returnn 1.20250304.101951__tar.gz → 1.20250305.150759__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

Files changed (476) hide show
  1. {returnn-1.20250304.101951/returnn.egg-info → returnn-1.20250305.150759}/PKG-INFO +1 -1
  2. returnn-1.20250305.150759/_setup_info_generated.py +2 -0
  3. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/loop.py +19 -5
  4. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/nested.py +98 -2
  5. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/rec.py +3 -0
  6. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/engine.py +29 -62
  7. {returnn-1.20250304.101951 → returnn-1.20250305.150759/returnn.egg-info}/PKG-INFO +1 -1
  8. returnn-1.20250304.101951/_setup_info_generated.py +0 -2
  9. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/.editorconfig +0 -0
  10. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/.gitignore +0 -0
  11. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/.gitmodules +0 -0
  12. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/.kateconfig +0 -0
  13. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/CHANGELOG.md +0 -0
  14. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/CODEOWNERS +0 -0
  15. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/CONTRIBUTING.md +0 -0
  16. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/LICENSE +0 -0
  17. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/MANIFEST.in +0 -0
  18. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/README.rst +0 -0
  19. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/__init__.py +0 -0
  20. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/12AX.cluster_map +0 -0
  21. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/_setup_returnn_env.py +0 -0
  22. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-fwd.config +0 -0
  23. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-horovod-mpi.py +0 -0
  24. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-horovod-mpi.py.sh +0 -0
  25. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-horovod-mpi.sh +0 -0
  26. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-hyper-param-tuning.config +0 -0
  27. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-iter-dataset.py +0 -0
  28. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-list-devices.py +0 -0
  29. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-lua-torch-layer.config +0 -0
  30. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-pretrain.config +0 -0
  31. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-record-and-push-to-webserver.py +0 -0
  32. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-returnn-as-framework.py +0 -0
  33. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-rf-pt-benchmark.py +0 -0
  34. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-rf.config +0 -0
  35. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-rhn-enwik8.config +0 -0
  36. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-sprint-interface.py +0 -0
  37. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-att-copy.config +0 -0
  38. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-attention.config +0 -0
  39. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
  40. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
  41. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-enc-dec.config +0 -0
  42. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-hard-att-copy.config +0 -0
  43. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-lstm-benchmark.py +0 -0
  44. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
  45. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
  46. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-native-lstm.12ax.config +0 -0
  47. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-native-lstm2.12ax.config +0 -0
  48. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
  49. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-neural-transducer.12ax.config +0 -0
  50. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-rec-explicit-lstm.config +0 -0
  51. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-rec-explicit-rnn.config +0 -0
  52. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-rec-self-att.config +0 -0
  53. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-search-compiled-graph.py +0 -0
  54. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
  55. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-timit-lstm-ctc.config +0 -0
  56. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-torch.config +0 -0
  57. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
  58. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/demo.sh +0 -0
  59. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
  60. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
  61. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
  62. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/README.txt +0 -0
  63. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/chars.txt +0 -0
  64. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/config_demo +0 -0
  65. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/config_fwd +0 -0
  66. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/config_real +0 -0
  67. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
  68. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/decode.py +0 -0
  69. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
  70. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/go.sh +0 -0
  71. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/lines.txt +0 -0
  72. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/split/eval.txt +0 -0
  73. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/split/train.txt +0 -0
  74. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/IAM/split/valid.txt +0 -0
  75. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/README.md +0 -0
  76. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial/create_test_h5.py +0 -0
  77. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial/forwardconfig +0 -0
  78. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial/go.sh +0 -0
  79. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial/trainconfig +0 -0
  80. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
  81. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
  82. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial_rgb/go.sh +0 -0
  83. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
  84. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/pyproject.toml +0 -0
  85. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/requirements.txt +0 -0
  86. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/__init__.py +0 -0
  87. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/__main__.py +0 -0
  88. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/__old_mod_loader__.py +0 -0
  89. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/__setup__.py +0 -0
  90. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/config.py +0 -0
  91. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/__init__.py +0 -0
  92. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/audio.py +0 -0
  93. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/basic.py +0 -0
  94. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/bundle_file.py +0 -0
  95. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/cached.py +0 -0
  96. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/cached2.py +0 -0
  97. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/distrib_files.py +0 -0
  98. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/generating.py +0 -0
  99. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/hdf.py +0 -0
  100. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/lm.py +0 -0
  101. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/map.py +0 -0
  102. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/meta.py +0 -0
  103. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/multi_proc.py +0 -0
  104. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/normalization_data.py +0 -0
  105. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/numpy_dump.py +0 -0
  106. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/postprocessing.py +0 -0
  107. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/raw_wav.py +0 -0
  108. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/sprint.py +0 -0
  109. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/stereo.py +0 -0
  110. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/text_dict.py +0 -0
  111. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/util/__init__.py +0 -0
  112. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/util/feature_extraction.py +0 -0
  113. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/util/strings.py +0 -0
  114. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/datasets/util/vocabulary.py +0 -0
  115. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/engine/__init__.py +0 -0
  116. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/engine/base.py +0 -0
  117. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/engine/batch.py +0 -0
  118. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/__init__.py +0 -0
  119. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/__main__.py +0 -0
  120. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/.git +0 -0
  121. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
  122. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
  123. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
  124. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
  125. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
  126. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
  127. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
