returnn 1.20250127.111455__tar.gz → 1.20250131.151606__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of returnn might be problematic. Click here for more details.
- {returnn-1.20250127.111455/returnn.egg-info → returnn-1.20250131.151606}/PKG-INFO +1 -1
- returnn-1.20250131.151606/_setup_info_generated.py +2 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/frontend/_backend.py +2 -2
- {returnn-1.20250127.111455 → returnn-1.20250131.151606/returnn.egg-info}/PKG-INFO +1 -1
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn.egg-info/SOURCES.txt +1 -0
- returnn-1.20250131.151606/tools/torch_scale_tuning.py +594 -0
- returnn-1.20250127.111455/_setup_info_generated.py +0 -2
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/.editorconfig +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/.gitignore +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/.gitmodules +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/.kateconfig +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/CHANGELOG.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/CODEOWNERS +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/CONTRIBUTING.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/LICENSE +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/MANIFEST.in +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/README.rst +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/12AX.cluster_map +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/_setup_returnn_env.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-fwd.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-horovod-mpi.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-horovod-mpi.py.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-horovod-mpi.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-hyper-param-tuning.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-iter-dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-list-devices.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-lua-torch-layer.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-pretrain.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-record-and-push-to-webserver.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-returnn-as-framework.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-rf-pt-benchmark.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-rf.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-rhn-enwik8.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-sprint-interface.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-att-copy.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-attention.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-enc-dec.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-hard-att-copy.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-lstm-benchmark.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-native-lstm.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-native-lstm2.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-neural-transducer.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-rec-explicit-lstm.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-rec-explicit-rnn.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-rec-self-att.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-search-compiled-graph.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-timit-lstm-ctc.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-torch.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/demo.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/README.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/chars.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/config_demo +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/config_fwd +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/config_real +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/decode.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/go.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/lines.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/split/eval.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/split/train.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/IAM/split/valid.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial/create_test_h5.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial/forwardconfig +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial/go.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial/trainconfig +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial_rgb/go.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/pyproject.toml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/requirements.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/__main__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/__old_mod_loader__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/__setup__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/config.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/audio.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/basic.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/bundle_file.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/cached.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/cached2.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/distrib_files.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/generating.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/hdf.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/lm.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/map.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/meta.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/multi_proc.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/normalization_data.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/numpy_dump.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/postprocessing.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/raw_wav.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/sprint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/stereo.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/text_dict.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/util/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/util/feature_extraction.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/util/strings.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/datasets/util/vocabulary.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/engine/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/engine/base.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/engine/batch.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/__main__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/.git +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/edit.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/reroute.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/select.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/subgraph.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/transform.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/extern/graph_editor/util.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/forward_iface.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_backend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_cache.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/backend.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/backend.hpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/module.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/module.hpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/py_utils.hpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/tensor_ops.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_native/tensor_ops.hpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_numpy_backend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_random_journal.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/_utils.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/array_.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/attention.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/audio/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/audio/mel.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/audio/specaugment.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/backend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/build_from_dict.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/cond.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/const.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/container.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/control_flow_ctx.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/conv.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/conversions/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/conversions/hf_llama.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/conversions/torch_nn.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/decoder/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/decoder/transformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/device.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/dims.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/dropout.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/dtype.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/encoder/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/encoder/base.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/encoder/conformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/encoder/conformer_v2.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/encoder/e_branchformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/encoder/transformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/gradient.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/graph.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/hooks.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/init.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/label_smoothing.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/linear.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/loop.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/loss.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/math_.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/matmul.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/module.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/nested.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/normalization.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/parameter.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/parametrizations.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/parametrize.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/piecewise_linear.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/rand.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/rec.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/reduce.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/run_ctx.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/signal.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/state.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/stepwise_scheduler.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/tensor_array.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/frontend/types.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/import_/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/import_/common.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/import_/git.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/import_/import_.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/learning_rate_control.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/log.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/native_op.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/native_op.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/pretrain.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/sprint/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/sprint/cache.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/sprint/control.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/sprint/error_signals.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/sprint/extern_interface.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/sprint/interface.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/_dim_extra.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/_tensor_extra.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/_tensor_mixin_base.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/_tensor_op_overloads.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/control_flow_ctx.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/dim.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/marked_dim.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/tensor.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/tensor_dict.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tensor/utils.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/compat.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/data_pipeline.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/distributed.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/engine.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/_backend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/_utils.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/cond.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/dims.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/layer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/loop.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/make_layer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/masked_computation.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_low_level/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/frontend_low_level/_backend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/horovod.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/hyper_param_tuning.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/base.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/basic.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/rec.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/segmental_model.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/signal_processing.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/layers/variable.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/native_op.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/network.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/sprint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/updater.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/util/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/util/basic.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/util/data.