returnn 1.20250220.174943__tar.gz → 1.20250220.200053__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

Files changed (476) hide show
  1. {returnn-1.20250220.174943/returnn.egg-info → returnn-1.20250220.200053}/PKG-INFO +1 -1
  2. returnn-1.20250220.200053/_setup_info_generated.py +2 -0
  3. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_backend.py +7 -9
  4. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/module.cpp +3 -2
  5. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/tensor_ops.cpp +8 -0
  6. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_numpy_backend.py +2 -1
  7. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/array_.py +73 -1
  8. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/dims.py +31 -0
  9. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/rand.py +30 -0
  10. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/_backend.py +3 -0
  11. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_low_level/_backend.py +5 -10
  12. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/frontend/_backend.py +21 -10
  13. {returnn-1.20250220.174943 → returnn-1.20250220.200053/returnn.egg-info}/PKG-INFO +1 -1
  14. returnn-1.20250220.174943/_setup_info_generated.py +0 -2
  15. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/.editorconfig +0 -0
  16. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/.gitignore +0 -0
  17. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/.gitmodules +0 -0
  18. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/.kateconfig +0 -0
  19. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/CHANGELOG.md +0 -0
  20. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/CODEOWNERS +0 -0
  21. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/CONTRIBUTING.md +0 -0
  22. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/LICENSE +0 -0
  23. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/MANIFEST.in +0 -0
  24. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/README.rst +0 -0
  25. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/__init__.py +0 -0
  26. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/12AX.cluster_map +0 -0
  27. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/_setup_returnn_env.py +0 -0
  28. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-fwd.config +0 -0
  29. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-horovod-mpi.py +0 -0
  30. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-horovod-mpi.py.sh +0 -0
  31. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-horovod-mpi.sh +0 -0
  32. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-hyper-param-tuning.config +0 -0
  33. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-iter-dataset.py +0 -0
  34. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-list-devices.py +0 -0
  35. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-lua-torch-layer.config +0 -0
  36. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-pretrain.config +0 -0
  37. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-record-and-push-to-webserver.py +0 -0
  38. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-returnn-as-framework.py +0 -0
  39. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-rf-pt-benchmark.py +0 -0
  40. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-rf.config +0 -0
  41. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-rhn-enwik8.config +0 -0
  42. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-sprint-interface.py +0 -0
  43. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-att-copy.config +0 -0
  44. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-attention.config +0 -0
  45. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
  46. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
  47. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-enc-dec.config +0 -0
  48. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-hard-att-copy.config +0 -0
  49. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-lstm-benchmark.py +0 -0
  50. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
  51. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
  52. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-native-lstm.12ax.config +0 -0
  53. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-native-lstm2.12ax.config +0 -0
  54. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
  55. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-neural-transducer.12ax.config +0 -0
  56. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-rec-explicit-lstm.config +0 -0
  57. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-rec-explicit-rnn.config +0 -0
  58. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-rec-self-att.config +0 -0
  59. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-search-compiled-graph.py +0 -0
  60. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
  61. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-timit-lstm-ctc.config +0 -0
  62. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-torch.config +0 -0
  63. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
  64. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/demo.sh +0 -0
  65. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
  66. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
  67. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
  68. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/README.txt +0 -0
  69. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/chars.txt +0 -0
  70. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/config_demo +0 -0
  71. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/config_fwd +0 -0
  72. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/config_real +0 -0
  73. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
  74. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/decode.py +0 -0
  75. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
  76. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/go.sh +0 -0
  77. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/lines.txt +0 -0
  78. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/split/eval.txt +0 -0
  79. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/split/train.txt +0 -0
  80. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/IAM/split/valid.txt +0 -0
  81. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/README.md +0 -0
  82. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial/create_test_h5.py +0 -0
  83. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial/forwardconfig +0 -0
  84. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial/go.sh +0 -0
  85. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial/trainconfig +0 -0
  86. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
  87. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
  88. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial_rgb/go.sh +0 -0
  89. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
  90. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/pyproject.toml +0 -0
  91. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/requirements.txt +0 -0
  92. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/__init__.py +0 -0
  93. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/__main__.py +0 -0
  94. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/__old_mod_loader__.py +0 -0
  95. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/__setup__.py +0 -0
  96. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/config.py +0 -0
  97. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/__init__.py +0 -0
  98. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/audio.py +0 -0
  99. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/basic.py +0 -0
  100. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/bundle_file.py +0 -0
  101. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/cached.py +0 -0
  102. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/cached2.py +0 -0
  103. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/distrib_files.py +0 -0
  104. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/generating.py +0 -0
  105. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/hdf.py +0 -0
  106. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/lm.py +0 -0
  107. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/map.py +0 -0
  108. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/meta.py +0 -0
  109. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/multi_proc.py +0 -0
  110. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/normalization_data.py +0 -0
  111. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/numpy_dump.py +0 -0
  112. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/postprocessing.py +0 -0
  113. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/raw_wav.py +0 -0
  114. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/sprint.py +0 -0
  115. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/stereo.py +0 -0
  116. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/text_dict.py +0 -0
  117. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/util/__init__.py +0 -0
  118. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/util/feature_extraction.py +0 -0
  119. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/util/strings.py +0 -0
  120. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/datasets/util/vocabulary.py +0 -0
  121. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/engine/__init__.py +0 -0
  122. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/engine/base.py +0 -0