  128. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
  129. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
  130. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
  131. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
  132. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
  133. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
  134. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
  135. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
  136. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
  137. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
  138. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
  139. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
  140. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
  141. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
  142. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
  143. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
  144. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
  145. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/__init__.py +0 -0
  146. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/README.md +0 -0
  147. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/__init__.py +0 -0
  148. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/edit.py +0 -0
  149. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/reroute.py +0 -0
  150. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/select.py +0 -0
  151. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/subgraph.py +0 -0
  152. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/transform.py +0 -0
  153. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/extern/graph_editor/util.py +0 -0
  154. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/forward_iface.py +0 -0
  155. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/__init__.py +0 -0
  156. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_backend.py +0 -0
  157. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_cache.py +0 -0
  158. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/__init__.py +0 -0
  159. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/backend.cpp +0 -0
  160. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/backend.hpp +0 -0
  161. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/module.cpp +0 -0
  162. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/module.hpp +0 -0
  163. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/py_utils.hpp +0 -0
  164. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/tensor_ops.cpp +0 -0
  165. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_native/tensor_ops.hpp +0 -0
  166. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_numpy_backend.py +0 -0
  167. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_random_journal.py +0 -0
  168. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/_utils.py +0 -0
  169. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/array_.py +0 -0
  170. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/attention.py +0 -0
  171. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/audio/__init__.py +0 -0
  172. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/audio/mel.py +0 -0
  173. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/audio/specaugment.py +0 -0
  174. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/backend.py +0 -0
  175. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/build_from_dict.py +0 -0
  176. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/cond.py +0 -0
  177. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/const.py +0 -0
  178. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/container.py +0 -0
  179. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/control_flow_ctx.py +0 -0
  180. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/conv.py +0 -0
  181. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/conversions/__init__.py +0 -0
  182. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
  183. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/conversions/hf_llama.py +0 -0
  184. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/conversions/torch_nn.py +0 -0
  185. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/decoder/__init__.py +0 -0
  186. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/decoder/transformer.py +0 -0
  187. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/device.py +0 -0
  188. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/dims.py +0 -0
  189. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/dropout.py +0 -0
  190. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/dtype.py +0 -0
  191. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/encoder/__init__.py +0 -0
  192. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/encoder/base.py +0 -0
  193. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/encoder/conformer.py +0 -0
  194. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/encoder/conformer_v2.py +0 -0
  195. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/encoder/e_branchformer.py +0 -0
  196. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/encoder/transformer.py +0 -0
  197. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/gradient.py +0 -0
  198. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/graph.py +0 -0
  199. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/hooks.py +0 -0
  200. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/init.py +0 -0
  201. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/label_smoothing.py +0 -0
  202. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/linear.py +0 -0
  203. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/loss.py +0 -0
  204. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/math_.py +0 -0
  205. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/matmul.py +0 -0
  206. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/module.py +0 -0
  207. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/normalization.py +0 -0
  208. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/parameter.py +0 -0
  209. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/parametrizations.py +0 -0
  210. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/parametrize.py +0 -0
  211. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/piecewise_linear.py +0 -0
  212. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/rand.py +0 -0
  213. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/reduce.py +0 -0
  214. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/run_ctx.py +0 -0
  215. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/signal.py +0 -0
  216. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/state.py +0 -0
  217. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/stepwise_scheduler.py +0 -0
  218. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/tensor_array.py +0 -0
  219. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/frontend/types.py +0 -0
  220. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/import_/__init__.py +0 -0
  221. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/import_/common.py +0 -0
  222. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/import_/git.py +0 -0
  223. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/import_/import_.py +0 -0
  224. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/learning_rate_control.py +0 -0
  225. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/log.py +0 -0
  226. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/native_op.cpp +0 -0
  227. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/native_op.py +0 -0
  228. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/pretrain.py +0 -0
  229. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/sprint/__init__.py +0 -0
  230. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/sprint/cache.py +0 -0
  231. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/sprint/control.py +0 -0
  232. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/sprint/error_signals.py +0 -0
  233. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/sprint/extern_interface.py +0 -0
  234. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/sprint/interface.py +0 -0
  235. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/README.md +0 -0
  236. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/__init__.py +0 -0
  237. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/_dim_extra.py +0 -0
  238. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/_tensor_extra.py +0 -0
  239. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/_tensor_mixin_base.py +0 -0
  240. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/_tensor_op_overloads.py +0 -0
  241. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/control_flow_ctx.py +0 -0
  242. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/dim.py +0 -0
  243. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/marked_dim.py +0 -0
  244. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/tensor.py +0 -0
  245. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/tensor_dict.py +0 -0
  246. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tensor/utils.py +0 -0
  247. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/__init__.py +0 -0
  248. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/compat.py +0 -0
  249. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/data_pipeline.py +0 -0
  250. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/distributed.py +0 -0
  251. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/engine.py +0 -0
  252. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/README.md +0 -0
  253. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/__init__.py +0 -0
  254. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/_backend.py +0 -0
