returnn 1.20250304.113330__tar.gz → 1.20250305.155930__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of returnn might be problematic. Click here for more details.
- {returnn-1.20250304.113330/returnn.egg-info → returnn-1.20250305.155930}/PKG-INFO +1 -1
- returnn-1.20250305.155930/_setup_info_generated.py +2 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/loop.py +19 -5
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/nested.py +98 -2
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/rec.py +3 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930/returnn.egg-info}/PKG-INFO +1 -1
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/rf_utils.py +1 -1
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_array.py +4 -3
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_cond.py +85 -13
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_conv.py +1 -1
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_loop.py +21 -10
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_normalization.py +10 -1
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_rec.py +12 -16
- returnn-1.20250304.113330/_setup_info_generated.py +0 -2
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/.editorconfig +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/.gitignore +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/.gitmodules +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/.kateconfig +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/CHANGELOG.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/CODEOWNERS +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/CONTRIBUTING.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/LICENSE +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/MANIFEST.in +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/README.rst +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/12AX.cluster_map +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/_setup_returnn_env.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-fwd.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-horovod-mpi.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-horovod-mpi.py.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-horovod-mpi.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-hyper-param-tuning.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-iter-dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-list-devices.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-lua-torch-layer.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-pretrain.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-record-and-push-to-webserver.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-returnn-as-framework.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-rf-pt-benchmark.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-rf.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-rhn-enwik8.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-sprint-interface.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-att-copy.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-attention.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-enc-dec.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-hard-att-copy.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-lstm-benchmark.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-native-lstm.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-native-lstm2.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-neural-transducer.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-rec-explicit-lstm.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-rec-explicit-rnn.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-rec-self-att.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-search-compiled-graph.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-timit-lstm-ctc.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-torch.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/README.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/chars.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/config_demo +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/config_fwd +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/config_real +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/decode.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/go.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/lines.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/split/eval.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/split/train.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/IAM/split/valid.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial/create_test_h5.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial/forwardconfig +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial/go.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial/trainconfig +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial_rgb/go.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/pyproject.toml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/requirements.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/__main__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/__old_mod_loader__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/__setup__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/config.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/audio.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/basic.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/bundle_file.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/cached.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/cached2.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/distrib_files.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/generating.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/hdf.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/lm.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/map.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/meta.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/multi_proc.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/normalization_data.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/numpy_dump.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/postprocessing.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/raw_wav.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/sprint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/stereo.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/text_dict.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/util/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/util/feature_extraction.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/util/strings.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/datasets/util/vocabulary.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/engine/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/engine/base.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/engine/batch.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/__main__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/.git +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/edit.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/reroute.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/select.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/subgraph.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/transform.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/extern/graph_editor/util.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/forward_iface.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_backend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_cache.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/backend.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/backend.hpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/module.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/module.hpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/py_utils.hpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/tensor_ops.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_native/tensor_ops.hpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_numpy_backend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_random_journal.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/_utils.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/array_.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/attention.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/audio/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/audio/mel.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/audio/specaugment.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/backend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/build_from_dict.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/cond.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/const.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/container.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/control_flow_ctx.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/conv.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/conversions/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/conversions/hf_llama.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/conversions/torch_nn.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/decoder/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/decoder/transformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/device.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/dims.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/dropout.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/dtype.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/encoder/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/encoder/base.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/encoder/conformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/encoder/conformer_v2.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/encoder/e_branchformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/encoder/transformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/gradient.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/graph.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/hooks.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/init.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/label_smoothing.