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/util/gradient_checkpoint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/util/ken_lm.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/tf/util/open_fst.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/data/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/data/extern_data.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/data/pipeline.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/data/queued_data_iter.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/data/tensor_utils.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/distributed.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/engine.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/frontend/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/frontend/_rand.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/frontend/bridge.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/frontend/raw_ops.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/optim/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/optim/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/optim/lion.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/updater.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/array_.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/debug_inf_nan.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/diagnose_gpu.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/exception_helper.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/gradient_checkpoint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/module.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/torch/util/scaled_gradient.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/__init__.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/basic.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/better_exchook.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/bpe.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/debug.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/debug_helpers.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/file_cache.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/fsa.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/literal_py_to_pickle.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/lru_cache.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/math.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/native_code_compiler.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/pprint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/py-to-pickle.cpp +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/py_ext_mod_compiler.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/result_with_reason.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/sig_proc.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/task_system.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/train_proc_manager.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn/util/watch_memory.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn.egg-info/dependency_links.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/returnn.egg-info/top_level.txt +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/rnn.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/setup.cfg +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/setup.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/DummySprintExec.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm-inspection-profile.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/.gitignore +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/.name +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/misc.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/modules.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/returnn.iml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/_set_num_threads1.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/_setup_returnn_env.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/_setup_test_env.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/bpe-unicode-demo.codes +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/bpe-unicode-demo.vocab +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/lexicon_opt.fst +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/lexicon_opt.isyms +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/lexicon_opt.jpg +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/lexicon_opt.osyms +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/lint_common.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/pycharm-inspect.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/pylint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/returnn-as-framework.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/rf_utils.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/spelling.dic +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_Config.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_Dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_Fsa.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_GeneratingDataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_HDFDataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_LearningRateControl.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_Log.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_MultiProcDataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_Pretrain.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_ResNet.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_SprintDataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_SprintInterface.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFEngine.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFNativeOp.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFNetworkLayer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFNetworkRecLayer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFNetworkSigProcLayer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFUpdater.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TFUtil.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TF_determinism.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TaskSystem.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TaskSystem_SharedMem.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_TranslationDataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_Util.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_demos.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_fork_exec.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_hdf_dump.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_array.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_attention.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_base.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_cond.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_const.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_container.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_conv.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_decoder_transformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_encoder_conformer.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_gradient.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_label_smoothing.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_loop.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_math.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_normalization.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_piecewise_linear.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_rec.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_reduce.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_rf_signal.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_tensor.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_threading.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_tools.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_torch_dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_torch_engine.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_torch_frontend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_torch_internal_frontend.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/test_torch_util.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tests/torch_utils.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/_setup_returnn_env.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/analyze-dataset-batches.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/bliss-collect-seq-lens.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/bliss-dump-text.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/bliss-get-segment-names.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/bliss-to-ogg-zip.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/bpe-create-lexicon.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/calculate-word-error-rate.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/cleanup-old-models.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/collect-orth-symbols.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/collect-words.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/compile_native_op.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/compile_tf_graph.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/debug-dump-search-scores.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/debug-plot-search-scores.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/dump-dataset-raw-strings.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/dump-dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/dump-forward-stats.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/dump-forward.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/dump-network-json.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/dump-pickle.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/extract_state_tying_from_dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/get-attention-weights.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/get-best-model-epoch.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/hdf_dump.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/hdf_dump_translation_dataset.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/import-blocks-mt-model.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/import-t2t-mt-model.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/.gitignore +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/Makefile +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/README.md +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/libs_list +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/state_vars_list +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/example/tensor_names_list +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/file.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/main.cc +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/rescorer.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/vocabulary.cc +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/lattice_rescorer/vocabulary.h +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/tf_avg_checkpoints.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/tf_inspect_checkpoint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/tf_inspect_summary_log.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/torch_avg_checkpoints.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/torch_export_to_onnx.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/torch_inspect_checkpoint.py +0 -0
- {returnn-1.20250127.111455 → returnn-1.20250131.151606}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
|
@@ -1468,9 +1468,9 @@ class TorchBackend(Backend[torch.Tensor]):
|
|
|
1468
1468
|
if use_mask and any(dim.need_masking() for dim in axis):
|
|
1469
1469
|
source = source.copy()
|
|
1470
1470
|
dtype = source.raw_tensor.dtype
|
|
1471
|
-
if mode in ("max", "logsumexp"):
|
|
1471
|
+
if mode in ("max", "logsumexp", "argmax"):
|
|
1472
1472
|
mask_value = torch.finfo(dtype).min if dtype.is_floating_point else torch.iinfo(dtype).min
|
|
1473
|
-
elif mode
|
|
1473
|
+
elif mode in ("min", "argmin"):
|
|
1474
1474
|
mask_value = torch.finfo(dtype).max if dtype.is_floating_point else torch.iinfo(dtype).max
|
|
1475
1475
|
elif mode == "sum":
|
|
1476
1476
|
mask_value = 0
|
|
@@ -452,6 +452,7 @@ tools/torch_avg_checkpoints.py
|
|
|
452
452
|
tools/torch_export_to_onnx.py
|
|
453
453
|
tools/torch_inspect_checkpoint.py
|
|
454
454
|
tools/torch_inspect_checkpoint_and_opt.py
|
|
455
|
+
tools/torch_scale_tuning.py
|
|
455
456
|
tools/lattice_rescorer/.gitignore
|
|
456
457
|
tools/lattice_rescorer/Makefile
|
|
457
458
|
tools/lattice_rescorer/README.md
|
|
@@ -0,0 +1,594 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Scale tuning
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from __future__ import annotations
|
|
8
|
+
import argparse
|
|
9
|
+
import os
|
|
10
|
+
import numpy as np
|
|
11
|
+
from dataclasses import dataclass
|
|
12
|
+
from typing import Optional, Union, Dict, List, Tuple, Set
|
|
13
|
+
|
|
14
|
+
import _setup_returnn_env # noqa
|
|
15
|
+
|
|
16
|
+
from returnn.config import set_global_config, Config
|
|
17
|
+
from returnn.log import log
|
|
18
|
+
from returnn.util.basic import describe_returnn_version, BehaviorVersion
|
|
19
|
+
from returnn.util import better_exchook
|
|
20
|
+
from returnn.tensor import Tensor, Dim
|
|
21
|
+
import returnn.frontend as rf
|
|
22
|
+
import torch
|
|
23
|
+
import json
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def main():
|
|
27
|
+
"""main"""
|
|
28
|
+
arg_parser = argparse.ArgumentParser()
|
|
29
|
+
arg_parser.add_argument("--names", required=True, nargs="+", help="names for scores")
|
|
30
|
+
arg_parser.add_argument("--scores", required=True, nargs="+", help="score-paths")
|
|
31
|
+
arg_parser.add_argument("--evaluation", required=True, help="'edit_distance'")
|
|
32
|
+
arg_parser.add_argument("--ref", help="ref-path")
|
|
33
|
+
arg_parser.add_argument("--fixed-scales", nargs="*", help="(name, scale) pairs, fixed scales")
|
|
34
|
+
arg_parser.add_argument("--negative-scales", nargs="*", help="list of names, negative scales")
|
|
35
|
+
arg_parser.add_argument("--scale-relative-to", nargs="*", help="(name, other) pairs, scale relative to")
|
|
36
|
+
arg_parser.add_argument("--max-scale", type=float, default=2.0)
|
|
37
|
+
arg_parser.add_argument("--min-scales", help="(name, scale) pairs, min scales")
|
|
38
|
+
arg_parser.add_argument("--max-scales", help="(name, scale) pairs, max scales")
|
|
39
|
+
arg_parser.add_argument("--num-iterations", type=int, default=10)
|
|
40
|
+
arg_parser.add_argument("--num-steps", type=int, default=21)
|
|
41
|
+
arg_parser.add_argument("--search-mode", default="auto", help="'auto', 'grid', 'single'")
|
|
42
|
+
arg_parser.add_argument("--device", default="cpu", help="auto, cpu, cuda, ...")