  255. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/_utils.py +0 -0
  256. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/cond.py +0 -0
  257. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
  258. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
  259. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/dims.py +0 -0
  260. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/layer.py +0 -0
  261. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/loop.py +0 -0
  262. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/make_layer.py +0 -0
  263. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/masked_computation.py +0 -0
  264. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
  265. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
  266. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_low_level/__init__.py +0 -0
  267. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/frontend_low_level/_backend.py +0 -0
  268. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/horovod.py +0 -0
  269. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/hyper_param_tuning.py +0 -0
  270. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/__init__.py +0 -0
  271. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/base.py +0 -0
  272. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/basic.py +0 -0
  273. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/rec.py +0 -0
  274. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/segmental_model.py +0 -0
  275. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/signal_processing.py +0 -0
  276. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/layers/variable.py +0 -0
  277. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/native_op.py +0 -0
  278. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/network.py +0 -0
  279. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/sprint.py +0 -0
  280. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/updater.py +0 -0
  281. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/util/__init__.py +0 -0
  282. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/util/basic.py +0 -0
  283. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/util/data.py +0 -0
  284. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/util/gradient_checkpoint.py +0 -0
  285. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/util/ken_lm.py +0 -0
  286. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/tf/util/open_fst.py +0 -0
  287. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/README.md +0 -0
  288. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/__init__.py +0 -0
  289. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/data/__init__.py +0 -0
  290. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/data/extern_data.py +0 -0
  291. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/data/pipeline.py +0 -0
  292. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/data/queued_data_iter.py +0 -0
  293. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
  294. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/data/tensor_utils.py +0 -0
  295. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/distributed.py +0 -0
  296. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/frontend/__init__.py +0 -0
  297. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/frontend/_backend.py +0 -0
  298. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/frontend/_rand.py +0 -0
  299. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/frontend/bridge.py +0 -0
  300. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/frontend/raw_ops.py +0 -0
  301. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/optim/README.md +0 -0
  302. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/optim/__init__.py +0 -0
  303. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/optim/lion.py +0 -0
  304. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/updater.py +0 -0
  305. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/README.md +0 -0
  306. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/__init__.py +0 -0
  307. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/array_.py +0 -0
  308. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/debug_inf_nan.py +0 -0
  309. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/diagnose_gpu.py +0 -0
  310. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/exception_helper.py +0 -0
  311. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/gradient_checkpoint.py +0 -0
  312. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/module.py +0 -0
  313. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/torch/util/scaled_gradient.py +0 -0
  314. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/__init__.py +0 -0
  315. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/basic.py +0 -0
  316. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/better_exchook.py +0 -0
  317. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/bpe.py +0 -0
  318. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/debug.py +0 -0
  319. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/debug_helpers.py +0 -0
  320. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/file_cache.py +0 -0
  321. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/fsa.py +0 -0
  322. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/literal_py_to_pickle.py +0 -0
  323. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/lru_cache.py +0 -0
  324. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/math.py +0 -0
  325. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
  326. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/native_code_compiler.py +0 -0
  327. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/pprint.py +0 -0
  328. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/py-to-pickle.cpp +0 -0
  329. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/py_ext_mod_compiler.py +0 -0
  330. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/result_with_reason.py +0 -0
  331. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/sig_proc.py +0 -0
  332. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/task_system.py +0 -0
  333. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/train_proc_manager.py +0 -0
  334. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn/util/watch_memory.py +0 -0
  335. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn.egg-info/SOURCES.txt +0 -0
  336. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn.egg-info/dependency_links.txt +0 -0
  337. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn.egg-info/requires.txt +0 -0
  338. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/returnn.egg-info/top_level.txt +0 -0
  339. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/rnn.py +0 -0
  340. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/setup.cfg +0 -0
  341. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/setup.py +0 -0
  342. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/DummySprintExec.py +0 -0
  343. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm-inspection-profile.xml +0 -0
  344. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/.gitignore +0 -0
  345. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/.name +0 -0
  346. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
  347. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
  348. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
  349. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
  350. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
  351. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/misc.xml +0 -0
  352. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/modules.xml +0 -0
  353. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/returnn.iml +0 -0
  354. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
  355. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/_set_num_threads1.py +0 -0
  356. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/_setup_returnn_env.py +0 -0
  357. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/_setup_test_env.py +0 -0
  358. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/bpe-unicode-demo.codes +0 -0
  359. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/bpe-unicode-demo.vocab +0 -0
  360. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/lexicon_opt.fst +0 -0
  361. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/lexicon_opt.isyms +0 -0
  362. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/lexicon_opt.jpg +0 -0
  363. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/lexicon_opt.osyms +0 -0
  364. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/lint_common.py +0 -0
  365. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/pycharm-inspect.py +0 -0
  366. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/pylint.py +0 -0
  367. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/returnn-as-framework.py +0 -0
  368. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/rf_utils.py +0 -0
  369. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/spelling.dic +0 -0
  370. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_Config.py +0 -0
  371. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_Dataset.py +0 -0
  372. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_Fsa.py +0 -0
  373. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_GeneratingDataset.py +0 -0
  374. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_HDFDataset.py +0 -0
  375. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_LearningRateControl.py +0 -0
  376. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_Log.py +0 -0
  377. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_MultiProcDataset.py +0 -0
  378. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_Pretrain.py +0 -0
