label_smoothing.py +0 -0
  409. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_loop.py +0 -0
  410. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_math.py +0 -0
  411. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_normalization.py +0 -0
  412. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_piecewise_linear.py +0 -0
  413. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_rec.py +0 -0
  414. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_reduce.py +0 -0
  415. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_rf_signal.py +0 -0
  416. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_threading.py +0 -0
  417. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_tools.py +0 -0
  418. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_torch_dataset.py +0 -0
  419. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_torch_engine.py +0 -0
  420. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_torch_frontend.py +0 -0
  421. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_torch_internal_frontend.py +0 -0
  422. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/test_torch_util.py +0 -0
  423. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tests/torch_utils.py +0 -0
  424. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/_setup_returnn_env.py +0 -0
  425. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/analyze-dataset-batches.py +0 -0
  426. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/bliss-collect-seq-lens.py +0 -0
  427. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/bliss-dump-text.py +0 -0
  428. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/bliss-get-segment-names.py +0 -0
  429. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/bliss-to-ogg-zip.py +0 -0
  430. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/bpe-create-lexicon.py +0 -0
  431. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/calculate-word-error-rate.py +0 -0
  432. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/cleanup-old-models.py +0 -0
  433. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/collect-orth-symbols.py +0 -0
  434. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/collect-words.py +0 -0
  435. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/compile_native_op.py +0 -0
  436. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/compile_tf_graph.py +0 -0
  437. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/debug-dump-search-scores.py +0 -0
  438. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/debug-plot-search-scores.py +0 -0
  439. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/dump-dataset-raw-strings.py +0 -0
  440. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/dump-dataset.py +0 -0
  441. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/dump-forward-stats.py +0 -0
  442. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/dump-forward.py +0 -0
  443. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/dump-network-json.py +0 -0
  444. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/dump-pickle.py +0 -0
  445. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/extract_state_tying_from_dataset.py +0 -0
  446. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/get-attention-weights.py +0 -0
  447. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/get-best-model-epoch.py +0 -0
  448. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/hdf_dump.py +0 -0
  449. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/hdf_dump_translation_dataset.py +0 -0
  450. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/import-blocks-mt-model.py +0 -0
  451. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/import-t2t-mt-model.py +0 -0
  452. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/.gitignore +0 -0
  453. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/Makefile +0 -0
  454. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/README.md +0 -0
  455. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/README.md +0 -0
  456. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/libs_list +0 -0
  457. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
  458. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
  459. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
  460. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/state_vars_list +0 -0
  461. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/example/tensor_names_list +0 -0
  462. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/file.h +0 -0
  463. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
  464. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
  465. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/main.cc +0 -0
  466. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/rescorer.h +0 -0
  467. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/vocabulary.cc +0 -0
  468. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/lattice_rescorer/vocabulary.h +0 -0
  469. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/tf_avg_checkpoints.py +0 -0
  470. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/tf_inspect_checkpoint.py +0 -0
  471. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/tf_inspect_summary_log.py +0 -0
  472. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/torch_avg_checkpoints.py +0 -0
  473. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/torch_export_to_onnx.py +0 -0
  474. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/torch_inspect_checkpoint.py +0 -0
  475. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
  476. {returnn-1.20250904.193235 → returnn-1.20250905.121049}/tools/torch_scale_tuning.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250904.193235
3
+ Version: 1.20250905.121049
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -0,0 +1,2 @@
1
+ version = '1.20250905.121049'
2
+ long_version = '1.20250905.121049+git.c688197'
@@ -346,6 +346,7 @@ def _masked_scatter_merge_dims(
346
346
  merged_dim_map: Dict[Dim, Dim],
347
347
  ) -> T:
348
348
  if isinstance(s, Dim):
349
+ assert isinstance(backup, Dim)
349
350
  # This is slightly more complex than in the _masked_select case:
350
351
  # We need to merge the s and backup depending on the mask.
351
352
  if s in reverse_dim_map:
@@ -2670,7 +2670,9 @@ def _get_merged_dim_kind(dim_tags: Sequence[Dim]) -> Entity:
2670
2670
 
2671
2671
 
2672
2672
  def _representative_tag(terms: Sequence[Dim]) -> Optional[Dim]:
2673
- # Also see _OpLinearTerm.representative_tag().