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/linear.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/loss.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/math_.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/matmul.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/module.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/normalization.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/parameter.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/parametrizations.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/parametrize.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/piecewise_linear.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/rand.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/reduce.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/run_ctx.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/signal.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/state.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/stepwise_scheduler.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/tensor_array.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/frontend/types.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/import_/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/import_/common.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/import_/git.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/import_/import_.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/learning_rate_control.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/log.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/native_op.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/native_op.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/pretrain.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/sprint/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/sprint/cache.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/sprint/control.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/sprint/error_signals.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/sprint/extern_interface.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/sprint/interface.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/_dim_extra.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/_tensor_extra.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/_tensor_mixin_base.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/_tensor_op_overloads.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/control_flow_ctx.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/dim.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/marked_dim.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/tensor.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/tensor_dict.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tensor/utils.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/compat.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/data_pipeline.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/distributed.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/engine.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/_backend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/_utils.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/cond.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/dims.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/layer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/loop.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/make_layer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/masked_computation.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_low_level/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/frontend_low_level/_backend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/horovod.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/hyper_param_tuning.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/base.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/basic.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/rec.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/segmental_model.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/signal_processing.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/layers/variable.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/native_op.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/network.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/sprint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/updater.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/util/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/util/basic.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/util/data.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/util/gradient_checkpoint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/util/ken_lm.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/tf/util/open_fst.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/data/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/data/extern_data.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/data/pipeline.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/data/queued_data_iter.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/data/tensor_utils.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/distributed.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/engine.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/frontend/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/frontend/_backend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/frontend/_rand.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/frontend/bridge.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/frontend/raw_ops.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/optim/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/optim/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/optim/lion.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/updater.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/array_.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/debug_inf_nan.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/diagnose_gpu.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/exception_helper.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/gradient_checkpoint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/module.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/torch/util/scaled_gradient.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/__init__.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/basic.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/better_exchook.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/bpe.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/debug.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/debug_helpers.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/file_cache.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/fsa.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/literal_py_to_pickle.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/lru_cache.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/math.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/native_code_compiler.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/pprint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/py-to-pickle.cpp +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/py_ext_mod_compiler.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/result_with_reason.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/sig_proc.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/task_system.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/train_proc_manager.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn/util/watch_memory.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn.egg-info/SOURCES.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn.egg-info/dependency_links.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn.egg-info/requires.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/returnn.egg-info/top_level.txt +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/rnn.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/setup.cfg +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/setup.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/DummySprintExec.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm-inspection-profile.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/.gitignore +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/.name +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/misc.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/modules.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/returnn.iml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/_set_num_threads1.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/_setup_returnn_env.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/_setup_test_env.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/bpe-unicode-demo.codes +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/bpe-unicode-demo.vocab +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/lexicon_opt.fst +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/lexicon_opt.isyms +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/lexicon_opt.jpg +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/lexicon_opt.osyms +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/lint_common.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/pycharm-inspect.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/pylint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/returnn-as-framework.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/spelling.dic +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_Config.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_Dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_Fsa.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_GeneratingDataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_HDFDataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_LearningRateControl.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_Log.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_MultiProcDataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_Pretrain.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_ResNet.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_SprintDataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_SprintInterface.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFEngine.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFNativeOp.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFNetworkLayer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFNetworkRecLayer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFNetworkSigProcLayer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFUpdater.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TFUtil.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TF_determinism.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TaskSystem.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TaskSystem_SharedMem.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_TranslationDataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_Util.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_demos.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_fork_exec.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_hdf_dump.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_attention.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_base.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_const.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_container.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_decoder_transformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_encoder_conformer.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_gradient.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_label_smoothing.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_math.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_piecewise_linear.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_reduce.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_rf_signal.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_tensor.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_threading.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_tools.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_torch_dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_torch_engine.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_torch_frontend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_torch_internal_frontend.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/test_torch_util.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tests/torch_utils.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/_setup_returnn_env.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/analyze-dataset-batches.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/bliss-collect-seq-lens.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/bliss-dump-text.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/bliss-get-segment-names.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/bliss-to-ogg-zip.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/bpe-create-lexicon.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/calculate-word-error-rate.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/cleanup-old-models.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/collect-orth-symbols.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/collect-words.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/compile_native_op.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/compile_tf_graph.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/debug-dump-search-scores.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/debug-plot-search-scores.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/dump-dataset-raw-strings.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/dump-dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/dump-forward-stats.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/dump-forward.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/dump-network-json.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/dump-pickle.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/extract_state_tying_from_dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/get-attention-weights.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/get-best-model-epoch.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/hdf_dump.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/hdf_dump_translation_dataset.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/import-blocks-mt-model.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/import-t2t-mt-model.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/.gitignore +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/Makefile +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/README.md +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/libs_list +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/state_vars_list +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/example/tensor_names_list +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/file.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/main.cc +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/rescorer.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/vocabulary.cc +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/lattice_rescorer/vocabulary.h +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/tf_avg_checkpoints.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/tf_inspect_checkpoint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/tf_inspect_summary_log.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/torch_avg_checkpoints.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/torch_export_to_onnx.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/torch_inspect_checkpoint.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
- {returnn-1.20250304.113330 → returnn-1.20250305.155930}/tools/torch_scale_tuning.py +0 -0
|
@@ -128,6 +128,16 @@ def scan(
|
|
|
128
128
|
like selecting the right beam entries.
|
|
129
129
|
:return: outputs ys, final state, and the new spatial_dim
|
|
130
130
|
"""
|
|
131
|
+
device = None
|
|
132
|
+
if initial is not None:
|
|
133
|
+
vs = [v for v in tree.flatten(initial) if isinstance(v, Tensor) and v.device not in (None, "cpu")]
|
|
134
|
+
if vs:
|
|
135
|
+
device = vs[0].device
|
|
136
|
+
if device is None and xs is not None:
|
|
137
|
+
vs = [v for v in tree.flatten(xs) if isinstance(v, Tensor) and v.device not in (None, "cpu")]
|
|
138
|
+
if vs:
|
|
139
|
+
device = vs[0].device
|
|
140
|
+
|
|
131
141
|
if spatial_dim is None or not spatial_dim.is_dim_known():
|
|
132
142
|
assert cond is not None, f"scan: spatial_dim {spatial_dim} is None/unknown, need to provide `cond`"
|
|
133
143
|
assert cond_dims is not None, f"scan: spatial_dim {spatial_dim} is None/unknown, need to provide `cond_dims`"
|
|
@@ -145,12 +155,13 @@ def scan(
|
|
|
145
155
|
def _body(_s: Tuple[Tensor, Tensor, Tensor, S, Y]) -> Tuple[Tensor, Tensor, Tensor, S, Y]:
|
|
146
156
|
i, seq_len_, prev_cond, s, ys_ = _s
|
|
147
157
|
seq_len_ = seq_len_ + rf.cast(prev_cond, dtype=seq_len_.dtype)
|
|
148
|
-
y,
|
|
158
|
+
y, s_ = body(None, s)
|
|
149
159
|
tree.assert_same_structure(ys_, y)
|
|
150
160
|
ys_ = tree.map_structure(lambda ys__, y_: ys__.push_back(y_) if ys__ is not None else None, ys_, y)
|
|
151
|
-
c = cond(None,
|
|
161
|
+
c = cond(None, s_)
|
|
152
162
|
c = rf.logical_and(c, prev_cond)
|
|
153
|
-
|
|
163
|
+
s_ = rf.nested.mask_nested(s_, mask=c, mask_value=s, allow_dim_extension=False)
|
|
164
|
+
return i + 1, seq_len_, c, s_, ys_
|
|
154
165
|
|
|
155
166
|
if cond_before_body:
|
|
156
167
|
initial_cond = cond(None, initial)
|
|
@@ -187,10 +198,13 @@ def scan(
|
|
|
187
198
|
|
|
188
199
|
def _body(_s: Tuple[Tensor, S, Y]) -> Tuple[Tensor, S, Y]:
|
|
189
200
|
i, s, ys_ = _s
|
|
190
|
-
y,
|
|
201
|
+
y, s_ = body(tree.map_structure(lambda x: x[i], xs), s)
|
|
191
202
|
tree.assert_same_structure(ys_, y)
|
|
192
203
|
ys_ = tree.map_structure(lambda ys__, y_: ys__.push_back(y_) if ys__ is not None else None, ys_, y)
|
|
193
|
-
|
|
204
|
+
s_ = rf.nested.mask_nested(
|
|
205
|
+
s_, mask=i < spatial_dim.get_size_tensor(device=device), mask_value=s, allow_dim_extension=False
|
|
206
|
+
)
|
|
207
|
+
return i + 1, s_, ys_
|
|
194
208
|
|
|
195
209
|
_, final_s, ys = while_loop(
|
|
196
210
|
_cond,
|
|
@@ -3,7 +3,7 @@ Some utility functions on nested structures.
|
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
5
|
from __future__ import annotations
|
|
6
|
-
from typing import TypeVar, Optional, Sequence, Tuple, Dict
|
|
6
|
+
from typing import TypeVar, Optional, Union, Sequence, Tuple, Dict
|
|
7
7
|
import functools
|
|
8
8
|
import re
|
|
9
9
|
import tree
|
|
@@ -11,12 +11,108 @@ from returnn.tensor import Tensor, Dim
|
|
|
11
11
|
import returnn.frontend as rf
|
|
12
12
|
|
|
13
13
|
|
|
14
|
-
__all__ = ["gather_nested", "masked_select_nested", "masked_scatter_nested"]
|
|
14
|
+
__all__ = ["mask_nested", "gather_nested", "masked_select_nested", "masked_scatter_nested"]
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
T = TypeVar("T")
|
|
18
18
|
|
|
19
19
|
|
|
20
|
+
def mask_nested(
|
|
21
|
+
s: T,
|
|
22
|
+
*,
|
|
23
|
+
mask: Tensor,
|
|
24
|
+
mask_value: Union[T, Tensor, float, None],
|
|
25
|
+
dim_map: Optional[Dict[Dim, Dim]] = None,
|
|
26
|
+
allow_dim_extension: bool = True,
|
|
27
|
+
) -> T:
|
|
28
|
+
"""
|
|
29
|
+
Applies where(mask, s, mask_value) for nested structures.
|
|
30
|
+
|
|
31
|
+
:param s:
|
|
32
|
+
:param mask:
|
|
33
|
+
:param mask_value:
|
|
34
|
+
:param dim_map:
|
|
35
|
+
:param allow_dim_extension:
|
|
36
|
+
:return: s with masked values
|
|
37
|
+
"""
|
|
38
|
+
if dim_map is None:
|
|
39
|
+
dim_map = {}
|
|
40
|
+
partial_kwargs = dict(mask=mask, dim_map=dim_map, allow_dim_extension=allow_dim_extension)
|
|
41
|
+
structures = [s]
|
|
42
|
+
if type(s) is type(mask_value): # mask_value also same nested structure?
|
|
43
|
+
tree.assert_same_structure(s, mask_value)
|
|
44
|
+
structures.append(mask_value)
|
|
45
|
+
else:
|
|
46
|
+
partial_kwargs["mask_value"] = mask_value
|
|
47
|
+
tree.map_structure(functools.partial(_mask_prepare_dims, **partial_kwargs), *structures)
|
|
48
|
+
return tree.map_structure(functools.partial(_mask, **partial_kwargs), *structures)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _mask_prepare_dims(
|
|
52
|
+
s: T, mask_value: Union[T, Tensor, float, None], *, mask: Tensor, dim_map: Dict[Dim, Dim], allow_dim_extension: bool
|
|
53
|
+
) -> T:
|
|
54
|
+
if isinstance(s, Dim):
|
|
55
|
+
if mask_value is None:
|
|
56
|
+
return s # not sure if always correct...