  379. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_ResNet.py +0 -0
  380. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_SprintDataset.py +0 -0
  381. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_SprintInterface.py +0 -0
  382. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFEngine.py +0 -0
  383. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFNativeOp.py +0 -0
  384. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFNetworkLayer.py +0 -0
  385. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFNetworkRecLayer.py +0 -0
  386. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFNetworkSigProcLayer.py +0 -0
  387. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFUpdater.py +0 -0
  388. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TFUtil.py +0 -0
  389. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TF_determinism.py +0 -0
  390. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TaskSystem.py +0 -0
  391. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TaskSystem_SharedMem.py +0 -0
  392. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_TranslationDataset.py +0 -0
  393. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_Util.py +0 -0
  394. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_demos.py +0 -0
  395. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_fork_exec.py +0 -0
  396. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_hdf_dump.py +0 -0
  397. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_array.py +0 -0
  398. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_attention.py +0 -0
  399. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_base.py +0 -0
  400. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_cond.py +0 -0
  401. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_const.py +0 -0
  402. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_container.py +0 -0
  403. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_conv.py +0 -0
  404. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_decoder_transformer.py +0 -0
  405. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_encoder_conformer.py +0 -0
  406. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_gradient.py +0 -0
  407. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_label_smoothing.py +0 -0
  408. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_loop.py +0 -0
  409. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_math.py +0 -0
  410. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_normalization.py +0 -0
  411. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_piecewise_linear.py +0 -0
  412. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_rec.py +0 -0
  413. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_reduce.py +0 -0
  414. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_rf_signal.py +0 -0
  415. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_tensor.py +0 -0
  416. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_threading.py +0 -0
  417. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_tools.py +0 -0
  418. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_torch_dataset.py +0 -0
  419. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_torch_engine.py +0 -0
  420. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_torch_frontend.py +0 -0
  421. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_torch_internal_frontend.py +0 -0
  422. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/test_torch_util.py +0 -0
  423. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tests/torch_utils.py +0 -0
  424. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/_setup_returnn_env.py +0 -0
  425. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/analyze-dataset-batches.py +0 -0
  426. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/bliss-collect-seq-lens.py +0 -0
  427. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/bliss-dump-text.py +0 -0
  428. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/bliss-get-segment-names.py +0 -0
  429. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/bliss-to-ogg-zip.py +0 -0
  430. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/bpe-create-lexicon.py +0 -0
  431. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/calculate-word-error-rate.py +0 -0
  432. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/cleanup-old-models.py +0 -0
  433. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/collect-orth-symbols.py +0 -0
  434. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/collect-words.py +0 -0
  435. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/compile_native_op.py +0 -0
  436. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/compile_tf_graph.py +0 -0
  437. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/debug-dump-search-scores.py +0 -0
  438. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/debug-plot-search-scores.py +0 -0
  439. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/dump-dataset-raw-strings.py +0 -0
  440. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/dump-dataset.py +0 -0
  441. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/dump-forward-stats.py +0 -0
  442. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/dump-forward.py +0 -0
  443. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/dump-network-json.py +0 -0
  444. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/dump-pickle.py +0 -0
  445. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/extract_state_tying_from_dataset.py +0 -0
  446. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/get-attention-weights.py +0 -0
  447. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/get-best-model-epoch.py +0 -0
  448. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/hdf_dump.py +0 -0
  449. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/hdf_dump_translation_dataset.py +0 -0
  450. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/import-blocks-mt-model.py +0 -0
  451. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/import-t2t-mt-model.py +0 -0
  452. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/.gitignore +0 -0
  453. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/Makefile +0 -0
  454. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/README.md +0 -0
  455. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/README.md +0 -0
  456. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/libs_list +0 -0
  457. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
  458. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
  459. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
  460. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/state_vars_list +0 -0
  461. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/example/tensor_names_list +0 -0
  462. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/file.h +0 -0
  463. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
  464. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
  465. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/main.cc +0 -0
  466. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/rescorer.h +0 -0
  467. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/vocabulary.cc +0 -0
  468. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/lattice_rescorer/vocabulary.h +0 -0
  469. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/tf_avg_checkpoints.py +0 -0
  470. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/tf_inspect_checkpoint.py +0 -0
  471. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/tf_inspect_summary_log.py +0 -0
  472. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/torch_avg_checkpoints.py +0 -0
  473. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/torch_export_to_onnx.py +0 -0
  474. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/torch_inspect_checkpoint.py +0 -0
  475. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
  476. {returnn-1.20250304.101951 → returnn-1.20250305.150759}/tools/torch_scale_tuning.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250304.101951
3
+ Version: 1.20250305.150759
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -0,0 +1,2 @@
1
+ version = '1.20250305.150759'
2
+ long_version = '1.20250305.150759+git.fd21be2'
@@ -128,6 +128,16 @@ def scan(
128
128
  like selecting the right beam entries.
129
129
  :return: outputs ys, final state, and the new spatial_dim
130
130
  """
131
+ device = None
132
+ if initial is not None:
133
+ vs = [v for v in tree.flatten(initial) if isinstance(v, Tensor) and v.device not in (None, "cpu")]
134
+ if vs:
135
+ device = vs[0].device
136
+ if device is None and xs is not None:
137
+ vs = [v for v in tree.flatten(xs) if isinstance(v, Tensor) and v.device not in (None, "cpu")]
138
+ if vs:
139
+ device = vs[0].device
140
+
131
141
  if spatial_dim is None or not spatial_dim.is_dim_known():
132
142
  assert cond is not None, f"scan: spatial_dim {spatial_dim} is None/unknown, need to provide `cond`"
133
143
  assert cond_dims is not None, f"scan: spatial_dim {spatial_dim} is None/unknown, need to provide `cond_dims`"
@@ -145,12 +155,13 @@ def scan(
145
155
  def _body(_s: Tuple[Tensor, Tensor, Tensor, S, Y]) -> Tuple[Tensor, Tensor, Tensor, S, Y]:
146
156
  i, seq_len_, prev_cond, s, ys_ = _s
147
157
  seq_len_ = seq_len_ + rf.cast(prev_cond, dtype=seq_len_.dtype)
148
- y, s = body(None, s)
158
+ y, s_ = body(None, s)
149
159
  tree.assert_same_structure(ys_, y)
150
160
  ys_ = tree.map_structure(lambda ys__, y_: ys__.push_back(y_) if ys__ is not None else None, ys_, y)
151
- c = cond(None, s)
161
+ c = cond(None, s_)
152
162
  c = rf.logical_and(c, prev_cond)
153
- return i + 1, seq_len_, c, s, ys_
163
+ s_ = rf.nested.mask_nested(s_, mask=c, mask_value=s, allow_dim_extension=False)
164
+ return i + 1, seq_len_, c, s_, ys_
154
165
 