  123. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/engine/batch.py +0 -0
  124. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/__init__.py +0 -0
  125. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/__main__.py +0 -0
  126. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/.git +0 -0
  127. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
  128. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
  129. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
  130. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
  131. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
  132. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
  133. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
  134. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
  135. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
  136. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
  137. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
  138. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
  139. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
  140. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
  141. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
  142. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
  143. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
  144. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
  145. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
  146. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
  147. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
  148. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
  149. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
  150. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
  151. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/__init__.py +0 -0
  152. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/README.md +0 -0
  153. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/__init__.py +0 -0
  154. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/edit.py +0 -0
  155. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/reroute.py +0 -0
  156. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/select.py +0 -0
  157. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/subgraph.py +0 -0
  158. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/transform.py +0 -0
  159. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/extern/graph_editor/util.py +0 -0
  160. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/forward_iface.py +0 -0
  161. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/__init__.py +0 -0
  162. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_cache.py +0 -0
  163. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/__init__.py +0 -0
  164. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/backend.cpp +0 -0
  165. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/backend.hpp +0 -0
  166. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/module.hpp +0 -0
  167. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/py_utils.hpp +0 -0
  168. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_native/tensor_ops.hpp +0 -0
  169. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_random_journal.py +0 -0
  170. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/_utils.py +0 -0
  171. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/attention.py +0 -0
  172. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/audio/__init__.py +0 -0
  173. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/audio/mel.py +0 -0
  174. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/audio/specaugment.py +0 -0
  175. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/backend.py +0 -0
  176. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/build_from_dict.py +0 -0
  177. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/cond.py +0 -0
  178. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/const.py +0 -0
  179. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/container.py +0 -0
  180. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/control_flow_ctx.py +0 -0
  181. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/conv.py +0 -0
  182. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/conversions/__init__.py +0 -0
  183. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
  184. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/conversions/hf_llama.py +0 -0
  185. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/conversions/torch_nn.py +0 -0
  186. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/decoder/__init__.py +0 -0
  187. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/decoder/transformer.py +0 -0
  188. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/device.py +0 -0
  189. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/dropout.py +0 -0
  190. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/dtype.py +0 -0
  191. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/encoder/__init__.py +0 -0
  192. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/encoder/base.py +0 -0
  193. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/encoder/conformer.py +0 -0
  194. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/encoder/conformer_v2.py +0 -0
  195. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/encoder/e_branchformer.py +0 -0
  196. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/encoder/transformer.py +0 -0
  197. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/gradient.py +0 -0
  198. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/graph.py +0 -0
  199. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/hooks.py +0 -0
  200. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/init.py +0 -0
  201. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/label_smoothing.py +0 -0
  202. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/linear.py +0 -0
  203. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/loop.py +0 -0
  204. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/loss.py +0 -0
  205. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/math_.py +0 -0
  206. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/matmul.py +0 -0
  207. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/module.py +0 -0
  208. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/nested.py +0 -0
  209. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/normalization.py +0 -0
  210. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/parameter.py +0 -0
  211. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/parametrizations.py +0 -0
  212. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/parametrize.py +0 -0
  213. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/piecewise_linear.py +0 -0
  214. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/rec.py +0 -0
  215. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/reduce.py +0 -0
  216. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/run_ctx.py +0 -0
  217. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/signal.py +0 -0
  218. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/state.py +0 -0
  219. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/stepwise_scheduler.py +0 -0
  220. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/tensor_array.py +0 -0
  221. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/frontend/types.py +0 -0
  222. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/import_/__init__.py +0 -0
  223. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/import_/common.py +0 -0
  224. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/import_/git.py +0 -0
  225. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/import_/import_.py +0 -0
  226. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/learning_rate_control.py +0 -0
  227. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/log.py +0 -0
  228. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/native_op.cpp +0 -0
  229. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/native_op.py +0 -0
  230. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/pretrain.py +0 -0
  231. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/sprint/__init__.py +0 -0
  232. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/sprint/cache.py +0 -0
  233. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/sprint/control.py +0 -0
  234. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/sprint/error_signals.py +0 -0
  235. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/sprint/extern_interface.py +0 -0
  236. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/sprint/interface.py +0 -0
  237. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/README.md +0 -0
  238. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/__init__.py +0 -0
  239. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/_dim_extra.py +0 -0
  240. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/_tensor_extra.py +0 -0
  241. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/_tensor_mixin_base.py +0 -0
  242. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/_tensor_op_overloads.py +0 -0
  243. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/control_flow_ctx.py +0 -0
  244. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/dim.py +0 -0
  245. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/marked_dim.py +0 -0
  246. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/tensor.py +0 -0
  247. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/tensor_dict.py +0 -0
  248. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tensor/utils.py +0 -0