2673
+ if any(not term_.auto_generated for term_ in terms):
2674
+ # Always prefer non-auto-generated.
2675
+ terms = [term_ for term_ in terms if not term_.auto_generated]
2674
2676
  # First find any dynamic.
2675
2677
  for term_ in terms:
2676
2678
  if term_.is_dynamic_seq_length():
@@ -1641,6 +1641,8 @@ class TorchBackend(Backend[torch.Tensor]):
1641
1641
  name=f"random_{distribution}", dims=dims, dtype=dtype, sparse_dim=sparse_dim, feature_dim=feature_dim
1642
1642
  )
1643
1643
  out.raw_tensor = torch.empty(shape, dtype=dtype_, device=device or rf.get_default_device())
1644
+ if out.raw_tensor.device.type == "meta":
1645
+ return out # nothing more to do
1644
1646
  assert explicit_state is None # not implemented otherwise
1645
1647
  generator = None # using the global default from PT
1646
1648
  assert isinstance(static, bool)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250904.193235
3
+ Version: 1.20250905.121049
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -5,6 +5,7 @@ Testing returnn.frontend.decoder.transformer.
5
5
  from __future__ import annotations
6
6
 
7
7
  import _setup_test_env # noqa
8
+ from typing import Sequence, Tuple
8
9
  import sys
9
10
  import unittest
10
11
  import torch
@@ -339,6 +340,254 @@ def test_transformer_rel_pos_att():
339
340
  assert not leakages, f"Leakages: {leakages}"
340
341
 
341
342
 
343
+ def test_transformer_decoder_time_sync_search():
344
+ """
345
+ Adapted and simplified from
346
+ :func:`i6_experiments.users.zeyer.experiments.exp2024_04_23_baselines.recog_ext.aed_ctc.model_recog_with_recomb`.
347
+
348
+ This is about a bug happening in nested masked_scatter
349
+ and/or RotaryPosCausalSelfAttention and its usage of sinusoidal_positional_encoding,
350
+ but we leave also the encoder part with cross attention to cover more logic for the test.
351
+ """
352
+ from returnn.frontend.decoder.transformer import TransformerDecoder
353
+ from returnn.frontend.tensor_array import TensorArray
354
+
355
+ rf.select_backend_torch()
356
+
357
+ target_dim = Dim(11, name="vocab")
358
+ wb_target_dim = target_dim + 1
359
+ blank_idx = target_dim.dimension # last index
360
+ eos_idx = bos_idx = 0
361
+ decoder = TransformerDecoder(
362
+ encoder_dim=wb_target_dim,
363
+ vocab_dim=target_dim,
364
+ model_dim=Dim(32, name="model"),
365
+ num_layers=2,
366
+ num_heads=2,
367
+ # Transformer++ / Llama-like
368
+ norm=rf.build_dict(rf.RMSNorm),
369
+ ff=rf.build_dict(rf.decoder.transformer.FeedForwardGated),
370
+ layer_opts=dict(self_att=rf.build_dict(rf.RotaryPosCausalSelfAttention, with_bias=False)),
371
+ )
372
+
373
+ batch_dim = Dim(3, name="batch")
374
+ enc_spatial_dim = Dim(rf.convert_to_tensor([7, 5, 6], dims=[batch_dim]), name="enc")
375
+ data = rf.random_normal([batch_dim, enc_spatial_dim, wb_target_dim]) # used both as encoder out and CTC logits
376
+ enc = decoder.transform_encoder(data, axis=enc_spatial_dim)
377
+
378
+ beam_size = 3
379
+ recomb = "max" # None, "max", "sum"
380
+
381
+ batch_dims = [batch_dim]
382
+
383
+ # Eager-mode implementation of beam search.
384
+ # Initial state.