|
|
57
|
+
assert isinstance(mask_value, Dim)
|
|
58
|
+
if s == mask_value:
|
|
59
|
+
return s
|
|
60
|
+
if not allow_dim_extension:
|
|
61
|
+
dim_size_dims = set()
|
|
62
|
+
if s.dyn_size_ext is not None:
|
|
63
|
+
dim_size_dims.update(s.dyn_size_ext.dims_set)
|
|
64
|
+
if mask_value.dyn_size_ext is not None:
|
|
65
|
+
dim_size_dims.update(mask_value.dyn_size_ext.dims_set)
|
|
66
|
+
if not mask.dims_set.issubset(dim_size_dims):
|
|
67
|
+
assert not mask.dims_set.intersection(dim_size_dims) # not sure...
|
|
68
|
+
return s
|
|
69
|
+
new_dyn_size = _mask(
|
|
70
|
+
s.get_size_tensor(),
|
|
71
|
+
mask=mask,
|
|
72
|
+
mask_value=mask_value.get_size_tensor(),
|
|
73
|
+
dim_map=dim_map,
|
|
74
|
+
allow_dim_extension=allow_dim_extension,
|
|
75
|
+
)
|
|
76
|
+
new_dim = Dim(new_dyn_size, name=_extend_dim_name(s.name))
|
|
77
|
+
dim_map[s] = dim_map[mask_value] = new_dim
|
|
78
|
+
return new_dim
|
|
79
|
+
return s
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def _mask(
|
|
83
|
+
s: T, mask_value: Union[T, Tensor, float, None], *, mask: Tensor, dim_map: Dict[Dim, Dim], allow_dim_extension: bool
|
|
84
|
+
) -> T:
|
|
85
|
+
if s is None:
|
|
86
|
+
return s
|
|
87
|
+
if isinstance(s, Tensor):
|
|
88
|
+
if dim_map:
|
|
89
|
+
for d in s.dims:
|
|
90
|
+
if d in dim_map:
|
|
91
|
+
s = rf.replace_dim_v2(s, in_dim=d, out_dim=dim_map[d])
|
|
92
|
+
if isinstance(mask_value, Tensor):
|
|
93
|
+
for d in mask_value.dims:
|
|
94
|
+
if d in dim_map:
|
|
95
|
+
mask_value = rf.replace_dim_v2(mask_value, in_dim=d, out_dim=dim_map[d])
|
|
96
|
+
if not allow_dim_extension and isinstance(mask_value, Tensor):
|
|
97
|
+
if not s.dims_set.issuperset(mask_value.dims_set):
|
|
98
|
+
return s
|
|
99
|
+
if not allow_dim_extension or mask_value is None or (isinstance(mask_value, (int, float)) and mask_value == 0):
|
|
100
|
+
if mask.dims_set.issubset(s.dims_set):
|
|
101
|
+
return rf.where(mask, s, mask_value)
|
|
102
|
+
assert not mask.dims_set.intersection(s.dims_set) # not sure...
|
|
103
|
+
return s
|
|
104
|
+
assert isinstance(mask_value, (int, float, Tensor))
|
|
105
|
+
return rf.where(mask, s, mask_value, allow_broadcast_all_sources=True)
|
|
106
|
+
if isinstance(s, Dim):
|
|
107
|
+
if mask_value is None:
|
|
108
|
+
return s
|
|
109
|
+
assert isinstance(mask_value, Dim)
|
|
110
|
+
if s == mask_value:
|
|
111
|
+
return s
|
|
112
|
+
return dim_map.get(s, s)
|
|
113
|
+
raise TypeError(f"_mask: unexpected {s!r} type {type(s).__name__}")
|
|
114
|
+
|
|
115
|
+
|
|
20
116
|
def gather_nested(s: T, *, indices: Tensor, dim_map: Optional[Dict[Dim, Dim]] = None) -> T:
|
|
21
117
|
"""
|
|
22
118
|
This is like :func:`gather`, but for nested structures.
|
|
@@ -70,6 +70,9 @@ class LSTM(rf.Module):
|
|
|
70
70
|
out_dim=self.out_dim,
|
|
71
71
|
)
|
|
72
72
|
new_state = LstmState(h=new_state_h, c=new_state_c)
|
|
73
|
+
result.feature_dim = self.out_dim
|
|
74
|
+
new_state.h.feature_dim = self.out_dim
|
|
75
|
+
new_state.c.feature_dim = self.out_dim
|
|
73
76
|
|
|
74
77
|
return result, new_state
|
|
75
78
|
|
|
@@ -57,7 +57,7 @@ def run_model(
|
|
|
57
57
|
dyn_dim_min_sizes: Optional[Dict[Dim, int]] = None,
|
|
58
58
|
test_tensorflow: bool = True,
|
|
59
59
|
allow_inf_nan_in_output: bool = False,
|
|
60
|
-
test_single_batch_entry: bool =
|
|
60
|
+
test_single_batch_entry: bool = True,
|
|
61
61
|
) -> TensorDict:
|
|
62
62
|
"""run"""
|
|
63
63
|
print(f"* run_model with dyn_dim_max_sizes={dyn_dim_max_sizes!r}")
|
|
@@ -364,7 +364,8 @@ def test_reshape():
|
|
|
364
364
|
out = model(extern_data["data"])
|
|
365
365
|
out.mark_as_default_output(shape=(batch_dim, time_dim, in_dim))