155
166
  if cond_before_body:
156
167
  initial_cond = cond(None, initial)
@@ -187,10 +198,13 @@ def scan(
187
198
 
188
199
  def _body(_s: Tuple[Tensor, S, Y]) -> Tuple[Tensor, S, Y]:
189
200
  i, s, ys_ = _s
190
- y, s = body(tree.map_structure(lambda x: x[i], xs), s)
201
+ y, s_ = body(tree.map_structure(lambda x: x[i], xs), s)
191
202
  tree.assert_same_structure(ys_, y)
192
203
  ys_ = tree.map_structure(lambda ys__, y_: ys__.push_back(y_) if ys__ is not None else None, ys_, y)
193
- return i + 1, s, ys_
204
+ s_ = rf.nested.mask_nested(
205
+ s_, mask=i < spatial_dim.get_size_tensor(device=device), mask_value=s, allow_dim_extension=False
206
+ )
207
+ return i + 1, s_, ys_
194
208
 
195
209
  _, final_s, ys = while_loop(
196
210
  _cond,
@@ -3,7 +3,7 @@ Some utility functions on nested structures.
3
3
  """
4
4
 
5
5
  from __future__ import annotations
6
- from typing import TypeVar, Optional, Sequence, Tuple, Dict
6
+ from typing import TypeVar, Optional, Union, Sequence, Tuple, Dict
7
7
  import functools
8
8
  import re
9
9
  import tree
@@ -11,12 +11,108 @@ from returnn.tensor import Tensor, Dim
11
11
  import returnn.frontend as rf
12
12
 
13
13
 
14
- __all__ = ["gather_nested", "masked_select_nested", "masked_scatter_nested"]
14
+ __all__ = ["mask_nested", "gather_nested", "masked_select_nested", "masked_scatter_nested"]
15
15
 