385
+ beam_dim = Dim(1, name="initial-beam")
386
+ batch_dims_ = [beam_dim] + batch_dims
387
+ neg_inf = float("-inf")
388
+ seq_log_prob = rf.constant(0.0, dims=batch_dims_) # Batch, Beam
389
+
390
+ ctc_logits = data
391
+ ctc_label_log_prob = rf.log_softmax(ctc_logits, axis=wb_target_dim) # Batch, Spatial, VocabWB
392
+ # No CTC scale needed.
393
+ ctc_label_log_prob_ta = TensorArray.unstack(ctc_label_log_prob, axis=enc_spatial_dim) # t -> Batch, VocabWB
394
+
395
+ target = rf.constant(bos_idx, dims=batch_dims_, sparse_dim=target_dim) # Batch, InBeam -> Vocab
396
+ target_wb = rf.constant(blank_idx, dims=batch_dims_, sparse_dim=wb_target_dim) # Batch, InBeam -> VocabWB
397
+
398
+ seq_label = _seq_label_history_init_state(vocab_dim=target_dim, batch_dims=batch_dims_)
399
+
400
+ decoder_state = decoder.default_initial_state(batch_dims=batch_dims_) # Batch, InBeam, ...
401
+ decoder_logits, decoder_state = decoder(
402
+ target,
403
+ encoder=enc,
404
+ spatial_dim=single_step_dim,
405
+ state=decoder_state,
406
+ ) # Batch, InBeam, Vocab / ...
407
+ decoder_log_probs = rf.log_softmax(decoder_logits, axis=target_dim) # Batch, InBeam, Vocab
408
+
409
+ max_seq_len = int(enc_spatial_dim.get_dim_value())
410
+ seq_targets_wb = []
411
+ seq_backrefs = []
412
+ for t in range(max_seq_len):
413
+ prev_target = target
414
+ prev_target_wb = target_wb
415
+
416
+ seq_log_prob = seq_log_prob + ctc_label_log_prob_ta[t] # Batch, InBeam, VocabWB
417
+
418
+ if decoder is not None:
419
+ # Now add LM score. If prev align label (target_wb) is blank or != cur, add LM score, otherwise 0.
420
+ seq_log_prob += rf.where(
421
+ (prev_target_wb == blank_idx) | (prev_target_wb != rf.range_over_dim(wb_target_dim)),
422
+ _target_dense_extend_blank(
423
+ decoder_log_probs,
424
+ target_dim=target_dim,
425
+ wb_target_dim=wb_target_dim,
426
+ blank_idx=blank_idx,
427
+ value=0.0,
428
+ ),
429
+ 0.0,
430
+ ) # Batch, InBeam, VocabWB
431
+
432
+ seq_log_prob, (backrefs, target_wb), beam_dim = rf.top_k(
433
+ seq_log_prob, k_dim=Dim(beam_size, name=f"dec-step{t}-beam"), axis=[beam_dim, wb_target_dim]
434
+ )
435
+ # seq_log_prob, backrefs, target_wb: Batch, Beam
436
+ # backrefs -> InBeam.
437
+ # target_wb -> VocabWB.
438
+ seq_targets_wb.append(target_wb)
439
+ seq_backrefs.append(backrefs)
440
+
441
+ if decoder is not None:
442
+ decoder_log_probs = rf.gather(decoder_log_probs, indices=backrefs) # Batch, Beam, Vocab
443
+ decoder_state = rf.nested.gather_nested(decoder_state, indices=backrefs)
444
+ seq_label = rf.nested.gather_nested(seq_label, indices=backrefs)
445
+
446
+ prev_target = rf.gather(prev_target, indices=backrefs) # Batch, Beam -> Vocab
447
+ prev_target_wb = rf.gather(prev_target_wb, indices=backrefs) # Batch, Beam -> VocabWB
448
+
449
+ got_new_label: Tensor = (target_wb != blank_idx) & (target_wb != prev_target_wb) # Batch, Beam -> 0|1
450
+ target = rf.where(
451
+ got_new_label,
452
+ _target_remove_blank(target_wb, target_dim=target_dim, wb_target_dim=wb_target_dim, blank_idx=blank_idx),
453
+ prev_target,
454
+ ) # Batch, Beam -> Vocab
455
+ got_new_label_cpu = rf.copy_to_device(got_new_label, "cpu")
456
+ if got_new_label_cpu.raw_tensor.sum().item() > 0:
457
+ seq_label = rf.nested.mask_nested(
458
+ _seq_label_append(seq_label, target),
459
+ mask=got_new_label,
460
+ mask_cpu=got_new_label_cpu,
461
+ mask_value=seq_label,
462
+ )
463
+
464
+ # Recombine paths with the same label seq.