|
|
366
366
|
|
|
367
|
-
|
|
367
|
+
# Note: The tested op here is a bit meaningless. It also is not consinstent for different batch sizes...
|
|
368
|
+
run_model(extern_data, lambda *, epoch, step: _Net(), _forward_step, test_single_batch_entry=False)
|
|
368
369
|
|
|
369
370
|
|
|
370
371
|
def test_expand_dim():
|
|
@@ -791,7 +792,7 @@ def test_reverse_sequence_no_dyn():
|
|
|
791
792
|
out = rf.reverse_sequence(extern_data["data"], axis=time_dim, handle_dynamic_dims=False)
|
|
792
793
|
out.mark_as_default_output(shape=(batch_dim, time_dim, in_dim))
|
|
793
794
|
|
|
794
|
-
run_model(extern_data, lambda *, epoch, step: rf.Module(), _forward_step)
|
|
795
|
+
run_model(extern_data, lambda *, epoch, step: rf.Module(), _forward_step, test_single_batch_entry=False)
|
|
795
796
|
|
|
796
797
|
|
|
797
798
|
def test_where():
|
|
@@ -877,7 +878,7 @@ def test_copy_masked():
|
|
|
877
878
|
x, _ = rf.pool1d(x, mode="avg", pool_size=3, strides=1, padding="same", in_spatial_dim=time_dim)
|
|
878
879
|
x.mark_as_default_output(shape=(batch_dim, time_dim, in_dim))
|
|
879
880
|
|
|
880
|
-
run_model(extern_data, lambda *, epoch, step: rf.Module(), _forward_step)
|
|
881
|
+
run_model(extern_data, lambda *, epoch, step: rf.Module(), _forward_step, test_single_batch_entry=False)
|
|
881
882
|
|
|
882
883
|
|
|
883
884
|
def test_cast_sparse():
|
|
@@ -38,7 +38,7 @@ def test_cond():
|
|
|
38
38
|
out = model(extern_data["data"])
|
|
39
39
|
out.mark_as_default_output(shape=(batch_dim, time_dim, out_dim))
|
|
40
40
|
|
|
41
|
-
run_model(extern_data, lambda *, epoch, step: _Net(), _forward_step)
|
|
41
|
+
run_model(extern_data, lambda *, epoch, step: _Net(), _forward_step, test_single_batch_entry=False)
|
|
42
42
|
|
|
43
43
|
|
|
44
44
|
def test_cond_via_time_even():
|
|
@@ -69,8 +69,20 @@ def test_cond_via_time_even():
|
|
|
69
69
|
out = model(extern_data["data"])
|
|
70
70
|
out.mark_as_default_output(shape=(batch_dim, time_dim, out_dim))
|
|
71
71
|
|
|
72
|
-
run_model(
|
|
73
|
-
|
|
72
|
+
run_model(
|
|
73
|
+
extern_data,
|
|
74
|
+
lambda *, epoch, step: _Net(),
|
|
75
|
+
_forward_step,
|
|
76
|
+
dyn_dim_max_sizes={time_dim: 5},
|
|
77
|
+
test_single_batch_entry=False,
|
|
78
|
+
)
|
|
79
|
+
run_model(
|
|
80
|
+
extern_data,
|
|
81
|
+
lambda *, epoch, step: _Net(),
|
|
82
|
+
_forward_step,
|
|
83
|
+
dyn_dim_max_sizes={time_dim: 6},
|
|
84
|
+
test_single_batch_entry=False,
|
|
85
|
+
)
|
|
74
86
|
|
|
75
87
|
|
|
76
88
|
def test_cond_shared_params():
|
|
@@ -100,8 +112,20 @@ def test_cond_shared_params():
|
|
|
100
112
|
out = model(extern_data["data"])
|
|
101
113
|
out.mark_as_default_output(shape=(batch_dim, time_dim, out_dim))
|
|
102
114
|
|
|
103
|
-
run_model(
|
|
104
|
-
|
|
115
|
+
run_model(
|
|
116
|
+
extern_data,
|
|
117
|
+
lambda *, epoch, step: _Net(),
|
|
118
|
+
_forward_step,
|
|
119
|
+
dyn_dim_max_sizes={time_dim: 5},
|
|
120
|
+
test_single_batch_entry=False,
|
|
121
|
+
)
|
|
122
|
+
run_model(
|
|
123
|
+
extern_data,
|
|
124
|
+
lambda *, epoch, step: _Net(),
|
|
125
|
+
_forward_step,
|
|
126
|
+
dyn_dim_max_sizes={time_dim: 6},
|
|
127
|
+
test_single_batch_entry=False,
|
|
128
|
+
)
|
|
105
129
|
|
|
106
130
|
|
|
107
131
|
def test_cond_twice_shared_params():
|
|
@@ -140,8 +164,20 @@ def test_cond_twice_shared_params():
|
|
|
140
164
|
out = model(extern_data["data"])
|
|
141
165
|
out.mark_as_default_output(shape=(batch_dim, time_dim, out_dim))
|
|
142
166
|
|
|
143
|
-
run_model(
|
|
144
|
-
|
|
167
|
+
run_model(
|
|
168
|
+
extern_data,
|
|
169
|
+
lambda *, epoch, step: _Net(),
|
|
170
|
+
_forward_step,
|
|
171
|
+
dyn_dim_max_sizes={time_dim: 5},
|
|
172
|
+
test_single_batch_entry=False,
