returnn 1.20240905.172412__tar.gz → 1.20240906.11340__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of returnn might be problematic. Click here for more details.
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/PKG-INFO +1 -1
- returnn-1.20240906.11340/_setup_info_generated.py +2 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_utils.py +1 -1
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/array_.py +9 -8
- returnn-1.20240906.11340/returnn/frontend/loss.py +181 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/parameter.py +0 -2
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/_backend.py +1 -2
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/PKG-INFO +1 -1
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_base.py +115 -0
- returnn-1.20240905.172412/_setup_info_generated.py +0 -2
- returnn-1.20240905.172412/returnn/frontend/loss.py +0 -93
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.editorconfig +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.gitignore +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.gitmodules +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.kateconfig +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/CHANGELOG.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/CODEOWNERS +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/CONTRIBUTING.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/LICENSE +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/MANIFEST.in +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/README.rst +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/12AX.cluster_map +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/_setup_returnn_env.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-fwd.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-horovod-mpi.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-horovod-mpi.py.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-horovod-mpi.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-hyper-param-tuning.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-iter-dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-list-devices.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-lua-torch-layer.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-pretrain.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-record-and-push-to-webserver.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-returnn-as-framework.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-rf-pt-benchmark.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-rf.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-rhn-enwik8.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-sprint-interface.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-att-copy.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-attention.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-enc-dec.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-hard-att-copy.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-lstm-benchmark.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm2.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-neural-transducer.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-explicit-lstm.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-explicit-rnn.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-self-att.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-search-compiled-graph.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-timit-lstm-ctc.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-torch.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/README.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/chars.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/config_demo +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/config_fwd +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/config_real +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/decode.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/go.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/lines.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/split/eval.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/split/train.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/split/valid.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/create_test_h5.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/forwardconfig +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/go.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/trainconfig +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/go.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/pyproject.toml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/requirements.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__main__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__old_mod_loader__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__setup__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/config.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/audio.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/basic.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/bundle_file.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/cached.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/cached2.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/distrib_files.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/generating.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/hdf.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/lm.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/map.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/meta.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/multi_proc.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/normalization_data.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/numpy_dump.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/postprocessing.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/raw_wav.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/sprint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/stereo.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/feature_extraction.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/strings.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/vocabulary.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/engine/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/engine/base.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/engine/batch.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/__main__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/.git +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/edit.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/reroute.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/select.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/subgraph.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/transform.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/util.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/forward_iface.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_backend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/backend.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/backend.hpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/module.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/module.hpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/py_utils.hpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/tensor_ops.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/tensor_ops.hpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_numpy_backend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_random_journal.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/attention.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/audio/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/audio/mel.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/audio/specaugment.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/backend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/build_from_dict.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/cond.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/const.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/container.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/control_flow_ctx.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conv.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/hf_llama.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/torch_nn.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/decoder/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/decoder/transformer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/device.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/dims.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/dropout.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/dtype.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/base.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/conformer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/e_branchformer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/gradient.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/graph.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/hooks.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/init.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/label_smoothing.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/linear.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/loop.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/math_.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/matmul.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/module.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/normalization.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/parametrizations.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/parametrize.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/piecewise_linear.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/rand.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/rec.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/reduce.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/run_ctx.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/signal.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/state.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/stepwise_scheduler.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/tensor_array.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/types.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/common.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/git.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/import_.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/learning_rate_control.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/log.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/native_op.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/native_op.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/pretrain.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/cache.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/control.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/error_signals.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/extern_interface.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/interface.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_dim_extra.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_tensor_extra.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_tensor_mixin_base.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_tensor_op_overloads.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/control_flow_ctx.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/dim.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/marked_dim.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/tensor.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/tensor_dict.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/utils.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/compat.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/data_pipeline.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/distributed.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/engine.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/_backend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/_utils.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/cond.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/dims.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/layer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/loop.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/make_layer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/masked_computation.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_low_level/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_low_level/_backend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/horovod.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/hyper_param_tuning.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/base.