|
|
43
|
+
arg_parser.add_argument("--batch-size", type=int, default=1024)
|
|
44
|
+
arg_parser.add_argument("--output-scales", help="file to write (relative) scales into")
|
|
45
|
+
arg_parser.add_argument("--output-real-scales", help="file to write real scales into")
|
|
46
|
+
arg_parser.add_argument("--output-grid-plot", help="file to write grid plot into")
|
|
47
|
+
args = arg_parser.parse_args()
|
|
48
|
+
|
|
49
|
+
print(f"{os.path.basename(__file__)}, RETURNN {describe_returnn_version()}")
|
|
50
|
+
|
|
51
|
+
config = Config()
|
|
52
|
+
set_global_config(config)
|
|
53
|
+
|
|
54
|
+
log.initialize(verbosity=[5])
|
|
55
|
+
BehaviorVersion.set_min_behavior_version(22)
|
|
56
|
+
better_exchook.install()
|
|
57
|
+
rf.select_backend_torch()
|
|
58
|
+
|
|
59
|
+
try:
|
|
60
|
+
# noinspection PyUnresolvedReferences,PyPackageRequirements
|
|
61
|
+
import lovely_tensors
|
|
62
|
+
|
|
63
|
+
lovely_tensors.monkey_patch()
|
|
64
|
+
except ImportError:
|
|
65
|
+
pass # ignore
|
|
66
|
+
|
|
67
|
+
names = list(args.names)
|
|
68
|
+
names_dim = Dim(len(names), name="names")
|
|
69
|
+
|
|
70
|
+
# Resort scale names, such that we first have the fixed scales, then the scale_relative_to.
|
|
71
|
+
fixed_scales_names = set()
|
|
72
|
+
if args.fixed_scales:
|
|
73
|
+
assert len(args.fixed_scales) % 2 == 0
|
|
74
|
+
for name, scale in zip(args.fixed_scales[::2], args.fixed_scales[1::2]):
|
|
75
|
+
fixed_scales_names.add(name)
|
|
76
|
+
scale_relative_to_target_names = set()
|
|
77
|
+
if args.scale_relative_to:
|
|
78
|
+
assert len(args.scale_relative_to) % 2 == 0
|
|
79
|
+
for name, other in zip(args.scale_relative_to[::2], args.scale_relative_to[1::2]):
|
|
80
|
+
scale_relative_to_target_names.add(other)
|
|
81
|
+
names.sort(key=lambda key: (key not in fixed_scales_names, key not in scale_relative_to_target_names))
|
|
82
|
+
print("Names:", names)
|
|
83
|
+
|
|
84
|
+
# Prepare scale relation info, based on scale/name idx.
|
|
85
|
+
fixed_scales: Dict[int, float] = {}
|
|
86
|
+
if args.fixed_scales:
|
|
87
|
+
assert len(args.fixed_scales) % 2 == 0
|
|
88
|
+
for name, scale in zip(args.fixed_scales[::2], args.fixed_scales[1::2]):
|
|
89
|
+
name_idx = names.index(name)
|
|
90
|
+
assert name_idx not in fixed_scales
|
|
91
|
+
fixed_scales[name_idx] = float(scale)
|
|
92
|
+
scale_relative_to: Dict[int, int] = {} # name idx -> other name idx (before)
|
|
93
|
+
if args.scale_relative_to:
|
|
94
|
+
assert len(args.scale_relative_to) % 2 == 0
|
|
95
|
+
for name, other in zip(args.scale_relative_to[::2], args.scale_relative_to[1::2]):
|
|
96
|
+
name_idx = names.index(name)
|
|
97
|
+
other_idx = names.index(other)
|
|
98
|
+
assert name_idx not in scale_relative_to
|
|
99
|
+
assert name_idx not in fixed_scales
|
|
100
|
+
assert other_idx not in fixed_scales
|
|
101
|
+
assert other_idx < name_idx, "make sure, when --scale-relative-to, that the other name is before"
|
|
102
|
+
scale_relative_to[name_idx] = other_idx
|
|
103
|
+
neg_scales: Set[int] = set()
|
|
104
|
+
if args.negative_scales:
|
|
105
|
+
for name in args.negative_scales:
|
|
106
|
+
name_idx = names.index(name)
|
|
107
|
+
assert name_idx not in fixed_scales
|
|
108
|
+
neg_scales.add(name_idx)
|
|
109
|
+
|
|
110
|
+
print("Num scales to search over:", len(names) - len(fixed_scales))
|
|
111
|
+
search_mode = args.search_mode
|
|
112
|
+
if search_mode == "auto":
|
|
113
|
+
if len(names) - len(fixed_scales) == 2:
|
|
114
|
+
search_mode = "grid"
|
|
115
|
+
else:
|
|
116
|
+
search_mode = "single"
|
|
117
|
+
print("Search mode:", search_mode)
|
|
118
|
+
|
|
119
|
+
# Load data
|
|
120
|
+
vocab: Dict[str, int] = {}
|
|
121
|
+
hyps: Dict[str, List[List[int]]] = {} # seq_tag -> beam of seqs
|
|
122
|
+
scores: Dict[str, Dict[str, List[float]]] = {} # name -> seq_tag -> beam of score
|
|
123
|
+
assert args.scores and len(args.scores) == len(names)
|
|
124
|
+
for name, path in zip(args.names, args.scores):
|
|
125
|
+
if not os.path.exists(path):
|
|
126
|
+
raise FileNotFoundError(f"score file not found: {path}, for name: {name}")
|
|
127
|
+
scores[name], hyps = _load_text_dict_hyps_file(
|
|
128
|
+
path, name=name, vocab=vocab, expect_same_hyps=hyps if hyps else None
|
|
129
|
+
)
|
|
130
|
+
assert scores[name] and hyps
|
|
131
|
+
print("num seqs:", len(hyps))
|
|
132
|
+
|
|
133
|
+
assert scores and hyps
|
|
134
|
+
print("len vocab after reading hyps:", len(vocab))
|
|
135
|
+
assert vocab, "no labels found?"