|
|
173
|
+
)
|
|
174
|
+
run_model(
|
|
175
|
+
extern_data,
|
|
176
|
+
lambda *, epoch, step: _Net(),
|
|
177
|
+
_forward_step,
|
|
178
|
+
dyn_dim_max_sizes={time_dim: 6},
|
|
179
|
+
test_single_batch_entry=False,
|
|
180
|
+
)
|
|
145
181
|
|
|
146
182
|
|
|
147
183
|
def test_cond_param_assign():
|
|
@@ -173,8 +209,20 @@ def test_cond_param_assign():
|
|
|
173
209
|
out = model(extern_data["data"])
|
|
174
210
|
out.mark_as_default_output(shape=())
|
|
175
211
|
|
|
176
|
-
out1 = run_model(
|
|
177
|
-
|
|
212
|
+
out1 = run_model(
|
|
213
|
+
extern_data,
|
|
214
|
+
lambda *, epoch, step: _Net(),
|
|
215
|
+
_forward_step,
|
|
216
|
+
dyn_dim_max_sizes={time_dim: 5},
|
|
217
|
+
test_single_batch_entry=False,
|
|
218
|
+
)
|
|
219
|
+
out2 = run_model(
|
|
220
|
+
extern_data,
|
|
221
|
+
lambda *, epoch, step: _Net(),
|
|
222
|
+
_forward_step,
|
|
223
|
+
dyn_dim_max_sizes={time_dim: 6},
|
|
224
|
+
test_single_batch_entry=False,
|
|
225
|
+
)
|
|
178
226
|
assert out1["output"].raw_tensor == 2
|
|
179
227
|
assert out2["output"].raw_tensor == 5
|
|
180
228
|
|
|
@@ -208,8 +256,20 @@ def test_cond_param_assign2():
|
|
|
208
256
|
out = model(extern_data["data"])
|
|
209
257
|
out.mark_as_default_output(shape=())
|
|
210
258
|
|
|
211
|
-
out1 = run_model(
|
|
212
|
-
|
|
259
|
+
out1 = run_model(
|
|
260
|
+
extern_data,
|
|
261
|
+
lambda *, epoch, step: _Net(),
|
|
262
|
+
_forward_step,
|
|
263
|
+
dyn_dim_max_sizes={time_dim: 5},
|
|
264
|
+
test_single_batch_entry=False,
|
|
265
|
+
)
|
|
266
|
+
out2 = run_model(
|
|
267
|
+
extern_data,
|
|
268
|
+
lambda *, epoch, step: _Net(),
|
|
269
|
+
_forward_step,
|
|
270
|
+
dyn_dim_max_sizes={time_dim: 6},
|
|
271
|
+
test_single_batch_entry=False,
|
|
272
|
+
)
|
|
213
273
|
assert out1["output"].raw_tensor == 9
|
|
214
274
|
assert out2["output"].raw_tensor == 5
|
|
215
275
|
|
|
@@ -246,8 +306,20 @@ def test_cond_param_assign3():
|
|
|
246
306
|
out.mark_as_default_output(shape=())
|
|
247
307
|
param.mark_as_output(shape=(), name="param")
|
|
248
308
|
|
|
249
|
-
out1 = run_model(
|
|
250
|
-
|
|
309
|
+
out1 = run_model(
|
|
310
|
+
extern_data,
|
|
311
|
+
lambda *, epoch, step: _Net(),
|
|
312
|
+
_forward_step,
|
|
313
|
+
dyn_dim_max_sizes={time_dim: 5},
|
|
314
|
+
test_single_batch_entry=False,
|
|
315
|
+
)
|
|
316
|
+
out2 = run_model(
|
|
317
|
+
extern_data,
|
|
318
|
+
lambda *, epoch, step: _Net(),
|
|
319
|
+
_forward_step,
|
|
320
|
+
dyn_dim_max_sizes={time_dim: 6},
|
|
321
|
+
test_single_batch_entry=False,
|
|
322
|
+
)
|
|
251
323
|
assert out1["output"].raw_tensor == 6 and out1["param"].raw_tensor == 2
|
|
252
324
|
assert out2["output"].raw_tensor == 42 and out2["param"].raw_tensor == 5
|
|
253
325
|
|
|
@@ -341,7 +341,7 @@ def test_maxpool1d_stride_border_cond():
|
|
|
341
341
|
# Note: Currently not the single batch test because there is another problem with RF PT pool,
|
|
342
342
|
# which does not correctly handle this case. We get:
|
|
343
343
|
# RuntimeError: max_pool1d() Invalid computed output size: -1
|
|
344
|
-
|
|
344
|
+
test_single_batch_entry=False,
|
|
345
345
|
)
|
|
346
346
|
out = out["output"]
|
|
347
347
|
(out_spatial_dim,) = out.get_dyn_size_tags()
|
|
@@ -66,20 +66,28 @@ def test_while_loop():
|
|
|
66
66
|
|
|
67
67
|
class _Net(rf.Module):
|
|
68
68
|
def __call__(self, x: Tensor) -> Tensor:
|
|
69
|
-
def _cond(s: Tuple[Tensor, Tensor]):
|
|
70
|
-
t, s_ = s
|
|
69
|
+
def _cond(s: Tuple[Tensor, Tensor, Tensor]) -> Tensor:
|
|
70
|
+
t, ended, s_ = s
|
|
71
71
|
if t.raw_tensor.__class__.__module__.startswith("torch"):
|
|
72
|
-
print("**", t.raw_tensor, rf.reduce_sum(s_, axis=
|
|
73
|
-
return rf.