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/basic.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/rec.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/segmental_model.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/signal_processing.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/variable.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/native_op.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/network.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/sprint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/updater.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/basic.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/data.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/gradient_checkpoint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/ken_lm.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/open_fst.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/extern_data.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/pipeline.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/queued_data_iter.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/tensor_utils.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/distributed.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/engine.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/_rand.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/bridge.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/raw_ops.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/updater.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/array_.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/diagnose_gpu.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/gradient_checkpoint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/module.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/scaled_gradient.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/__init__.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/basic.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/better_exchook.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/bpe.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/debug.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/debug_helpers.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/file_cache.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/fsa.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/literal_py_to_pickle.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/math.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/native_code_compiler.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/pprint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/py-to-pickle.cpp +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/py_compat.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/py_ext_mod_compiler.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/result_with_reason.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/sig_proc.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/task_system.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/train_proc_manager.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/watch_memory.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/SOURCES.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/dependency_links.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/top_level.txt +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/rnn.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/setup.cfg +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/setup.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/DummySprintExec.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm-inspection-profile.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/.gitignore +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/.name +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/misc.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/modules.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/returnn.iml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/_set_num_threads1.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/_setup_returnn_env.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/_setup_test_env.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/bpe-unicode-demo.codes +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/bpe-unicode-demo.vocab +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.fst +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.isyms +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.jpg +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.osyms +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lint_common.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/pycharm-inspect.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/pylint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/returnn-as-framework.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/rf_utils.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/spelling.dic +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Config.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Fsa.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_GeneratingDataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_HDFDataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_LearningRateControl.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Log.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_MultiProcDataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Pretrain.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_ResNet.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_SprintDataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_SprintInterface.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFEngine.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNativeOp.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNetworkLayer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNetworkRecLayer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNetworkSigProcLayer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFUpdater.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFUtil.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TF_determinism.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TaskSystem.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TaskSystem_SharedMem.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TranslationDataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Util.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_demos.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_fork_exec.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_hdf_dump.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_array.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_attention.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_cond.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_const.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_container.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_conv.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_decoder_transformer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_encoder_conformer.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_gradient.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_label_smoothing.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_loop.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_math.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_normalization.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_piecewise_linear.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_rec.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_reduce.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_signal.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_tensor.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_tools.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_engine.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_frontend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_internal_frontend.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_util.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/torch_utils.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/_setup_returnn_env.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/analyze-dataset-batches.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-collect-seq-lens.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-dump-text.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-get-segment-names.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-to-ogg-zip.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bpe-create-lexicon.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/calculate-word-error-rate.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/cleanup-old-models.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/collect-orth-symbols.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/collect-words.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/compile_native_op.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/compile_tf_graph.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/debug-dump-search-scores.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/debug-plot-search-scores.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-dataset-raw-strings.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-forward-stats.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-forward.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-network-json.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-pickle.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/extract_state_tying_from_dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/get-attention-weights.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/get-best-model-epoch.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/hdf_dump.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/hdf_dump_translation_dataset.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/import-blocks-mt-model.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/import-t2t-mt-model.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/.gitignore +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/Makefile +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/README.md +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/libs_list +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/state_vars_list +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/tensor_names_list +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/file.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/main.cc +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/rescorer.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/vocabulary.cc +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/vocabulary.h +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/tf_avg_checkpoints.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/tf_inspect_checkpoint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/tf_inspect_summary_log.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_avg_checkpoints.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_export_to_onnx.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_inspect_checkpoint.py +0 -0
- {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
|
@@ -292,5 +292,5 @@ def _slice_value_is_reduce(v: Union[None, slice, int, numpy.number, numpy.ndarra
|
|
|
292
292
|
return v.ndim == 0
|
|
293
293
|
if isinstance(v, Tensor):
|
|
294
294
|
assert len(v.dims) <= 1, f"strided_slice: expect scalar or vector, got Tensor with dims {v.dims}"
|
|
295
|
-
return v.dims == 0
|
|
295
|
+
return len(v.dims) == 0
|
|
296
296
|
raise TypeError(f"strided_slice: got unexpected value of type {type(v).__name__}")
|
|
@@ -412,16 +412,17 @@ def pad(
|
|
|
412
412
|
:return: padded tensor, out_dims. out dims are for each dim in axes
|
|
413
413
|
"""
|
|
414
414
|
assert len(axes) == len(padding)
|
|
415
|
-
if not out_dims:
|
|
416
|
-
for left, right in padding:
|
|
417
|
-
if isinstance(left, Dim):
|
|
418
|
-
assert not left.need_masking(), f"padding {padding} does not support dynamic left padding"
|
|
419
|
-
if isinstance(right, Dim):
|
|
420
|
-
assert not right.need_masking(), f"padding {padding} does not support dynamic right padding"
|
|
421
|
-
# Note that even dynamic middle dims is not exactly correct...
|
|
422
|
-
out_dims = [left + middle + right for middle, (left, right) in zip(axes, padding)]
|
|
423
415
|
if handle_dynamic_dims is None:
|
|
424
416
|
handle_dynamic_dims = _pad_handle_dynamic_dims_default(axes, padding, mode=mode)
|
|
417
|
+
if not out_dims:
|
|
418
|
+
if handle_dynamic_dims:
|
|
419
|
+
for left, right in padding:
|
|
420
|
+
if isinstance(left, Dim):
|
|
421
|
+
assert not left.need_masking(), f"padding {padding} does not support dynamic left padding"
|
|
422
|
+
if isinstance(right, Dim):
|
|
423
|
+
assert not right.need_masking(), f"padding {padding} does not support dynamic right padding"