|
|
136
|
+
ref: Optional[Dict[str, List[int]]] = (
|
|
137
|
+
_load_text_dict_file(args.ref, name="ref", vocab=vocab) if args.ref is not None else None
|
|
138
|
+
)
|
|
139
|
+
print("len vocab after reading ref:", len(vocab))
|
|
140
|
+
if len(vocab) < 2**15:
|
|
141
|
+
dtype = torch.int16
|
|
142
|
+
elif len(vocab) < 2**31:
|
|
143
|
+
dtype = torch.int32
|
|
144
|
+
elif len(vocab) < 2**63:
|
|
145
|
+
dtype = torch.int64
|
|
146
|
+
else:
|
|
147
|
+
raise ValueError(f"vocab too large: {len(vocab)}")
|
|
148
|
+
print("dtype:", dtype)
|
|
149
|
+
|
|
150
|
+
if ref:
|
|
151
|
+
total_ref_seq_len = sum(len(seq) for seq in ref.values())
|
|
152
|
+
print("total ref seq len:", total_ref_seq_len)
|
|
153
|
+
avg_ref_seq_len = total_ref_seq_len / len(ref)
|
|
154
|
+
print("avg ref seq len:", avg_ref_seq_len)
|
|
155
|
+
else:
|
|
156
|
+
avg_ref_seq_len = None
|
|
157
|
+
|
|
158
|
+
# Sort by lengths (reversed) to be able to prepare batches without too much padding.
|
|
159
|
+
if ref:
|
|
160
|
+
seq_list_ordered_by_len = sorted(ref.keys(), key=lambda tag: len(ref[tag]), reverse=True)
|
|
161
|
+
else:
|
|
162
|
+
seq_list_ordered_by_len = sorted(hyps.keys(), key=lambda tag: len(hyps[tag][0]), reverse=True)
|
|
163
|
+
|
|
164
|
+
if args.device == "auto":
|
|
165
|
+
dev_s = "cuda" if torch.cuda.is_available() else "cpu"
|
|
166
|
+
else:
|
|
167
|
+
dev_s = args.device
|
|
168
|
+
dev = torch.device(dev_s)
|
|
169
|
+
print("Device:", dev)
|
|
170
|
+
_report_dev_memory(dev)
|
|
171
|
+
|
|
172
|
+
# Prepare batches, load all into device memory
|
|
173
|
+
# Note: If we get GPU OOM here, we could instead keep this on CPU... Currently, not yet implemented...
|
|
174
|
+
print("Preparing batches, calculating evaluation on all hyps...")
|
|
175
|
+
batches = []
|
|
176
|
+
for i in range(0, len(seq_list_ordered_by_len), args.batch_size):
|
|
177
|
+
print(
|
|
178
|
+
f"Batch {len(batches)}, seqs {i} - {min(i + args.batch_size, len(seq_list_ordered_by_len))}"
|
|
179
|
+
f" / {len(seq_list_ordered_by_len)}, {i/len(seq_list_ordered_by_len)*100:.1f}%"
|
|
180
|
+
)
|
|
181
|
+
batch_seq_tag_list: List[str] = seq_list_ordered_by_len[i : i + args.batch_size]
|
|
182
|
+
|
|
183
|
+
beam_sizes_ = [len(hyps[tag]) for tag in batch_seq_tag_list]
|
|
184
|
+
beam_sizes_t = torch.tensor(beam_sizes_, dtype=torch.int32) # [Batch], int32
|
|
185
|
+
hyps_seq_lens_: List[List[int]] = [
|
|
186
|
+
[len(hyps[tag][beam]) for beam in range(len(hyps[tag]))] for tag in batch_seq_tag_list
|
|
187
|
+
]
|
|
188
|
+
hyps_seq_lens_t = _make_padded_tensor_2d(hyps_seq_lens_, dtype=torch.int32) # [Batch,Beam], int32
|
|
189
|
+
hyps__: List[List[List[int]]] = [hyps[tag] for tag in batch_seq_tag_list]
|
|
190
|
+
hyps_t = _make_padded_tensor_3d(hyps__, dtype=dtype, device=dev) # [Batch,Beam,HypSeq], int16|int32|int64
|
|
191
|
+
|
|
192
|
+
batch_scores: List[List[List[float]]] = [[scores[name][tag] for tag in batch_seq_tag_list] for name in names]
|
|
193
|
+
batch_scores_t = _make_padded_tensor_3d(
|
|
194
|
+
batch_scores, dtype=torch.float32, device=dev
|
|
195
|
+
) # [Names,Batch,Beam], float32
|
|
196
|
+
|
|
197
|
+
if ref is not None:
|
|
198
|
+
ref_: List[List[int]] = [ref[tag] for tag in batch_seq_tag_list]
|
|
199
|
+
ref_t = _make_padded_tensor_2d(ref_, dtype=dtype, device=dev) # [Batch,RefSeq], int16|int32|int64
|
|
200
|
+
ref_seq_lens = [len(ref[tag]) for tag in batch_seq_tag_list]
|
|
201
|
+
ref_seq_lens_t = torch.tensor(ref_seq_lens, dtype=torch.int32) # [Batch], int32
|
|
202
|
+
else:
|
|
203
|
+
ref_t = None
|
|
204
|
+
ref_seq_lens_t = None
|
|
205
|
+
|
|
206
|
+
batch_dim = Dim(len(batch_seq_tag_list), name="batch")
|
|
207
|
+
beam_sizes_rf = rf.convert_to_tensor(beam_sizes_t, dims=[batch_dim])
|
|
208
|
+
beam_dim = Dim(beam_sizes_rf, name="beam")
|
|
209
|
+
hyps_seq_lens_rf = rf.convert_to_tensor(hyps_seq_lens_t, dims=[batch_dim, beam_dim])
|
|
210
|
+
hyps_seq_dim = Dim(hyps_seq_lens_rf, name="hyps_seq")
|
|
211
|
+
hyps_rf = rf.convert_to_tensor(hyps_t, dims=[batch_dim, beam_dim, hyps_seq_dim])
|
|
212
|
+
if ref_t is not None:
|
|
213
|
+
ref_seq_lens_rf = rf.convert_to_tensor(ref_seq_lens_t, dims=[batch_dim])
|
|
214
|
+
ref_seq_dim = Dim(ref_seq_lens_rf, name="ref_seq")
|
|
215
|
+
ref_rf = rf.convert_to_tensor(ref_t, dims=[batch_dim, ref_seq_dim])
|
|
216
|
+
else:
|
|
217
|
+
ref_seq_dim = None
|
|
218
|
+
ref_rf = None
|
|
219
|
+
|
|
220
|
+
if args.evaluation == "edit_distance":
|
|
221
|
+
assert ref_rf is not None, "need --ref for edit_distance"
|
|
222
|
+
res = rf.edit_distance(ref_rf, ref_seq_dim, hyps_rf, hyps_seq_dim)
|
|
223
|
+
assert res.dims_set == {batch_dim, beam_dim}
|
|
224
|
+
res = res.copy_transpose((batch_dim, beam_dim))
|
|
225
|
+
res = rf.cast(res, "float64")