|
|
72
|
+
print("**", t.raw_tensor, ended.raw_tensor, rf.reduce_sum(s_, axis=in_dim).raw_tensor)
|
|
73
|
+
return rf.logical_not(rf.reduce_all(ended, axis=[batch_dim]))
|
|
74
74
|
|
|
75
75
|
def _body(s):
|
|
76
|
-
t, s_ = s
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
76
|
+
t, ended, s_ = s
|
|
77
|
+
cont = rf.logical_and(rf.reduce_sum(s_, axis=in_dim) < 50, t < time_dim.get_size_tensor())
|
|
78
|
+
ended = rf.logical_or(ended, rf.logical_not(cont))
|
|
79
|
+
s__ = s_ + rf.abs(rf.gather(x, indices=t, axis=time_dim, clip_to_valid=True))
|
|
80
|
+
s__ = rf.where(ended, s_, s__)
|
|
81
|
+
return t + 1, ended, s__
|
|
82
|
+
|
|
83
|
+
_, _, final_s = rf.while_loop(
|
|
80
84
|
_cond,
|
|
81
85
|
_body,
|
|
82
|
-
initial=(
|
|
86
|
+
initial=(
|
|
87
|
+
rf.zeros((), dtype=rf.get_default_array_index_dtype()), # t
|
|
88
|
+
rf.zeros((batch_dim,), dtype="bool"), # ended
|
|
89
|
+
rf.zeros((batch_dim, in_dim)), # s
|
|
90
|
+
),
|
|
83
91
|
)
|
|
84
92
|
return final_s
|
|
85
93
|
|
|
@@ -209,4 +217,7 @@ def test_scan_changing_dim():
|
|
|
209
217
|
out, beam_dim = model(extern_data["data"])
|
|
210
218
|
out.mark_as_default_output(shape=(batch_dim, beam_dim, in_dim))
|
|
211
219
|
|
|
212
|
-
|
|
220
|
+
# TODO the way this is implemented, accessing y[-1], is not consistent w.r.t. different batch sizes...
|
|
221
|
+
run_model(
|
|
222
|
+
extern_data, lambda *, epoch, step: _Net(), _forward_step, test_tensorflow=False, test_single_batch_entry=False
|
|
223
|
+
)
|
|
@@ -36,6 +36,8 @@ def test_batch_norm():
|
|
|
36
36
|
out = model(extern_data["data"])
|
|
37
37
|
out.mark_as_default_output(shape=(batch_dim, time_dim, in_dim))
|
|
38
38
|
|
|
39
|
+
# Note: no test_single_batch_entry=False needed here because we currently don't check the running stats,
|
|
40
|
+
# and the output currently uses the initial running stats, i.e. should be the same for all batches.
|
|
39
41
|
run_model(extern_data, lambda *, epoch, step: _Net(), _forward_step)
|
|
40
42
|
|
|
41
43
|
|
|
@@ -62,4 +64,11 @@ def test_batch_norm_masking():
|
|
|
62
64
|
out = model(extern_data["data"])
|
|
63
65
|
out.mark_as_default_output(shape=(batch_dim, time_dim, in_dim))