  249. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/__init__.py +0 -0
  250. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/compat.py +0 -0
  251. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/data_pipeline.py +0 -0
  252. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/distributed.py +0 -0
  253. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/engine.py +0 -0
  254. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/README.md +0 -0
  255. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/__init__.py +0 -0
  256. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/_utils.py +0 -0
  257. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/cond.py +0 -0
  258. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
  259. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
  260. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/dims.py +0 -0
  261. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/layer.py +0 -0
  262. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/loop.py +0 -0
  263. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/make_layer.py +0 -0
  264. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/masked_computation.py +0 -0
  265. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
  266. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
  267. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/frontend_low_level/__init__.py +0 -0
  268. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/horovod.py +0 -0
  269. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/hyper_param_tuning.py +0 -0
  270. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/__init__.py +0 -0
  271. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/base.py +0 -0
  272. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/basic.py +0 -0
  273. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/rec.py +0 -0
  274. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/segmental_model.py +0 -0
  275. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/signal_processing.py +0 -0
  276. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/layers/variable.py +0 -0
  277. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/native_op.py +0 -0
  278. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/network.py +0 -0
  279. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/sprint.py +0 -0
  280. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/updater.py +0 -0
  281. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/util/__init__.py +0 -0
  282. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/util/basic.py +0 -0
  283. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/util/data.py +0 -0
  284. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/util/gradient_checkpoint.py +0 -0
  285. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/util/ken_lm.py +0 -0
  286. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/tf/util/open_fst.py +0 -0
  287. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/README.md +0 -0
  288. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/__init__.py +0 -0
  289. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/data/__init__.py +0 -0
  290. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/data/extern_data.py +0 -0
  291. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/data/pipeline.py +0 -0
  292. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/data/queued_data_iter.py +0 -0
  293. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
  294. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/data/tensor_utils.py +0 -0
  295. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/distributed.py +0 -0
  296. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/engine.py +0 -0
  297. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/frontend/__init__.py +0 -0
  298. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/frontend/_rand.py +0 -0
  299. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/frontend/bridge.py +0 -0
  300. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/frontend/raw_ops.py +0 -0
  301. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/optim/README.md +0 -0
  302. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/optim/__init__.py +0 -0
  303. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/optim/lion.py +0 -0
  304. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/updater.py +0 -0
  305. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/README.md +0 -0
  306. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/__init__.py +0 -0
  307. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/array_.py +0 -0
  308. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/debug_inf_nan.py +0 -0
  309. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/diagnose_gpu.py +0 -0
  310. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/exception_helper.py +0 -0
  311. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/gradient_checkpoint.py +0 -0
  312. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/module.py +0 -0
  313. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/torch/util/scaled_gradient.py +0 -0
  314. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/__init__.py +0 -0
  315. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/basic.py +0 -0
  316. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/better_exchook.py +0 -0
  317. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/bpe.py +0 -0
  318. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/debug.py +0 -0
  319. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/debug_helpers.py +0 -0
  320. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/file_cache.py +0 -0
  321. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/fsa.py +0 -0
  322. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/literal_py_to_pickle.py +0 -0
  323. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/lru_cache.py +0 -0
  324. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/math.py +0 -0
  325. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
  326. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/native_code_compiler.py +0 -0
  327. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/pprint.py +0 -0
  328. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/py-to-pickle.cpp +0 -0
  329. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/py_ext_mod_compiler.py +0 -0
  330. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/result_with_reason.py +0 -0
  331. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/sig_proc.py +0 -0
  332. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/task_system.py +0 -0
  333. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/train_proc_manager.py +0 -0
  334. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn/util/watch_memory.py +0 -0
  335. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn.egg-info/SOURCES.txt +0 -0
  336. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn.egg-info/dependency_links.txt +0 -0
  337. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn.egg-info/requires.txt +0 -0
  338. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/returnn.egg-info/top_level.txt +0 -0
  339. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/rnn.py +0 -0
  340. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/setup.cfg +0 -0
  341. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/setup.py +0 -0
  342. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/DummySprintExec.py +0 -0
  343. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm-inspection-profile.xml +0 -0
  344. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/.gitignore +0 -0
  345. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/.name +0 -0
  346. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
  347. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
  348. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
  349. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
  350. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
  351. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/misc.xml +0 -0
  352. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/modules.xml +0 -0
  353. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/returnn.iml +0 -0
  354. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
  355. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/_set_num_threads1.py +0 -0
  356. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/_setup_returnn_env.py +0 -0
  357. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/_setup_test_env.py +0 -0
  358. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/bpe-unicode-demo.codes +0 -0
  359. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/bpe-unicode-demo.vocab +0 -0
  360. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/lexicon_opt.fst +0 -0
  361. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/lexicon_opt.isyms +0 -0
  362. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/lexicon_opt.jpg +0 -0
  363. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/lexicon_opt.osyms +0 -0
  364. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/lint_common.py +0 -0
  365. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/pycharm-inspect.py +0 -0
  366. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/pylint.py +0 -0
  367. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/returnn-as-framework.py +0 -0
  368. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/rf_utils.py +0 -0
  369. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/spelling.dic +0 -0