|
|
226
|
+
# Using avg_ref_seq_len makes this numerically more stable, as the numbers are not so small,
|
|
227
|
+
# and we can use reduce_mean below, which is also more stable.
|
|
228
|
+
res /= avg_ref_seq_len # WER / avg_len = (WER / total_len) * num_seqs -> can use reduce_mean
|
|
229
|
+
else:
|
|
230
|
+
raise ValueError(f"unknown evaluation {args.evaluation!r}")
|
|
231
|
+
|
|
232
|
+
batch_scores_rf = rf.convert_to_tensor(batch_scores_t, dims=[names_dim, batch_dim, beam_dim])
|
|
233
|
+
|
|
234
|
+
batches.append(
|
|
235
|
+
Batch(
|
|
236
|
+
seq_tags=batch_seq_tag_list,
|
|
237
|
+
batch_dim=batch_dim,
|
|
238
|
+
beam_dim=beam_dim,
|
|
239
|
+
hyps_eval=res,
|
|
240
|
+
names_dim=names_dim,
|
|
241
|
+
scores=batch_scores_rf,
|
|
242
|
+
)
|
|
243
|
+
)
|
|
244
|
+
print("num batches:", len(batches))
|
|
245
|
+
_report_dev_memory(dev)
|
|
246
|
+
|
|
247
|
+
def _eval_max_min(*, use_max: bool) -> float:
|
|
248
|
+
hyps_eval_ts = []
|
|
249
|
+
for batch in batches:
|
|
250
|
+
hyps_eval = (rf.reduce_max if use_max else rf.reduce_min)(
|
|
251
|
+
batch.hyps_eval, axis=batch.beam_dim
|
|
252
|
+
) # [Batch], float64
|
|
253
|
+
assert hyps_eval.dims_set == {batch.batch_dim}
|
|
254
|
+
hyps_eval_ts.append(hyps_eval.raw_tensor)
|
|
255
|
+
hyps_eval_t = torch.concatenate(hyps_eval_ts) # [NumSeqs], float64
|
|
256
|
+
hyps_eval_t = torch.mean(hyps_eval_t) # scalar, float64
|
|
257
|
+
return hyps_eval_t.cpu().item()
|
|
258
|
+
|
|
259
|
+
best_eval, worst_eval = _eval_max_min(use_max=False), _eval_max_min(use_max=True)
|
|
260
|
+
print(f"Best {args.evaluation}: {best_eval}, worst {args.evaluation}: {worst_eval}")
|
|
261
|
+
|
|
262
|
+
scales_min = [0.0] * len(names)
|
|
263
|
+
scales_max = [args.max_scale] * len(names)
|
|
264
|
+
if args.min_scales:
|
|
265
|
+
assert len(args.min_scales) % 2 == 0
|
|
266
|
+
for name, scale in zip(args.min_scales[::2], args.min_scales[1::2]):
|
|
267
|
+
scales_min[names.index(name)] = float(scale)
|
|
268
|
+
if args.max_scales:
|
|
269
|
+
assert len(args.max_scales) % 2 == 0
|
|
270
|
+
for name, scale in zip(args.max_scales[::2], args.max_scales[1::2]):
|
|
271
|
+
scales_max[names.index(name)] = float(scale)
|
|
272
|
+
|
|
273
|
+
scales = [(scales_min[i] + scales_max[i]) / 2 for i in range(len(names))]
|
|
274
|
+
for name_idx, scale in fixed_scales.items():
|
|
275
|
+
scales[name_idx] = scale
|
|
276
|
+
|
|
277
|
+
def _real_scales(scales_: List[float]):
|
|
278
|
+
scales_ = list(scales_)
|
|
279
|
+
for i_ in range(len(scales_)):
|
|
280
|
+
if i_ in scale_relative_to:
|
|
281
|
+
scales_[i_] *= scales_[scale_relative_to[i_]]
|
|
282
|
+
if i_ in neg_scales:
|
|
283
|
+
scales_[i_] *= -1
|
|
284
|
+
return scales_
|
|
285
|
+
|
|
286
|
+
def _eval_for_scales(scales_: List[float]) -> float:
|
|
287
|
+
real_scales_t = torch.tensor(_real_scales(scales_), dtype=torch.float32).to(dev) # [Names], float32
|
|
288
|
+
real_scales = rf.convert_to_tensor(real_scales_t, dims=[names_dim])
|
|
289
|
+
hyps_eval_ts = []
|
|
290
|
+
for batch in batches:
|
|
291
|
+
scores_scaled = rf.matmul(batch.scores, real_scales, reduce=names_dim) # [Batch,Beam], float32
|
|
292
|
+
beam_idx = rf.reduce_argmax(scores_scaled, axis=batch.beam_dim) # [Batch] -> Beam, int32
|
|
293
|
+
hyps_eval = rf.gather(batch.hyps_eval, indices=beam_idx) # [Batch], float64
|
|
294
|
+
assert hyps_eval.dims_set == {batch.batch_dim}
|
|
295
|
+
hyps_eval_ts.append(hyps_eval.raw_tensor)
|
|
296
|
+
hyps_eval_t = torch.concatenate(hyps_eval_ts) # [NumSeqs], float64
|
|
297
|
+
hyps_eval_t = torch.mean(hyps_eval_t) # scalar, float64
|
|
298
|
+
return hyps_eval_t.cpu().item()
|
|
299
|
+
|
|
300
|
+
if search_mode == "single":
|
|
301
|
+
print("Search mode single, each dimension/scale optimized separately")
|
|
302
|
+
for iter_idx in range(args.num_iterations):
|
|
303
|
+
print("*** Iter", iter_idx)
|
|
304
|
+
has_change = False
|
|
305
|
+
for scale_idx in range(len(scales) - 1, -1, -1):
|
|
306
|
+
if scale_idx in fixed_scales:
|
|
307
|
+
continue
|
|
308
|
+
print(f"** Scale {names[scale_idx]} in range {scales_min[scale_idx]} - {scales_max[scale_idx]}")
|
|
309
|
+
print(
|
|
310