465
+ if not recomb:
466
+ pass
467
+ elif recomb in ("max", "sum"):
468
+ # Set seq_log_prob for batch entries to neg_inf if they have the same label seq.
469
+ same_seq_labels, beam_dual_dim = _same_seq_labels(
470
+ seq_label.history, spatial_dim=seq_label.hist_dim, beam_dim=beam_dim
471
+ )
472
+ seq_log_prob_ext = rf.where(
473
+ same_seq_labels, rf.replace_dim_v2(seq_log_prob, in_dim=beam_dim, out_dim=beam_dual_dim), neg_inf
474
+ ) # Batch, Beam, BeamDual
475
+ if recomb == "sum":
476
+ seq_log_prob = rf.reduce_logsumexp(seq_log_prob_ext, axis=beam_dual_dim) # Batch, Beam
477
+ argmax_seq_log_prob = rf.reduce_argmax(seq_log_prob_ext, axis=beam_dual_dim) # Batch, Beam -> BeamDual
478
+ mask = argmax_seq_log_prob == rf.range_over_dim(beam_dim) # Batch, Beam -> 0|1
479
+ seq_log_prob = rf.where(mask, seq_log_prob, neg_inf)
480
+ got_new_label = got_new_label & mask # don't re-eval the LM when masked out
481
+ got_new_label_cpu = rf.copy_to_device(got_new_label, "cpu")
482
+ else:
483
+ raise ValueError(f"invalid recog_recomb {recomb!r}")
484
+
485
+ if decoder is not None and got_new_label_cpu.raw_tensor.sum().item() > 0:
486
+ assert decoder_state["0"].self_att.accum_axis != decoder_state["1"].self_att.accum_axis
487
+ (target_, decoder_state_, enc_), packed_new_label_dim, packed_new_label_dim_map = (
488
+ rf.nested.masked_select_nested(
489
+ (target, decoder_state, enc),
490
+ mask=got_new_label,
491
+ mask_cpu=got_new_label_cpu,
492
+ dims=batch_dims + [beam_dim],
493
+ )
494
+ )
495
+ assert decoder_state_["0"].self_att.accum_axis != decoder_state_["1"].self_att.accum_axis
496
+ assert decoder_state_["0"].self_att.accum_axis + 1 != decoder_state_["1"].self_att.accum_axis + 1
497
+ # packed_new_label_dim_map: old dim -> new dim. see _masked_select_prepare_dims
498
+ assert packed_new_label_dim.get_dim_value() > 0
499
+
500
+ decoder_logits_, decoder_state_ = decoder(
501
+ target_,
502
+ encoder=enc_,
503
+ spatial_dim=single_step_dim,
504
+ state=decoder_state_,
505
+ ) # Flat_Batch_Beam, Vocab / ...
506
+ assert decoder_state_["0"].self_att.accum_axis != decoder_state_["1"].self_att.accum_axis
507
+ decoder_log_probs_ = rf.log_softmax(decoder_logits_, axis=target_dim) # Flat_Batch_Beam, Vocab
508
+
509
+ decoder_log_probs, decoder_state = rf.nested.masked_scatter_nested(
510
+ (decoder_log_probs_, decoder_state_),
511
+ (decoder_log_probs, decoder_state),
512
+ mask=got_new_label,
513
+ mask_cpu=got_new_label_cpu,
514
+ dims=batch_dims + [beam_dim],
515
+ in_dim=packed_new_label_dim,
516
+ masked_select_dim_map=packed_new_label_dim_map,
517
+ ) # Batch, Beam, Vocab / ...