  370. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_Config.py +0 -0
  371. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_Dataset.py +0 -0
  372. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_Fsa.py +0 -0
  373. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_GeneratingDataset.py +0 -0
  374. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_HDFDataset.py +0 -0
  375. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_LearningRateControl.py +0 -0
  376. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_Log.py +0 -0
  377. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_MultiProcDataset.py +0 -0
  378. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_Pretrain.py +0 -0
  379. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_ResNet.py +0 -0
  380. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_SprintDataset.py +0 -0
  381. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_SprintInterface.py +0 -0
  382. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFEngine.py +0 -0
  383. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFNativeOp.py +0 -0
  384. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFNetworkLayer.py +0 -0
  385. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFNetworkRecLayer.py +0 -0
  386. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFNetworkSigProcLayer.py +0 -0
  387. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFUpdater.py +0 -0
  388. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TFUtil.py +0 -0
  389. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TF_determinism.py +0 -0
  390. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TaskSystem.py +0 -0
  391. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TaskSystem_SharedMem.py +0 -0
  392. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_TranslationDataset.py +0 -0
  393. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_Util.py +0 -0
  394. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_demos.py +0 -0
  395. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_fork_exec.py +0 -0
  396. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_hdf_dump.py +0 -0
  397. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_array.py +0 -0
  398. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_attention.py +0 -0
  399. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_base.py +0 -0
  400. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_cond.py +0 -0
  401. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_const.py +0 -0
  402. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_container.py +0 -0
  403. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_conv.py +0 -0
  404. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_decoder_transformer.py +0 -0
  405. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_encoder_conformer.py +0 -0
  406. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_gradient.py +0 -0
  407. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_label_smoothing.py +0 -0
  408. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_loop.py +0 -0
  409. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_math.py +0 -0
  410. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_normalization.py +0 -0
  411. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_piecewise_linear.py +0 -0
  412. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_rec.py +0 -0
  413. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_reduce.py +0 -0
  414. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_rf_signal.py +0 -0
  415. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_tensor.py +0 -0
  416. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_threading.py +0 -0
  417. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_tools.py +0 -0
  418. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_torch_dataset.py +0 -0
  419. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_torch_engine.py +0 -0
  420. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_torch_frontend.py +0 -0
  421. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_torch_internal_frontend.py +0 -0
  422. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/test_torch_util.py +0 -0
  423. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tests/torch_utils.py +0 -0
  424. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/_setup_returnn_env.py +0 -0
  425. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/analyze-dataset-batches.py +0 -0
  426. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/bliss-collect-seq-lens.py +0 -0
  427. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/bliss-dump-text.py +0 -0
  428. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/bliss-get-segment-names.py +0 -0
  429. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/bliss-to-ogg-zip.py +0 -0
  430. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/bpe-create-lexicon.py +0 -0
  431. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/calculate-word-error-rate.py +0 -0
  432. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/cleanup-old-models.py +0 -0
  433. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/collect-orth-symbols.py +0 -0
  434. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/collect-words.py +0 -0
  435. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/compile_native_op.py +0 -0
  436. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/compile_tf_graph.py +0 -0
  437. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/debug-dump-search-scores.py +0 -0
  438. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/debug-plot-search-scores.py +0 -0
  439. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/dump-dataset-raw-strings.py +0 -0
  440. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/dump-dataset.py +0 -0
  441. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/dump-forward-stats.py +0 -0
  442. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/dump-forward.py +0 -0
  443. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/dump-network-json.py +0 -0
  444. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/dump-pickle.py +0 -0
  445. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/extract_state_tying_from_dataset.py +0 -0
  446. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/get-attention-weights.py +0 -0
  447. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/get-best-model-epoch.py +0 -0
  448. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/hdf_dump.py +0 -0
  449. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/hdf_dump_translation_dataset.py +0 -0
  450. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/import-blocks-mt-model.py +0 -0
  451. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/import-t2t-mt-model.py +0 -0
  452. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/.gitignore +0 -0
  453. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/Makefile +0 -0
  454. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/README.md +0 -0
  455. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/README.md +0 -0
  456. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/libs_list +0 -0
  457. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
  458. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
  459. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
  460. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/state_vars_list +0 -0
  461. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/example/tensor_names_list +0 -0
  462. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/file.h +0 -0
  463. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
  464. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
  465. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/main.cc +0 -0
  466. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/rescorer.h +0 -0
  467. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/vocabulary.cc +0 -0
  468. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/lattice_rescorer/vocabulary.h +0 -0
  469. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/tf_avg_checkpoints.py +0 -0
  470. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/tf_inspect_checkpoint.py +0 -0
  471. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/tf_inspect_summary_log.py +0 -0
  472. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/torch_avg_checkpoints.py +0 -0
  473. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/torch_export_to_onnx.py +0 -0
  474. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/torch_inspect_checkpoint.py +0 -0
  475. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
  476. {returnn-1.20250220.174943 → returnn-1.20250220.200053}/tools/torch_scale_tuning.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250220.174943
3
+ Version: 1.20250220.200053
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -0,0 +1,2 @@
1
+ version = '1.20250220.200053'
2
+ long_version = '1.20250220.200053+git.bb5c0aa'
@@ -784,18 +784,11 @@ class Backend(Generic[T]):
784
784
  dims: Sequence[Dim],
785
785
  dtype: str,
786
786
  sparse_dim: Optional[Dim] = None,
787
+ feature_dim: Optional[Dim] = None,
787
788
  device: Optional[str] = None,
788
789
  name: Optional[str] = None,
789
790
  ) -> Tensor[T]:
790
- """
791
- :param value: tensor, or scalar raw tensor or some other scalar value
792
- :param dims:
793
- :param dtype:
794
- :param sparse_dim:
795
- :param device:
796
- :param name:
797
- :return: tensor
798
- """
791
+ """convert (raw/any) tensor to tensor"""
799
792
  raise NotImplementedError
800
793
 