16
16
 
17
17
  T = TypeVar("T")
18
18
 
19
19
 
20
+ def mask_nested(
21
+ s: T,
22
+ *,
23
+ mask: Tensor,
24
+ mask_value: Union[T, Tensor, float, None],
25
+ dim_map: Optional[Dict[Dim, Dim]] = None,
26
+ allow_dim_extension: bool = True,
27
+ ) -> T:
28
+ """
29
+ Applies where(mask, s, mask_value) for nested structures.
30
+
31
+ :param s:
32
+ :param mask:
33
+ :param mask_value:
34
+ :param dim_map:
35
+ :param allow_dim_extension:
36
+ :return: s with masked values
37
+ """
38
+ if dim_map is None:
39
+ dim_map = {}
40
+ partial_kwargs = dict(mask=mask, dim_map=dim_map, allow_dim_extension=allow_dim_extension)
41
+ structures = [s]
42
+ if type(s) is type(mask_value): # mask_value also same nested structure?
43
+ tree.assert_same_structure(s, mask_value)
44
+ structures.append(mask_value)
45
+ else:
46
+ partial_kwargs["mask_value"] = mask_value
47
+ tree.map_structure(functools.partial(_mask_prepare_dims, **partial_kwargs), *structures)
48
+ return tree.map_structure(functools.partial(_mask, **partial_kwargs), *structures)
49
+
50
+
51
+ def _mask_prepare_dims(
52
+ s: T, mask_value: Union[T, Tensor, float, None], *, mask: Tensor, dim_map: Dict[Dim, Dim], allow_dim_extension: bool
53
+ ) -> T:
54
+ if isinstance(s, Dim):
55
+ if mask_value is None:
56
+ return s # not sure if always correct...
57
+ assert isinstance(mask_value, Dim)
58
+ if s == mask_value:
59
+ return s
60
+ if not allow_dim_extension:
61
+ dim_size_dims = set()
62
+ if s.dyn_size_ext is not None:
63
+ dim_size_dims.update(s.dyn_size_ext.dims_set)
64
+ if mask_value.dyn_size_ext is not None:
65
+ dim_size_dims.update(mask_value.dyn_size_ext.dims_set)
66
+ if not mask.dims_set.issubset(dim_size_dims):
67
+ assert not mask.dims_set.intersection(dim_size_dims) # not sure...
68
+ return s
69
+ new_dyn_size = _mask(
70
+ s.get_size_tensor(),
71
+ mask=mask,
72
+ mask_value=mask_value.get_size_tensor(),
73
+ dim_map=dim_map,
74
+ allow_dim_extension=allow_dim_extension,
75
+ )
76
+ new_dim = Dim(new_dyn_size, name=_extend_dim_name(s.name))
77
+ dim_map[s] = dim_map[mask_value] = new_dim
78
+ return new_dim
79
+ return s
80
+
81
+
82
+ def _mask(
83
+ s: T, mask_value: Union[T, Tensor, float, None], *, mask: Tensor, dim_map: Dict[Dim, Dim], allow_dim_extension: bool
84
+ ) -> T:
85
+ if s is None:
86
+ return s
87
+ if isinstance(s, Tensor):
88
+ if dim_map:
89
+ for d in s.dims:
90
+ if d in dim_map:
91
+ s = rf.replace_dim_v2(s, in_dim=d, out_dim=dim_map[d])
92
+ if isinstance(mask_value, Tensor):
93
+ for d in mask_value.dims:
94
+ if d in dim_map:
95
+ mask_value = rf.replace_dim_v2(mask_value, in_dim=d, out_dim=dim_map[d])
96
+ if not allow_dim_extension and isinstance(mask_value, Tensor):
97
+ if not s.dims_set.issuperset(mask_value.dims_set):
98
+ return s
99
+ if not allow_dim_extension or mask_value is None or (isinstance(mask_value, (int, float)) and mask_value == 0):
100
+ if mask.dims_set.issubset(s.dims_set):
101
+ return rf.where(mask, s, mask_value)
102
+ assert not mask.dims_set.intersection(s.dims_set) # not sure...
103
+ return s
104
+ assert isinstance(mask_value, (int, float, Tensor))
105
+ return rf.where(mask, s, mask_value, allow_broadcast_all_sources=True)
106
+ if isinstance(s, Dim):
107
+ if mask_value is None:
108
+ return s
109
+ assert isinstance(mask_value, Dim)
110
+ if s == mask_value:
111
+ return s
112
+ return dim_map.get(s, s)
113
+ raise TypeError(f"_mask: unexpected {s!r} type {type(s).__name__}")
114
+
115
+
20
116
  def gather_nested(s: T, *, indices: Tensor, dim_map: Optional[Dict[Dim, Dim]] = None) -> T:
21
117
  """
22
118
  This is like :func:`gather`, but for nested structures.
@@ -70,6 +70,9 @@ class LSTM(rf.Module):
70
70
  out_dim=self.out_dim,
71
71
  )
72
72
  new_state = LstmState(h=new_state_h, c=new_state_c)
73
+ result.feature_dim = self.out_dim
74
+ new_state.h.feature_dim = self.out_dim
75
+ new_state.c.feature_dim = self.out_dim
73
76
 
74
77
  return result, new_state
75
78
 
@@ -3,7 +3,7 @@ Main engine for PyTorch
3
3
  """
4
4
 
5
5
  from __future__ import annotations
6
- from typing import Optional, Any, Union, Callable, Dict, Set, Tuple
6
+ from typing import Optional, Any, Union, Callable, Dict, Set
7
7
  from contextlib import nullcontext, ExitStack, contextmanager
8
8
 
9
9
  import gc
@@ -365,8 +365,6 @@ class Engine(EngineBase):
365
365
  zero_grad_next_step = True
366
366
  cur_count_grad_accum = 0
367
367
  extern_data = None
368
- num_seqs = None
369
- last_seq_idx = 0
370
368
 
371
369
  total_data_size_packed = NumbersDict()
372
370
  total_data_size_padded = NumbersDict()
@@ -400,20 +398,8 @@ class Engine(EngineBase):
400
398
  )
401
399
 