|
|
64
66
|
|
|
65
|
-
run_model(
|
|
67
|
+
run_model(
|
|
68
|
+
extern_data,
|
|
69
|
+
lambda *, epoch, step: _Net(),
|
|
70
|
+
_forward_step,
|
|
71
|
+
# BatchNorm by definition uses the batch dim.
|
|
72
|
+
# Needed here because track_running_stats=False and thus use_current_batch_stats=True.
|
|
73
|
+
test_single_batch_entry=False,
|
|
74
|
+
)
|
|
@@ -16,6 +16,8 @@ def test_lstm():
|
|
|
16
16
|
extern_data = TensorDict(
|
|
17
17
|
{
|
|
18
18
|
"data": Tensor("data", [batch_dim, time_dim, in_dim], dtype="float32"),
|
|
19
|
+
"state_h": Tensor("state_h", [batch_dim, out_dim], dtype="float32"),
|
|
20
|
+
"state_c": Tensor("state_c", [batch_dim, out_dim], dtype="float32"),
|
|
19
21
|
"classes": Tensor("classes", [batch_dim, time_dim], dtype="int32", sparse_dim=out_dim),
|
|
20
22
|
}
|
|
21
23
|
)
|
|
@@ -32,10 +34,7 @@ def test_lstm():
|
|
|
32
34
|
|
|
33
35
|
# noinspection PyShadowingNames
|
|
34
36
|
def _forward_step(*, model: _Net, extern_data: TensorDict):
|
|
35
|
-
state = rf.LstmState(
|
|
36
|
-
h=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32"),
|
|
37
|
-
c=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32"),
|
|
38
|
-
)
|
|
37
|
+
state = rf.LstmState(h=extern_data["state_h"], c=extern_data["state_c"])
|
|
39
38
|
out, new_state = model(extern_data["data"], state=state, spatial_dim=time_dim)
|
|
40
39
|
out.mark_as_output("out", shape=(batch_dim, time_dim, out_dim))
|
|
41
40
|
new_state.h.mark_as_output("h", shape=(batch_dim, out_dim))
|
|
@@ -49,6 +48,8 @@ def test_lstm_single_step():
|
|
|
49
48
|
extern_data = TensorDict(
|
|
50
49
|
{
|
|
51
50
|
"data": Tensor("data", [batch_dim, in_dim], dtype="float32"),
|
|
51
|
+
"state_h": Tensor("state_h", [batch_dim, out_dim], dtype="float32"),
|
|
52
|
+
"state_c": Tensor("state_c", [batch_dim, out_dim], dtype="float32"),
|
|
52
53
|
}
|
|
53
54
|
)
|
|
54
55
|
|
|
@@ -64,10 +65,7 @@ def test_lstm_single_step():
|
|
|
64
65
|
|
|
65
66
|
# noinspection PyShadowingNames
|
|
66
67
|
def _forward_step(*, model: _Net, extern_data: TensorDict):
|
|
67
|
-
state = rf.LstmState(
|
|
68
|
-
h=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32"),
|
|
69
|
-
c=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32"),
|
|
70
|
-
)
|
|
68
|
+
state = rf.LstmState(h=extern_data["state_h"], c=extern_data["state_c"])
|
|
71
69
|
out, new_state = model(extern_data["data"], state=state, spatial_dim=single_step_dim)
|
|
72
70
|
out.mark_as_output("out", shape=(batch_dim, out_dim))
|
|
73
71
|
new_state.h.mark_as_output("h", shape=(batch_dim, out_dim))
|
|
@@ -82,6 +80,8 @@ def test_zoneout_lstm():
|
|
|
82
80
|
extern_data = TensorDict(
|
|
83
81
|
{
|
|
84
82
|
"data": Tensor("data", [batch_dim, time_dim, in_dim], dtype="float32"),
|
|
83
|
+
"state_h": Tensor("state_h", [batch_dim, out_dim], dtype="float32", feature_dim=out_dim),
|
|
84
|
+
"state_c": Tensor("state_c", [batch_dim, out_dim], dtype="float32", feature_dim=out_dim),
|
|
85
85
|
"classes": Tensor("classes", [batch_dim, time_dim], dtype="int32", sparse_dim=out_dim),
|
|
86
86
|
}
|
|
87
87
|
)
|
|
@@ -103,10 +103,7 @@ def test_zoneout_lstm():
|
|
|
103
103
|
|
|
104
104
|
# noinspection PyShadowingNames
|
|
105
105
|
def _forward_step(*, model: _Net, extern_data: TensorDict):
|
|
106
|
-
state = rf.LstmState(
|
|
107
|
-
h=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32", feature_dim=out_dim),
|
|
108
|
-
c=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32", feature_dim=out_dim),
|
|
109
|
-
)
|
|
106
|
+
state = rf.LstmState(h=extern_data["state_h"], c=extern_data["state_c"])
|
|
110
107
|
out, new_state = model(extern_data["data"], state=state, spatial_dim=time_dim)
|
|
111
108
|
out.mark_as_output("out", shape=(batch_dim, time_dim, out_dim))
|
|
112
109
|
new_state.h.mark_as_output("h", shape=(batch_dim, out_dim))
|
|
@@ -121,6 +118,8 @@ def test_zoneout_lstm_single_step():
|
|
|
121
118
|
extern_data = TensorDict(
|
|
122
119
|
{
|
|
123
120
|
"data": Tensor("data", [batch_dim, in_dim], dtype="float32"),
|
|
121
|
+
"state_h": Tensor("state_h", [batch_dim, out_dim], dtype="float32"),
|
|
122
|
+
"state_c": Tensor("state_c", [batch_dim, out_dim], dtype="float32"),
|
|
124
123
|
}
|
|
125
124
|
)
|
|
126
125
|
|
|
@@ -141,10 +140,7 @@ def test_zoneout_lstm_single_step():
|
|
|
141
140
|
|
|
142
141
|
# noinspection PyShadowingNames
|
|
143
142
|
def _forward_step(*, model: _Net, extern_data: TensorDict):
|
|
144
|
-
state = rf.LstmState(
|
|
145
|
-
h=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32", feature_dim=out_dim),
|
|
146
|
-
c=rf.random_normal(dims=[batch_dim, out_dim], dtype="float32", feature_dim=out_dim),
|
|
147
|
-
)
|
|
143
|
+
state = rf.LstmState(h=extern_data["state_h"], c=extern_data["state_c"])
|
|
148
144
|
out, new_state = model(extern_data["data"], state=state, spatial_dim=single_step_dim)
|
|
149
145
|
out.mark_as_output("out", shape=(batch_dim, out_dim))
|
|
150
146
|
new_state.h.mark_as_output("h", shape=(batch_dim, out_dim))
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-hyper-param-tuning.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-record-and-push-to-webserver.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-chunking-blstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-contribrnn-lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-maxgradnorm-lstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-native-lstm-lowmem.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20250304.113330 → returnn-1.20250305.155930}/demos/demo-tf-native-lstm.12ax.config
RENAMED
|
File without changes
|