801
794
  @staticmethod
@@ -956,6 +949,11 @@ class Backend(Generic[T]):
956
949
  """where"""
957
950
  raise NotImplementedError
958
951
 
952
+ @staticmethod
953
+ def sort(source: Tensor, *, axis: Dim, descending: bool, stable: bool) -> Tuple[Tensor, Tensor, Dim]:
954
+ """sort. return values and indices"""
955
+ raise NotImplementedError
956
+
959
957
  @staticmethod
960
958
  def search_sorted(
961
959
  sorted_seq: Tensor, values: Tensor, *, axis: Dim, side: str = "left", out_dtype: str = "int32"
@@ -312,8 +312,9 @@ bool PyModuleState::_cachedOpInitTorch() {
312
312
  AddOp(TOp_FloorDiv, "floor_divide");
313
313
  AddOp(TOp_Mod, "remainder");
314
314
  AddOp(TOp_Pow, "pow");
315
- AddOp(TOp_Maximum, "maximum");
316
- AddOp(TOp_Minimum, "minimum");
315
+ // Use clamp_min/clamp_max instead of maximum/minimum because the former allow number arguments.
316
+ AddOp(TOp_Maximum, "clamp_min");
317
+ AddOp(TOp_Minimum, "clamp_max");
317
318
  AddOpAlt(TOp_SquaredDifference, "squared_difference");
318
319
  AddOp(TOp_And, "logical_and");
319
320
  AddOp(TOp_Or, "logical_or");
@@ -1368,6 +1368,14 @@ static PyObject* compareOrCombineViaCached(
1368
1368
  case TOp_FloorDiv:
1369
1369
  case TOp_Mod:
1370
1370
  case TOp_Pow:
1371
+ case TOp_Maximum:
1372
+ case TOp_Minimum:
1373
+ case TOp_Eq:
1374
+ case TOp_Ne:
1375
+ case TOp_Lt:
1376
+ case TOp_Le:
1377
+ case TOp_Gt:
1378
+ case TOp_Ge:
1371
1379
  needConvertToTensor = false;
1372
1380
  default:
1373
1381
  break;
@@ -83,6 +83,7 @@ class NumpyBackend(Backend[numpy.ndarray]):
83
83
  dims: Sequence[Dim],
84
84
  dtype: str,
85
85
  sparse_dim: Optional[Dim] = None,
86
+ feature_dim: Optional[Dim] = None,
86
87
  device: Optional[str] = None,
87
88
  name: Optional[str] = None,
88
89
  ) -> Tensor[numpy.ndarray]:
@@ -95,7 +96,7 @@ class NumpyBackend(Backend[numpy.ndarray]):
95
96
  name = name or "const"
96
97
  value = numpy.array(value, dtype=NumpyBackend.as_dtype_raw(dtype))
97
98
  assert isinstance(value, numpy.ndarray)
98
- return Tensor(name, dims=dims, dtype=dtype, sparse_dim=sparse_dim, raw_tensor=value)
99
+ return Tensor(name, dims=dims, dtype=dtype, sparse_dim=sparse_dim, feature_dim=feature_dim, raw_tensor=value)
99
100
 