402
400
  complete_frac = float(extern_data_raw["complete_frac"])
403
- num_seqs, last_seq_idx = _get_num_seqs_last_seq_idx(
404
- report_prefix=report_prefix,
405
- extern_data_raw=extern_data_raw,
406
- step_idx=step_idx,
407
- prev_num_seqs=num_seqs,
408
- prev_last_seq_idx=last_seq_idx,
409
- )
410
- epoch_continuous = (
411
- self.epoch - 1 + complete_frac
412
- if complete_frac >= 0.0
413
- else (self.epoch - 1 + (last_seq_idx + 1) / num_seqs)
414
- if num_seqs is not None
415
- else None
416
- )
401
+ epoch_continuous = self.epoch - 1 + complete_frac if complete_frac >= 0.0 else None
402
+ num_seqs = int(extern_data_raw["num_seqs"])
417
403
 
418
404
  # clear the gradients when every gradient accumulation loop starts
419
405
  if zero_grad_next_step:
@@ -490,7 +476,7 @@ class Engine(EngineBase):
490
476
  eval_info=dict(eval_info),
491
477
  step_duration=step_duration,
492
478
  start_elapsed=step_end_time - epoch_start_time,
493
- seq_idx=last_seq_idx,
479
+ complete_frac=complete_frac,
494
480
  num_seqs=num_seqs,
495
481
  batch_size_info=_get_batch_size_info(extern_data) if self._log_batch_size else None,
496
482
  log_memory_usage_device=self._device if self._log_memory_usage else None,
@@ -629,13 +615,18 @@ class Engine(EngineBase):
629
615
  accumulated_losses_dict = NumbersDict()
630
616
  accumulated_inv_norm_factors_dict = NumbersDict()
631
617
  step_idx = 0
618
+ eval_start_time = time.monotonic()
632
619
 
620
+ report_prefix = f"ep {self.epoch} {dataset_name} eval"
633
621
  with torch.no_grad():
634
622
  for extern_data_raw in data_loader:
635
623
  if self._torch_distributed_ctx and step_idx % 100 == 0:
636
624
  _has_data = torch.tensor([True], device="cpu", dtype=torch.int8)
637
625
  torch.distributed.broadcast(_has_data, src=0)
638
626
 
627
+ complete_frac = float(extern_data_raw["complete_frac"])
628
+ num_seqs = int(extern_data_raw["num_seqs"])
629
+
639
630
  extern_data = extern_data_util.raw_dict_to_extern_data(
640
631
  extern_data_raw,
641
632
  extern_data_template=self.extern_data,
@@ -644,6 +635,8 @@ class Engine(EngineBase):
644
635
  )
645
636
 
646
637
  self._run_step(extern_data, train_func=True)
638
+ step_end_time = time.monotonic()
639
+
647
640
  train_ctx = rf.get_run_ctx()
648
641
 
649
642
  losses_dict = NumbersDict(
@@ -664,9 +657,12 @@ class Engine(EngineBase):
664
657
  accumulated_inv_norm_factors_dict += inv_norm_factors_dict
665
658
  eval_info = self._maybe_extend_losses_info(losses_dict / inv_norm_factors_dict)
666
659
  _print_process(
667
- f"ep {self.epoch} {dataset_name} eval",
660
+ report_prefix,
668
661
  step=step_idx,
669
662
  eval_info=dict(eval_info),
663
+ complete_frac=complete_frac,
664
+ num_seqs=num_seqs,
665
+ start_elapsed=step_end_time - eval_start_time,
670
666
  log_memory_usage_device=self._device if self._log_memory_usage else None,
671
667
  )
672
668
  step_idx += 1
@@ -1290,8 +1286,6 @@ class Engine(EngineBase):
1290
1286
  new_dim.dyn_size_ext = _get_tensor_wo_batch_numpy(dim.dyn_size_ext)
1291
1287
  return new_dim
1292
1288
 
1293
- num_seqs = None
1294
- last_seq_idx = 0
1295
1289
  report_prefix = f"ep {self.epoch} {dataset.name} forward"
1296
1290
  with torch.no_grad():
1297
1291
  callback.init(model=self._orig_model)
@@ -1300,13 +1294,8 @@ class Engine(EngineBase):
1300
1294
  for extern_data_raw in data_loader:
1301
1295
  step_begin_time = time.monotonic()
1302
1296
 
1303
- num_seqs, last_seq_idx = _get_num_seqs_last_seq_idx(
1304
- report_prefix=report_prefix,
1305
- extern_data_raw=extern_data_raw,
1306
- step_idx=step_idx,
1307
- prev_num_seqs=num_seqs,
1308
- prev_last_seq_idx=last_seq_idx,
1309
- )
1297
+ complete_frac = float(extern_data_raw["complete_frac"])
1298
+ num_seqs = int(extern_data_raw["num_seqs"])
1310
1299
 