518
+
519
+ if decoder is not None:
520
+ # seq_log_prob, lm_log_probs: Batch, Beam
521
+ # Add LM EOS score at the end.
522
+ decoder_eos_score = rf.gather(decoder_log_probs, indices=eos_idx, axis=target_dim)
523
+ seq_log_prob += decoder_eos_score # Batch, Beam -> VocabWB
524
+
525
+ # Backtrack via backrefs, resolve beams.
526
+ seq_targets_wb_ = []
527
+ indices = rf.range_over_dim(beam_dim) # FinalBeam -> FinalBeam
528
+ for backrefs, target_wb in zip(seq_backrefs[::-1], seq_targets_wb[::-1]):
529
+ # indices: FinalBeam -> Beam
530
+ # backrefs: Beam -> PrevBeam
531
+ seq_targets_wb_.insert(0, rf.gather(target_wb, indices=indices))
532
+ indices = rf.gather(backrefs, indices=indices) # FinalBeam -> PrevBeam
533
+
534
+ seq_targets_wb__ = TensorArray(seq_targets_wb_[0])
535
+ for target_wb in seq_targets_wb_:
536
+ seq_targets_wb__ = seq_targets_wb__.push_back(target_wb)
537
+ out_spatial_dim = enc_spatial_dim
538
+ seq_targets_wb = seq_targets_wb__.stack(axis=out_spatial_dim)
539
+
540
+ # Select valid.
541
+ mask = rf.is_finite(seq_log_prob) # Batch, Beam
542
+ mask_cpu = rf.copy_to_device(mask, "cpu")
543
+ (seq_targets_wb, seq_log_prob, out_spatial_dim), beam_dim, _ = rf.nested.masked_select_nested(
544
+ (seq_targets_wb, seq_log_prob, out_spatial_dim), mask=mask, mask_cpu=mask_cpu, dims=[beam_dim]
545
+ )
546
+
547
+ print("result:", seq_targets_wb, seq_log_prob, out_spatial_dim, beam_dim)
548
+
549
+
550
+ def _target_remove_blank(target: Tensor, *, target_dim: Dim, wb_target_dim: Dim, blank_idx: int) -> Tensor:
551
+ assert target.sparse_dim == wb_target_dim
552
+ assert blank_idx == target_dim.dimension # currently just not implemented otherwise
553
+ return rf.set_sparse_dim(target, target_dim)
554
+
555
+
556
+ def _target_dense_extend_blank(
557
+ target: Tensor, *, target_dim: Dim, wb_target_dim: Dim, blank_idx: int, value: float
558
+ ) -> Tensor:
559
+ assert target_dim in target.dims
560
+ assert blank_idx == target_dim.dimension # currently just not implemented otherwise
561
+ res, _ = rf.pad(target, axes=[target_dim], padding=[(0, 1)], out_dims=[wb_target_dim], value=value)
562
+ return res
563
+
564
+
565
+ def _seq_label_history_init_state(*, vocab_dim: Dim, batch_dims: Sequence[Dim]) -> rf.State:
566
+ hist_dim = Dim(0, name="hist0")
567
+ history = rf.zeros(list(batch_dims) + [hist_dim], dtype="int64", sparse_dim=vocab_dim)
568
+ return rf.State(hist_dim=hist_dim, history=history)
569
+
570
+
571
+ def _seq_label_append(state: rf.State, new_label: Tensor) -> rf.State:
572
+ hist_dim: Dim = state.hist_dim
573
+ new_history, new_hist_dim = rf.cum_concat_step(new_label, prev_accum=state.history, axis=hist_dim)
574
+ return rf.State(hist_dim=new_hist_dim, history=new_history)
575
+
576
+
577
+ def _same_seq_labels(seq: Tensor, *, spatial_dim: Dim, beam_dim: Dim) -> Tuple[Tensor, Dim]:
578