100
101
  @staticmethod
101
102
  def expand_dims_raw(raw_tensor: numpy.ndarray, axis: int) -> numpy.ndarray:
@@ -45,9 +45,12 @@ __all__ = [
45
45
  "shift_left",
46
46
  "reverse_sequence",
47
47
  "where",
48
+ "sort",
48
49
  "search_sorted",
49
50
  "sparse_to_dense",
50
51
  "one_hot",
52
+ "top_k_mask",
53
+ "top_p_mask",
51
54
  ]
52
55
 
53
56
 
@@ -57,6 +60,7 @@ def convert_to_tensor(
57
60
  dims: Sequence[Dim] = None,
58
61
  dtype: Optional[str] = None,
59
62
  sparse_dim: Optional[Dim] = None,
63
+ feature_dim: Optional[Dim] = None,
60
64
  shape: Sequence[Dim] = None,
61
65
  device: Optional[str] = None,
62
66
  keep_scalar_on_cpu: bool = False,
@@ -68,6 +72,7 @@ def convert_to_tensor(
68
72
  :param dims:
69
73
  :param dtype:
70
74
  :param sparse_dim:
75
+ :param feature_dim:
71
76
  :param shape: alias for dims, for some older code
72
77
  :param name:
73
78
  :param device:
@@ -121,7 +126,7 @@ def convert_to_tensor(
121
126
  if dtype is None:
122
127
  dtype = value_backend.get_dtype_name_raw(value)
123
128
  return _backend.convert_to_tensor(
124
- value=value, dims=dims, dtype=dtype, sparse_dim=sparse_dim, device=device, name=name
129
+ value=value, dims=dims, dtype=dtype, sparse_dim=sparse_dim, feature_dim=feature_dim, device=device, name=name
125
130
  )
126
131
 
127
132
 
@@ -996,6 +1001,27 @@ def where(
996
1001
  return cond._raw_backend.where(cond, true_, false_, allow_broadcast_all_sources=allow_broadcast_all_sources)
997
1002
 
998
1003
 
1004
+ def sort(source: Tensor, *, axis: Dim, descending: bool = False, stable: bool = True) -> Tuple[Tensor, Tensor, Dim]:
1005
+ """
1006
+ Sorts the source tensor along the given axis.
1007
+
1008
+ See also :func:`top_k`.
1009
+ :func:`top_k` with ``k=axis.get_size_tensor()`` is equivalent to this function.
1010
+
1011
+ :param source: {other_dims..., axis}
1012
+ :param axis: The axis to sort along.
1013
+ :param descending: If True, sort in descending order, otherwise in ascending order.
1014
+ :param stable: If True, use a stable sorting algorithm (not reordering equal elements).
1015
+ Note that many frameworks (Torch, TensorFlow) have ``stable=False`` by default.
1016
+ ``stable=False`` can be faster.
1017
+ :return: sorted tensor, indices tensor, out_dim. both tensors have the shape {other_dims..., out_dim},
1018
+ i.e. ``axis`` replaced by ``out_dim``.
1019
+ indices tensor has sparse_dim set to ``axis``.
1020
+ """
1021
+ # noinspection PyProtectedMember
1022
+ return source._raw_backend.sort(source, axis=axis, descending=descending, stable=stable)
1023
+
1024
+
999
1025
  def search_sorted(
1000
1026
  sorted_seq: Tensor, values: Tensor, *, axis: Dim, side: str = "left", out_dtype: str = "int32"
1001
1027
  ) -> Tensor:
@@ -1044,3 +1070,49 @@ def one_hot(source: Tensor) -> Tensor:
1044
1070
  and much more efficiently than they would be with dense tensors.
1045
1071
  """
1046
1072
  return sparse_to_dense(source, label_value=1.0, other_value=0.0)
1073
+
1074
+
1075
+ def top_k_mask(values: Tensor, *, axis: Dim, k: Union[int, Tensor]) -> Tensor:
1076
+ """
1077
+ Top-k filtering.
1078
+
1079
+ :param values: {other_dims..., axis}
1080
+ :param axis:
1081
+ :param k: the number of top values to keep
1082
+ :return: mask {other_dims..., axis} of the top-k values
1083
+ """
1084
+ _, indices, k_dim = rf.top_k(values, axis=axis, k=k)
1085
+ mask = rf.scatter(rf.full(dims=indices.dims, fill_value=True), indices=indices, indices_dim=k_dim, fill_value=False)
1086
+ return mask
1087
+
1088
+
1089
+ def top_p_mask(
1090
+ probs: Tensor,
1091
+ *,
1092
+ axis: Dim,
1093
+ p: Union[float, Tensor],
1094
+ one_more: bool = True,
1095
+ ) -> Tensor:
1096
+ """
1097
+ Top-p filtering, e.g. as used in Nucleus sampling (https://arxiv.org/abs/1904.09751).
1098
+
1099
+ :param probs: {probs_dims..., axis}
1100
+ :param axis:
1101
+ :param p: the probability mass to keep
1102
+ :param one_more: if True (default), keep also the first token above the threshold.
1103
+ (It's enabled by default to follow the behavior of the original implementation.)
1104
+ :return: mask {probs_dims..., axis} of the top-p tokens.
1105
+ ``sum(probs[mask]) <= p``, or slightly more if ``one_more`` is True.
1106
+ """
1107
+ assert 0.0 <= p <= 1.0
1108
+ if isinstance(p, Tensor):
1109
+ assert axis not in p.dims
1110
+ # https://github.com/ari-holtzman/degen/blob/master/gen.py
1111
+ sorted_probs, sorted_indices, sorted_dim = rf.sort(probs, axis=axis, descending=True)
1112
+ cum_probs = rf.cumsum(sorted_probs, spatial_dim=sorted_dim)
1113
+ mask = cum_probs <= p # {probs_dims..., sorted_dim}
1114
+ if one_more:
1115
+ # keep also the first token above the threshold
1116
+ mask = rf.shift_right(mask, axis=sorted_dim, pad_value=True)
1117
+ mask = rf.scatter(mask, indices=sorted_indices, indices_dim=sorted_dim)
1118
+ return mask
@@ -14,6 +14,7 @@ __all__ = [
14
14
  "range_over_dim",
15
15
  "range_over_dim_strided",
16
16
  "range_over_merged_dims",
17
+ "linspace_over_dim",
17
18
  "replace_dim",
18
19
  "replace_dim_v2",
19
20
  "set_sparse_dim",
@@ -81,6 +82,36 @@ def range_over_merged_dims(
81
82
  return indices
82
83
 