|
+
" Other scales:",
|
|
311
|
+
", ".join(f"{names[i]}: {scales[i]}" for i in range(len(scales)) if i != scale_idx),
|
|
312
|
+
)
|
|
313
|
+
evals: List[Tuple[float, float]] = [] # (eval, scale)
|
|
314
|
+
for scale in np.linspace(scales_min[scale_idx], scales_max[scale_idx], num=args.num_steps):
|
|
315
|
+
scales[scale_idx] = scale
|
|
316
|
+
eval_ = _eval_for_scales(scales)
|
|
317
|
+
print(f"Scale {names[scale_idx]}: {scale}, {args.evaluation}: {eval_}")
|
|
318
|
+
evals.append((eval_, scale))
|
|
319
|
+
eval_p = np.percentile([eval_ for eval_, _ in evals], 5)
|
|
320
|
+
print("Eval p5:", eval_p, "best:", min(eval_ for eval_, _ in evals))
|
|
321
|
+
prev_min, prev_max = scales_min[scale_idx], scales_max[scale_idx]
|
|
322
|
+
scales_min[scale_idx] = min(scale for eval_, scale in evals if eval_ <= eval_p * 1.0001)
|
|
323
|
+
scales_max[scale_idx] = max(scale for eval_, scale in evals if eval_ <= eval_p * 1.0001)
|
|
324
|
+
print(f"New {names[scale_idx]} scales min/max:", scales_min[scale_idx], scales_max[scale_idx])
|
|
325
|
+
scales[scale_idx] = (scales_min[scale_idx] + scales_max[scale_idx]) / 2
|
|
326
|
+
if prev_min != scales_min[scale_idx] or prev_max != scales_max[scale_idx]:
|
|
327
|
+
has_change = True
|
|
328
|
+
else:
|
|
329
|
+
print(f"No change for scale {names[scale_idx]}")
|
|
330
|
+
if not has_change:
|
|
331
|
+
print(f"No change in this iteration {iter_idx}, stop")
|
|
332
|
+
break
|
|
333
|
+
elif search_mode == "grid":
|
|
334
|
+
print("Search mode grid, all dimensions/scales optimized together")
|
|
335
|
+
for iter_idx in range(args.num_iterations):
|
|
336
|
+
print("*** Iter", iter_idx)
|
|
337
|
+
has_change = False
|
|
338
|
+
scale_indices = []
|
|
339
|
+
spaces = []
|
|
340
|
+
for scale_idx in range(len(names)):
|
|
341
|
+
if scale_idx in fixed_scales:
|
|
342
|
+
continue
|
|
343
|
+
scale_indices.append(scale_idx)
|
|
344
|
+
spaces.append(np.linspace(scales_min[scale_idx], scales_max[scale_idx], num=args.num_steps))
|
|
345
|
+
evals: List[Tuple[float, List[float]]] = [] # (eval, scales)
|
|
346
|
+
best_eval_so_far = np.inf
|
|
347
|
+
spaces = np.meshgrid(*spaces)
|
|
348
|
+
it = np.nditer(spaces)
|
|
349
|
+
with it:
|
|
350
|
+
for scale_values in it:
|
|
351
|
+
assert len(scale_values) == len(scale_indices)
|
|
352
|
+
scales = [0.0] * len(names)
|
|
353
|
+
for scale_idx, scale in fixed_scales.items():
|
|
354
|
+
scales[scale_idx] = scale
|
|
355
|
+
for scale_idx, scale in zip(scale_indices, scale_values):
|
|
356
|
+
scales[scale_idx] = float(scale)
|
|
357
|
+
eval_ = _eval_for_scales(scales)
|
|
358
|
+
if eval_ < best_eval_so_far:
|
|
359
|
+
best_eval_so_far = eval_
|
|
360
|
+
print(f"New best {args.evaluation}: {eval_}, scales: {scales}")
|
|
361
|
+
evals.append((eval_, scales))
|
|
362
|
+
if args.output_grid_plot:
|
|
363
|
+
assert len(scale_indices) == 2, "only implemented for 2 scales"
|
|
364
|
+
_plot_grid(
|
|
365
|
+
evals,
|
|
366
|
+
scale_indices=scale_indices,
|
|
367
|
+
title="",
|
|
368
|
+
cbar_label=args.evaluation,
|
|
369
|
+
x_axis_name=names[scale_indices[0]],
|
|
370
|
+
y_axis_name=names[scale_indices[1]],
|
|
371
|
+
out_plot_filename=f"{args.output_grid_plot}.{iter_idx}.pdf",
|
|
372
|
+
)
|
|
373
|
+
eval_p = np.percentile([eval_ for eval_, _ in evals], 5)
|
|
374
|
+
print(
|
|
375
|
+
f"Evaluated grid size {len(evals)}, eval p5: {eval_p},",
|
|
376
|
+
f"best: {min(eval_ for eval_, _ in evals)},",
|
|
377
|
+
f"worst: {max(eval_ for eval_, _ in evals)}",
|
|
378
|
+
)
|
|
379
|
+
for scale_idx in scale_indices:
|
|
380
|
+
prev_min, prev_max = scales_min[scale_idx], scales_max[scale_idx]
|
|
381
|
+
scales_min[scale_idx] = min(scale[scale_idx] for eval_, scale in evals if eval_ <= eval_p * 1.0001)
|
|
382
|
+
scales_max[scale_idx] = max(scale[scale_idx] for eval_, scale in evals if eval_ <= eval_p * 1.0001)
|
|
383
|
+
print(f"New {names[scale_idx]} scales min/max:", scales_min[scale_idx], scales_max[scale_idx])
|
|
384
|
+
if prev_min != scales_min[scale_idx] or prev_max != scales_max[scale_idx]:
|
|
385
|
+
has_change = True
|
|
386
|
+
else:
|
|
387
|
+
print(f"No change for scale {names[scale_idx]}")