+ seq_label_dual, beam_dual_dim = rf.replace_dim(seq, in_dim=beam_dim)
579
+ same_seq_labels = rf.compare_bc(seq, "==", seq_label_dual) # Batch, Beam, BeamDual, Spatial
580
+ same_seq_labels = rf.reduce_all(same_seq_labels, axis=spatial_dim) # Batch, Beam, BeamDual
581
+ if beam_dim in spatial_dim.get_size_tensor().dims:
582
+ seq_labels_lens = spatial_dim.get_size_tensor(device=same_seq_labels.device)
583
+ seq_labels_dual_lens = rf.replace_dim_v2(
584
+ seq_labels_lens, in_dim=beam_dim, out_dim=beam_dual_dim
585
+ ) # Batch, BeamDual
586
+ same_seq_labels_lens = rf.compare_bc(seq_labels_lens, "==", seq_labels_dual_lens) # Batch, Beam, BeamDual
587
+ same_seq_labels = rf.logical_and(same_seq_labels, same_seq_labels_lens)
588
+ return same_seq_labels, beam_dual_dim
589
+
590
+
342
591
  if __name__ == "__main__":
343
592
  better_exchook.install()
344
593
  if len(sys.argv) <= 1:
@@ -218,19 +218,22 @@ def test_e_branchformer():
218
218
  # espnet2.asr.layers.cgmlp.ConvolutionalGatingMLP.forward
219
219
  # espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.PositionwiseFeedForward.forward
220
220
  # (CTC loss, Att-decoder)
221
- with PyTracer(
222
- [
223
- ESPnetASRModel.forward,
224
- ESPnetASRModel.encode,
225
- EBranchformerEncoder.forward,
226
- EBranchformerEncoderLayer.forward,
227
- RelPositionMultiHeadedAttention.forward,
228
- RelPositionalEncoding.forward,
229
- ConvolutionalGatingMLP.forward,
230
- ConvolutionalSpatialGatingUnit.forward,
231
- ],
232
- torch.Tensor,
233
- ) as trace_espnet, torch.no_grad():
221
+ with (
222
+ PyTracer(
223
+ [
224
+ ESPnetASRModel.forward,
225
+ ESPnetASRModel.encode,
226
+ EBranchformerEncoder.forward,
227
+ EBranchformerEncoderLayer.forward,
228
+ RelPositionMultiHeadedAttention.forward,
229
+ RelPositionalEncoding.forward,
230
+ ConvolutionalGatingMLP.forward,
231
+ ConvolutionalSpatialGatingUnit.forward,
232
+ ],
233
+ torch.Tensor,
234
+ ) as trace_espnet,
235
+ torch.no_grad(),
236
+ ):
234
237
  loss, stats, weight = model(
235
238
  speech=raw_audio.raw_tensor,
236
239
  speech_lengths=raw_audio_spatial_dim.dyn_size,
@@ -292,16 +295,19 @@ def test_e_branchformer():
292
295
  assert isinstance(layer_rf, EBranchformerLayer)
293
296
  import_params_espnet_e_branchformer_layer_to_rf(layer, layer_rf)
294
297
 
295
- with PyTracer(
296
- [
297
- ConformerEncoder.__call__,
298
- EBranchformerLayer.__call__,
299
- rf.RelPosSelfAttention.__call__,
300
- rf.relative_positional_encoding,
301
- FeedForwardConvGated.__call__,
302
- ],
303
- Tensor,
304
- ) as trace_rf, torch.no_grad():
298
+ with (
299
+ PyTracer(
300
+ [
301
+ ConformerEncoder.__call__,
302
+ EBranchformerLayer.__call__,
303
+ rf.RelPosSelfAttention.__call__,
304
+ rf.relative_positional_encoding,
305
+ FeedForwardConvGated.__call__,
306
+ ],
307
+ Tensor,
308
+ ) as trace_rf,
309
+ torch.no_grad(),
310
+ ):