83
84
 
85
+ def linspace_over_dim(
86
+ dim: Dim,
87
+ start: Union[float, Tensor] = 0.0,
88
+ end: Union[float, Tensor] = 1.0,
89
+ *,
90
+ dtype: Optional[str] = None,
91
+ device: Optional[str] = None,
92
+ ) -> Tensor:
93
+ """
94
+ Linearly spaced values over a dim.
95
+
96
+ :param dim: dim to range over
97
+ :param start: start value
98
+ :param end: end value
99
+ :param dtype: dtype of the output tensor
100
+ :param device: device of the output tensor
101
+ :return: tensor with shape [dim] containing linearly spaced values between start and end
102
+ """
103
+ if dtype is None:
104
+ dtype = rf.get_default_float_dtype()
105
+ indices = rf.range_over_dim(dim, dtype=dtype, device=device)
106
+ linspace = indices / rf.cast(rf.maximum(dim.get_size_tensor(device=indices.device), 1), dtype=indices.dtype)
107
+ space_len = end - start
108
+ if not isinstance(space_len, (int, float)) or space_len != 1:
109
+ linspace *= space_len
110
+ if not isinstance(start, (int, float)) or start != 0:
111
+ linspace += start
112
+ return linspace
113
+
114
+
84
115
  def replace_dim(source: Tensor, *, in_dim: Dim, out_dim: Optional[Dim] = None) -> Tuple[Tensor, Dim]:
85
116
  """
86
117
  Also see: :func:`replace_dim_v2`, :func:`rf.merge_dims`, :func:`rf.split_dims`.
@@ -64,6 +64,7 @@ __all__ = [
64
64
  "random_uniform",
65
65
  "random_normal",
66
66
  "random_truncated_normal",
67
+ "random_choice_without_replacement",
67
68
  ]
68
69
 
69
70
 
@@ -349,3 +350,32 @@ def random_truncated_normal(
349
350
  static=static,
350
351
  out=out,
351
352
  )
353
+
354
+
355
+ def random_choice_without_replacement(
356
+ *,
357
+ log_probs: Tensor,
358
+ axis: Union[Dim, Sequence[Dim]],
359
+ num_samples_dim: Dim,
360
+ noise_scale: Union[float, Tensor] = 1.0,
361
+ ) -> Union[Tensor, Sequence[Tensor]]:
362
+ """
363
+ Randomly sample without replacement.
364
+
365
+ :param log_probs: {log_probs_dims..., axis}
366
+ :param axis: same as in :func:`top_k`
367
+ :param num_samples_dim: how many samples to draw
368
+ :param noise_scale: scale the noise. with scale=0, you get :func:`top_k`.
369
+ :return: random indices shape {log_probs_dims..., num_samples_dim} -> axis.
370
+ if axis was a sequence, will return a sequence of tensors.
371
+ """
372
+ # https://github.com/tensorflow/tensorflow/issues/9260
373
+ # https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
374
+ scores_random_sample = -rf.log(
375
+ -rf.log(random_uniform(log_probs.dims, dtype=log_probs.dtype, device=log_probs.device))
376
+ )
377
+ if not isinstance(noise_scale, (int, float)) or noise_scale != 1.0:
378
+ scores_random_sample *= noise_scale
379
+ scores = log_probs + scores_random_sample
380
+ _, indices, _ = rf.top_k(scores, k_dim=num_samples_dim, axis=axis)
381
+ return indices
@@ -559,6 +559,7 @@ class ReturnnLayersBackend(Backend[Layer]):
559
559
  dims: Sequence[Dim],
560
560
  dtype: str,
561
561
  sparse_dim: Optional[Dim] = None,
562
+ feature_dim: Optional[Dim] = None,
562
563
  device: Optional[str] = None,
563
564
  name: Optional[str] = None,
564
565
  ) -> Tensor[Layer]:
@@ -568,6 +569,8 @@ class ReturnnLayersBackend(Backend[Layer]):
568
569
  kwargs = {}
569
570
  if sparse_dim:
570
571
  kwargs["sparse_dim"] = sparse_dim
572
+ if feature_dim:
573
+ kwargs["feature_dim"] = feature_dim
571
574
  dim_deps = _dims.get_dim_deps(dims)
572
575
  if dim_deps:
573
576
  kwargs["shape_deps"] = dim_deps
@@ -411,24 +411,19 @@ class TFBackend(Backend[tf.Tensor]):
411
411
  dims: Sequence[Dim],
412
412
  dtype: str,
413
413
  sparse_dim: Optional[Dim] = None,
414
+ feature_dim: Optional[Dim] = None,
414
415
  device: Optional[str] = None,
415
416
  name: Optional[str] = None,
416
417
  ) -> _TT:
417
- """
418
- :param value:
419
- :param dims:
420
- :param dtype:
421
- :param sparse_dim:
422
- :param device:
423
- :param name:
424
- :return: tensor
425
- """
418
+ """convert to tensor"""
426
419
  if isinstance(value, Tensor):
427
420
  return value
428
421
  with tf.control_dependencies(None):
429
422
  value = tf.convert_to_tensor(value, dtype=dtype)
430
423
  assert isinstance(value, tf.Tensor)
431
- return Tensor(name or "const", raw_tensor=value, dims=dims, dtype=dtype, sparse_dim=sparse_dim)
424
+ return Tensor(
425
+ name or "const", raw_tensor=value, dims=dims, dtype=dtype, sparse_dim=sparse_dim, feature_dim=feature_dim
426
+ )
432
427
 