1311
1300
  if self._forward_step_expected_outputs:
1312
1301
  # Also resets any dyn dims, which might have been set in the prev step.
@@ -1354,7 +1343,7 @@ class Engine(EngineBase):
1354
1343
  eval_info=None,
1355
1344
  step_duration=step_duration,
1356
1345
  start_elapsed=step_end_time - epoch_start_time,
1357
- seq_idx=last_seq_idx,
1346
+ complete_frac=complete_frac,
1358
1347
  num_seqs=num_seqs,
1359
1348
  batch_size_info=_get_batch_size_info(extern_data) if self._log_batch_size else None,
1360
1349
  log_memory_usage_device=self._device if self._log_memory_usage else None,
@@ -1442,7 +1431,7 @@ def _print_process(
1442
1431
  batch_size_info: Optional[Dict[str, Any]] = None,
1443
1432
  step_duration: Optional[float] = None,
1444
1433
  start_elapsed: Optional[float] = None,
1445
- seq_idx: Optional[int] = None,
1434
+ complete_frac: Optional[float] = None,
1446
1435
  num_seqs: Optional[int] = None,
1447
1436
  log_memory_usage_device: Optional[str] = None,
1448
1437
  ):
@@ -1455,11 +1444,14 @@ def _print_process(
1455
1444
  :param batch_size_info:
1456
1445
  :param step_duration: time elapsed for this step (secs)
1457
1446
  :param start_elapsed: time elapsed since epoch start (secs)
1458
- :param num_seqs: total number of sequences for this epoch
1447
+ :param complete_frac: how much of the current epoch is already consumed
1448
+ :param num_seqs: total number of seqs this epoch
1459
1449
  :param log_memory_usage_device: if given, will log memory usage (peak allocated memory)
1460
1450
  :return: nothing, will be printed to log
1461
1451
  """
1462
1452
  if log.verbose[5]: # report every minibatch
1453
+ if step == 0 and num_seqs is not None and num_seqs >= 0:
1454
+ print(f"{report_prefix} num_seqs: {num_seqs}", file=log.v5)
1463
1455
  info = [report_prefix, "step %i" % step]
1464
1456
  if eval_info: # Such as score.
1465
1457
  info += ["%s %s" % (k, _format_score_value(v)) for k, v in eval_info.items()]
@@ -1475,17 +1467,16 @@ def _print_process(
1475
1467
  info += ["%.3f sec/step" % step_duration]
1476
1468
  if start_elapsed is not None:
1477
1469
  info += ["elapsed %s" % hms(start_elapsed)]
1478
- if num_seqs is not None:
1479
- assert seq_idx is not None and start_elapsed is not None # unexpected combination...
1480
- complete = (seq_idx + 1) / num_seqs
1481
- assert 1 >= complete > 0, f"{step} step, {num_seqs} num_seqs"
1482
- total_time_estimated = start_elapsed / complete
1470
+ if complete_frac is not None:
1471
+ assert 1 >= complete_frac > 0, f"{step} step, {complete_frac} complete_frac"
1472
+ assert start_elapsed is not None
1473
+ total_time_estimated = start_elapsed / complete_frac
1483
1474
  remaining_estimated = total_time_estimated - start_elapsed
1484
1475
  info += [
1485
1476
  "exp. remaining %s" % hms(remaining_estimated),
1486
- "complete %.02f%%" % (complete * 100),
1477
+ "complete %.02f%%" % (complete_frac * 100),
1487
1478
  ]
1488
- if start_elapsed is not None and num_seqs is None:
1479
+ if start_elapsed is not None and complete_frac is None:
1489
1480
  info += ["(unk epoch len)"]
1490
1481
  print(", ".join(filter(None, info)), file=log.v5)
1491
1482
 
@@ -1634,27 +1625,3 @@ def _get_total_grad_norm(model: torch.nn.Module, p: float) -> float:
1634
1625
  p=p,
1635
1626
  ).item()
1636
1627
  )
1637
-
1638
-
1639
- def _get_num_seqs_last_seq_idx(
1640
- *,
1641
- report_prefix: str,
1642
- extern_data_raw: Dict[str, Any],
1643
- step_idx: int,
1644
- prev_num_seqs: Optional[int],
1645
- prev_last_seq_idx: int,
1646
- ) -> Tuple[Optional[int], int]:
1647
- num_seqs = prev_num_seqs
1648
- num_seqs_ = int(extern_data_raw["num_seqs"]) if extern_data_raw.get("num_seqs", None) is not None else -1
1649
- # Note: The batches might have been shuffled,
1650
- # thus we cannot really assert that the seq_idx is always increasing.
1651
- last_seq_idx = max(int(extern_data_raw["seq_idx"].max()), prev_last_seq_idx)
1652
- if step_idx == 0:
1653
- if num_seqs_ >= 0:
1654
- print(f"{report_prefix} num_seqs: {num_seqs_}", file=log.v5)
1655
- num_seqs = num_seqs_
1656
- elif num_seqs_ >= 0:
1657
- assert num_seqs_ == num_seqs
1658
- if num_seqs is not None:
1659
- assert last_seq_idx < num_seqs
1660
- return num_seqs, last_seq_idx
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250304.101951
3
+ Version: 1.20250305.150759
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +0,0 @@
1
- version = '1.20250304.101951'
2
- long_version = '1.20250304.101951+git.0fa434e'