305
311
  # ESPnet E-Branchformer does not use masking properly. Keep it disabled here as well.
306
312
  with global_config_ctx(Config({"rf_use_mask": False})):
307
313
  enc_out, _ = model_rf(enc_in, in_spatial_dim=enc_spatial_dim)
@@ -434,3 +440,59 @@ def test_e_branchformer_custom_ff():
434
440
  x = rf.random_normal((time_dim, encoder.in_dim))
435
441
  y, _ = encoder(x, in_spatial_dim=time_dim)
436
442
  y.verify_out_shape({time_dim, encoder.out_dim})
443
+
444
+
445
+ def test_e_branchformer_meta_dev_num_params():
446
+ from returnn.frontend.encoder.conformer import ConformerEncoder, ConformerEncoderLayer
447
+ from returnn.frontend.encoder.e_branchformer import EBranchformerLayer
448
+ from returnn.torch.frontend.bridge import rf_module_to_pt_module
449
+
450
+ rf.select_backend_torch()
451
+
452
+ in_dim = Dim(80, name="logmel")
453
+ num_layers = 16
454
+ dim = 1024
455
+
456
+ with rf.set_default_device_ctx("meta"):
457
+ conformer = ConformerEncoder(
458
+ in_dim=in_dim,
459
+ input_layer=None,
460
+ num_layers=num_layers,
461
+ out_dim=dim,
462
+ encoder_layer=rf.build_dict(
463
+ ConformerEncoderLayer,
464
+ ff=rf.build_dict(
465
+ rf.encoder.conformer.ConformerPositionwiseFeedForward,
466
+ activation=rf.build_dict(rf.relu_square),
467
+ with_bias=False,
468
+ ),
469
+ num_heads=8,
470
+ ),
471
+ )
472
+ conformer_pt = rf_module_to_pt_module(conformer)
473
+ assert all(parameter.device.type == "meta" for parameter in conformer_pt.parameters())
474
+ num_params = sum(parameter.numel() for parameter in conformer_pt.parameters())
475
+ print(f"Conformer {num_layers}x{dim} net params #: {num_params}")
476
+ assert num_params == 403619840
477
+
478
+ dim_ = dim // 8 * 7
479
+ e_branchformer = ConformerEncoder(
480
+ in_dim=in_dim,
481
+ input_layer=None,
482
+ num_layers=num_layers,
483
+ out_dim=dim_,
484
+ encoder_layer=rf.build_dict(
485
+ EBranchformerLayer,
486
+ ff=rf.build_dict(
487
+ rf.encoder.conformer.ConformerPositionwiseFeedForward,
488
+ activation=rf.build_dict(rf.relu_square),
489
+ with_bias=False,
490
+ ),
491
+ num_heads=8,
492
+ ),
493
+ )
494
+ e_branchformer_pt = rf_module_to_pt_module(e_branchformer)
495
+ assert all(parameter.device.type == "meta" for parameter in e_branchformer_pt.parameters())
496
+ num_params_ = sum(parameter.numel() for parameter in e_branchformer_pt.parameters())
497
+ print(f"E-Branchformer {num_layers}x{dim_} net params #: {num_params_}")
498
+ assert num_params_ == 413034496
@@ -43,6 +43,19 @@ def test_dim_math_basics():
43
43
  assert sum([0, a, 0, a, 0]) == 2 * a
44
44
 
45
45
 
46
+ def test_dim_math_neq_after_inc():
47
+ a = Dim(0, name="a")
48
+ b = Dim(0, name="a") # same name, but different instance, intentionally to trigger potential issues
49
+ assert a != b
50
+ assert a + 1 != b + 1
51
+ # Note: We had the bug that _representative_tag selected an auto-generated dim
52
+ # (the unnamed "1" dim is auto-generated),
53
+ # and that was used as derived_from_tag, and that triggered that the resulting dim was also auto-generated,
54
+ # and for auto-generated dims, we allow dim equality also by name.
55
+ # The fix was: _representative_tag will always prefer a non-auto-generated dim if there is any.
56
+ assert a + 1 + 1 != b + 1 + 1
57
+
58
+
46
59
  def test_dim_math_double_neg():
47
60
  a = Dim(None, name="a")
48
61
  assert --a == a
@@ -1,2 +0,0 @@
1
- version = '1.20250904.193235'
2
- long_version = '1.20250904.193235+git.fd139c1'