|
|
388
|
+
# Select current best.
|
|
389
|
+
scales = min(evals)[1]
|
|
390
|
+
if not has_change:
|
|
391
|
+
print(f"No change in this iteration {iter_idx}, stop")
|
|
392
|
+
break
|
|
393
|
+
else:
|
|
394
|
+
raise ValueError(f"unknown search mode {search_mode!r}")
|
|
395
|
+
|
|
396
|
+
print("Final scales:")
|
|
397
|
+
for name, scale, real_scale in zip(names, scales, _real_scales(scales)):
|
|
398
|
+
print(f"{name}: {scale} (real: {real_scale})")
|
|
399
|
+
eval_ = _eval_for_scales(scales)
|
|
400
|
+
print(f"Final {args.evaluation}: {eval_}")
|
|
401
|
+
|
|
402
|
+
if args.output_scales:
|
|
403
|
+
print("Writing scales to", args.output_scales)
|
|
404
|
+
with open(args.output_scales, "w") as f:
|
|
405
|
+
f.write(json.dumps(dict(zip(names, scales))) + "\n")
|
|
406
|
+
if args.output_real_scales:
|
|
407
|
+
print("Writing real scales to", args.output_real_scales)
|
|
408
|
+
with open(args.output_real_scales, "w") as f:
|
|
409
|
+
f.write(json.dumps(dict(zip(names, _real_scales(scales)))) + "\n")
|
|
410
|
+
|
|
411
|
+
|
|
412
|
+
@dataclass
|
|
413
|
+
class Batch:
|
|
414
|
+
"""batch"""
|
|
415
|
+
|
|
416
|
+
seq_tags: List[str]
|
|
417
|
+
batch_dim: Dim # scalar, int32
|
|
418
|
+
beam_dim: Dim # [Batch], int32
|
|
419
|
+
hyps_eval: Tensor # [Batch,Beam], float64
|
|
420
|
+
names_dim: Dim # scalar, int32
|
|
421
|
+
scores: Tensor # [Names,Batch,Beam], float32
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
def _make_padded_tensor_2d(
|
|
425
|
+
lst: List[List[Union[int, float]]], *, dtype: torch.dtype, device: Optional[torch.device] = None
|
|
426
|
+
) -> torch.Tensor:
|
|
427
|
+
max_len = max(len(l_) for l_ in lst)
|
|
428
|
+
res = torch.zeros((len(lst), max_len), dtype=dtype)
|
|
429
|
+
for i, l in enumerate(lst):
|
|
430
|
+
for j, v in enumerate(l):
|
|
431
|
+
res[i, j] = v
|
|
432
|
+
return res.to(device)
|
|
433
|
+
|
|
434
|
+
|
|
435
|
+
def _make_padded_tensor_3d(
|
|
436
|
+
lst: List[List[List[Union[int, float]]]], *, dtype: torch.dtype, device: torch.device
|
|
437
|
+
) -> torch.Tensor:
|
|
438
|
+
max_len = max(len(l_) for l_ in lst)
|
|
439
|
+
max_len2 = max(len(l__) for l_ in lst for l__ in l_)
|
|
440
|
+
res = torch.zeros((len(lst), max_len, max_len2), dtype=dtype)
|
|
441
|
+
for i, l in enumerate(lst):
|
|
442
|
+
for j, l2 in enumerate(l):
|
|
443
|
+
for k, v in enumerate(l2):
|
|
444
|
+
res[i, j, k] = v
|
|
445
|
+
return res.to(device)
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
def _load_text_dict_hyps_file(
|
|
449
|
+
filename: str,
|
|
450
|
+
*,
|
|
451
|
+
name: str,
|
|
452
|
+
vocab: Dict[str, int],
|
|
453
|
+
expect_same_hyps: Optional[Dict[str, List[List[int]]]] = None,
|
|
454
|
+
) -> Tuple[Dict[str, List[float]], Dict[str, List[List[int]]]]:
|
|
455
|
+
# See also code in RETURNN TextDictDataset.
|
|
456
|
+
print(f"Loading text dict file {name} from {filename} ...")
|
|
457
|
+
|
|
458
|
+
if filename.endswith(".gz"):
|
|
459
|
+
import gzip
|
|
460
|
+
|
|
461
|
+
txt = gzip.GzipFile(filename, "rb").read()
|
|
462
|
+
else:
|
|
463
|
+
txt = open(filename, "rb").read()
|
|
464
|
+
data: Dict[str, List[Tuple[float, str]]] = eval(txt)
|
|
465
|
+
assert isinstance(data, dict)
|
|
466
|
+
res_scores = {}
|
|
467
|
+
res_hyps = {}
|
|
468
|
+
if expect_same_hyps is not None:
|
|
469
|
+
assert set(data.keys()) == set(expect_same_hyps.keys())
|
|
470
|
+
for tag, hyps in data.items():
|
|
471
|
+
res_scores[tag], res_hyps[tag] = _hyps_to_indices(
|
|
472
|
+
hyps,
|
|
473
|
+
vocab=vocab,
|
|
474
|
+
expect_same_hyps=expect_same_hyps[tag] if expect_same_hyps else None,
|
|
475
|
+
)
|
|
476
|
+
return res_scores, res_hyps
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
def _load_text_dict_file(filename: str, *, name: str, vocab: Dict[str, int]) -> Dict[str, List[int]]:
|
|
480
|
+
# See also code in RETURNN TextDictDataset.
|
|
481
|
+
print(f"Loading text dict file {name} from {filename} ...")