433
428
  @staticmethod
434
429
  def range_over_dim(dim: Dim, *, dtype: Optional[str] = None, device: Optional[str] = None) -> _TT:
@@ -895,18 +895,11 @@ class TorchBackend(Backend[torch.Tensor]):
895
895
  dims: Sequence[Dim],
896
896
  dtype: str,
897
897
  sparse_dim: Optional[Dim] = None,
898
+ feature_dim: Optional[Dim] = None,
898
899
  device: Optional[str] = None,
899
900
  name: Optional[str] = None,
900
901
  ) -> Tensor[torch.Tensor]:
901
- """
902
- :param value:
903
- :param dims:
904
- :param dtype:
905
- :param sparse_dim:
906
- :param device:
907
- :param name:
908
- :return: tensor
909
- """
902
+ """convert to tensor"""
910
903
  if isinstance(value, Tensor):
911
904
  return value
912
905
  if isinstance(value, torch.Tensor):
@@ -926,7 +919,7 @@ class TorchBackend(Backend[torch.Tensor]):
926
919
  device=device or rf.get_default_device(),
927
920
  )
928
921
  assert isinstance(value, torch.Tensor)
929
- return Tensor(name, dims=dims, dtype=dtype, sparse_dim=sparse_dim, raw_tensor=value)
922
+ return Tensor(name, dims=dims, dtype=dtype, sparse_dim=sparse_dim, feature_dim=feature_dim, raw_tensor=value)
930
923
 
931
924
  @staticmethod
932
925
  def full(
@@ -1223,6 +1216,21 @@ class TorchBackend(Backend[torch.Tensor]):
1223
1216
  out.raw_tensor = torch.where(cond_bc_raw, true_bc_raw, false_bc_raw)
1224
1217
  return out
1225
1218
 
1219
+ @staticmethod
1220
+ def sort(source: Tensor, *, axis: Dim, descending: bool, stable: bool) -> Tuple[Tensor, Tensor, Dim]:
1221
+ """sort. return values and indices"""
1222
+ axis_int = source.get_axis_from_description(axis, allow_int=False)
1223
+ # Move to last axis. Should be more efficient.
1224
+ source = source.copy_move_axis(axis_int, -1)
1225
+ axis_int = source.batch_ndim - 1
1226
+ values_raw, indices_raw = torch.sort(source.raw_tensor, dim=axis_int, descending=descending, stable=stable)
1227
+ out_dims = list(source.dims)
1228
+ out_dim = axis.copy(same_as_self=False, description=f"{axis.description}:sorted")
1229
+ out_dims[axis_int] = out_dim
1230
+ values = rf.convert_to_tensor(values_raw, dims=out_dims, feature_dim={axis: out_dim}.get(source.feature_dim))
1231
+ indices = rf.convert_to_tensor(indices_raw, dims=out_dims, sparse_dim=axis)
1232
+ return values, indices, out_dim
1233
+
1226
1234
  @staticmethod
1227
1235
  def search_sorted(
1228
1236
  sorted_seq: Tensor, values: Tensor, *, axis: Dim, side: str = "left", out_dtype: str = "int32"
@@ -1566,6 +1574,9 @@ class TorchBackend(Backend[torch.Tensor]):
1566
1574
  return values, indices_out, k_dim
1567
1575
  assert isinstance(axis, Dim)
1568
1576
  axis_int = source.get_axis_from_description(axis, allow_int=False)
1577
+ # Move to last axis. Should be more efficient.
1578
+ source = source.copy_move_axis(axis_int, -1)
1579
+ axis_int = source.batch_ndim - 1
1569
1580
  values_raw, indices_raw = torch.topk(
1570
1581
  source.raw_tensor, k=k_dim.get_dim_value(), dim=axis_int, largest=True, sorted=sorted
1571
1582
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250220.174943
3
+ Version: 1.20250220.200053
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +0,0 @@
1
- version = '1.20250220.174943'
2
- long_version = '1.20250220.174943+git.1766d1c'