|
|
482
|
+
|
|
483
|
+
if filename.endswith(".gz"):
|
|
484
|
+
import gzip
|
|
485
|
+
|
|
486
|
+
txt = gzip.GzipFile(filename, "rb").read()
|
|
487
|
+
else:
|
|
488
|
+
txt = open(filename, "rb").read()
|
|
489
|
+
data: Dict[str, str] = eval(txt)
|
|
490
|
+
assert isinstance(data, dict)
|
|
491
|
+
res = {}
|
|
492
|
+
for tag, hyps in data.items():
|
|
493
|
+
res[tag] = _hyp_to_indices(hyps, vocab=vocab)
|
|
494
|
+
return res
|
|
495
|
+
|
|
496
|
+
|
|
497
|
+
def _hyps_to_indices(
|
|
498
|
+
hyp: List[Tuple[float, str]],
|
|
499
|
+
*,
|
|
500
|
+
vocab: Dict[str, int],
|
|
501
|
+
expect_same_hyps: Optional[List[List[int]]] = None,
|
|
502
|
+
) -> Tuple[List[float], List[List[int]]]:
|
|
503
|
+
assert isinstance(hyp, list)
|
|
504
|
+
if expect_same_hyps is not None:
|
|
505
|
+
assert len(expect_same_hyps) == len(hyp)
|
|
506
|
+
res_scores = []
|
|
507
|
+
res_hyps = []
|
|
508
|
+
for i, (score, hyp_) in enumerate(hyp):
|
|
509
|
+
assert isinstance(score, float) and isinstance(hyp_, str)
|
|
510
|
+
res_scores.append(score)
|
|
511
|
+
seq = _hyp_to_indices(hyp_, vocab=vocab, assert_in_vocab=expect_same_hyps is not None)
|
|
512
|
+
if expect_same_hyps is not None:
|
|
513
|
+
assert seq == expect_same_hyps[i]
|
|
514
|
+
res_hyps.append(seq)
|
|
515
|
+
return res_scores, res_hyps
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
def _hyp_to_indices(hyp: str, *, vocab: Dict[str, int], assert_in_vocab: bool = False) -> List[int]:
|
|
519
|
+
assert isinstance(hyp, str)
|
|
520
|
+
res = []
|
|
521
|
+
for label in hyp.split():
|
|
522
|
+
if label not in vocab:
|
|
523
|
+
assert not assert_in_vocab, f"unknown label {label}"
|
|
524
|
+
vocab[label] = len(vocab)
|
|
525
|
+
res.append(vocab[label])
|
|
526
|
+
return res
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
def _report_dev_memory(dev: torch.device):
|
|
530
|
+
import torch
|
|
531
|
+
from returnn.util import basic as rutil
|
|
532
|
+
|
|
533
|
+
if dev.type == "cuda":
|
|
534
|
+
stats = [
|
|
535
|
+
f"alloc cur {rutil.human_bytes_size(torch.cuda.memory_allocated(dev))}",
|
|
536
|
+
f"alloc peak {rutil.human_bytes_size(torch.cuda.max_memory_allocated(dev))}",
|
|
537
|
+
f"reserved cur {rutil.human_bytes_size(torch.cuda.memory_reserved(dev))}",
|
|
538
|
+
f"reserved peak {rutil.human_bytes_size(torch.cuda.max_memory_reserved(dev))}",
|
|
539
|
+
]
|
|
540
|
+
print(f"Memory usage ({dev}):", " ".join(stats))
|
|
541
|
+
|
|
542
|
+
|
|
543
|
+
def _plot_grid(
|
|
544
|
+
evals: List[Tuple[float, List[float]]],
|
|
545
|
+
*,
|
|
546
|
+
scale_indices: List[int],
|
|
547
|
+
title: str,
|
|
548
|
+
cbar_label: str,
|
|
549
|
+
y_axis_name: str,
|
|
550
|
+
x_axis_name: str,
|
|
551
|
+
out_plot_filename: str,
|
|
552
|
+
):
|
|
553
|
+
# noinspection PyPackageRequirements
|
|
554
|
+
import matplotlib.pyplot as plt
|
|
555
|
+
|
|
556
|
+
# noinspection PyPackageRequirements
|
|
557
|
+
import matplotlib.ticker as ticker
|
|
558
|
+
|
|
559
|
+
results = {} # (x,y) -> z
|
|
560
|
+
for eval_, scales in evals:
|
|
561
|
+
results[tuple([scales[i] for i in scale_indices])] = eval_
|
|
562
|
+
xs = sorted(set(scales[scale_indices[0]] for _, scales in evals))
|
|
563
|
+
ys = sorted(set(scales[scale_indices[1]] for _, scales in evals))
|
|
564
|
+
|
|
565
|
+
plt.figure(figsize=(8, 8))
|
|
566
|
+
|
|
567
|
+
zs = np.zeros((len(ys), len(xs)))
|
|
568
|
+
for y_idx, y in enumerate(ys):
|
|
569
|
+
for x_idx, x in enumerate(xs):
|
|
570
|
+
zs[y_idx, x_idx] = results[(x, y)]
|
|
571
|
+
|
|
572
|
+
best = np.min(zs.flatten())
|
|
573
|
+
worst_limit = best * 1.3
|
|
574
|
+
|
|
575
|
+
ax = plt.subplot(1, 1, 1)
|
|
576
|
+
plt.contourf(xs, ys, zs, levels=np.geomspace(best, worst_limit, 30))
|
|
577
|
+
|
|
578
|
+
ax.set_title(title)
|
|
579
|
+
ax.set_ylabel(y_axis_name)
|
|
580
|
+
ax.set_xlabel(x_axis_name)
|
|
581
|
+
ax.xaxis.set_major_locator(ticker.AutoLocator())
|
|
582
|
+
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
|
|
583
|
+
ax.yaxis.set_major_locator(ticker.AutoLocator())
|
|
584
|
+
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
|
|
585
|
+
|
|
586
|
+
cbar = plt.colorbar()
|
|
587
|
+
cbar.set_label(cbar_label)
|
|
588
|
+
|
|
589
|
+
print("Saving plot to", out_plot_filename)
|
|
590
|
+
plt.savefig(out_plot_filename)
|
|
591
|
+
|
|
592
|
+
|
|
593
|
+
if __name__ == "__main__":
|
|
594
|
+
main()
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|