|
|
424
|
+
# Note that even dynamic middle dims is not exactly correct...
|
|
425
|
+
out_dims = [left + middle + right for middle, (left, right) in zip(axes, padding)]
|
|
425
426
|
# noinspection PyProtectedMember
|
|
426
427
|
return (
|
|
427
428
|
source._raw_backend.pad(
|
|
@@ -0,0 +1,181 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Loss functions
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
from returnn.tensor import Tensor, Dim
|
|
7
|
+
import returnn.frontend as rf
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
__all__ = ["cross_entropy", "ctc_loss", "edit_distance"]
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def cross_entropy(
|
|
14
|
+
*,
|
|
15
|
+
estimated: Tensor,
|
|
16
|
+
target: Tensor,
|
|
17
|
+
axis: Dim,
|
|
18
|
+
estimated_type: str,
|
|
19
|
+
) -> Tensor:
|
|
20
|
+
"""
|
|
21
|
+
``target`` is supposed to be in probability space (normalized). It can also be sparse, i.e. contain class indices.
|
|
22
|
+
``estimated`` can be probs, log-probs or logits, specified via ``estimated_type``.
|
|
23
|
+
|
|
24
|
+
Assuming both are in probability space, the cross entropy is:
|
|
25
|
+
|
|
26
|
+
H(target,estimated) = -reduce_sum(target * log(estimated), axis=axis)
|
|
27
|
+
= -matmul(target, log(estimated), reduce=axis)
|
|
28
|
+
|
|
29
|
+
In case you want label smoothing, you can use e.g.::
|
|
30
|
+
|
|
31
|
+
ce = nn.cross_entropy(
|
|
32
|
+
target=nn.label_smoothing(target, 0.1),
|
|
33
|
+
estimated=estimated)
|
|
34
|
+
|
|
35
|
+
:param estimated: probs, log-probs or logits, specified via ``estimated_type``
|
|
36
|
+
:param target: probs, normalized, can also be sparse
|
|
37
|
+
:param axis: class labels dim over which softmax is computed
|
|
38
|
+
:param estimated_type: "probs", "log-probs" or "logits"
|
|
39
|
+
:return: cross entropy (same Dims as 'estimated' but without 'axis')
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
if estimated_type == "logits":
|
|
43
|
+
# This is a common case and most backends provide optimized functions for it.
|
|
44
|
+
# noinspection PyProtectedMember
|
|
45
|
+
return estimated._raw_backend.softmax_cross_entropy_with_logits(logits=estimated, targets=target, axis=axis)
|
|
46
|
+
if estimated_type == "probs":
|
|
47
|
+
log_prob = rf.log(estimated) # TODO: make numerically stable
|
|
48
|
+
elif estimated_type == "log-probs":
|
|
49
|
+
log_prob = estimated
|
|
50
|
+
else:
|
|
51
|
+
raise ValueError("estimated_type must be 'probs', 'log-probs' or 'logits'")
|
|
52
|
+
if target.sparse_dim:
|
|
53
|
+
return -rf.gather(log_prob, indices=target, axis=axis)
|
|
54
|
+
return -rf.matmul(target, log_prob, reduce=axis)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def ctc_loss(
|
|
58
|
+
*,
|
|
59
|
+
logits: Tensor,
|
|
60
|
+
logits_normalized: bool = False,
|
|
61
|
+
targets: Tensor,
|
|
62
|
+
input_spatial_dim: Dim,
|
|
63
|
+
targets_spatial_dim: Dim,
|
|
64
|
+
blank_index: int,
|
|
65
|
+
max_approx: bool = False,
|
|
66
|
+
) -> Tensor:
|
|
67
|
+
"""
|
|
68
|
+
Calculates the CTC loss.
|
|
69
|
+
|
|
70
|
+
Internally, this uses :func:`returnn.tf.native_op.ctc_loss`
|
|
71
|
+
which is equivalent to tf.nn.ctc_loss but more efficient.
|
|
72
|
+
|
|
73
|
+
Output is of shape [B].
|
|
74
|
+
|
|
75
|
+
:param logits: (before softmax). shape [B...,input_spatial,C]
|
|
76
|
+
:param logits_normalized: whether the logits are already normalized (e.g. via log-softmax)
|
|
77
|
+
:param targets: sparse. shape [B...,targets_spatial] -> C
|
|
78
|
+
:param input_spatial_dim: spatial dim of input logits
|
|
79
|
+
:param targets_spatial_dim: spatial dim of targets
|
|
80
|
+
:param blank_index: vocab index of the blank symbol
|
|
81
|
+
:param max_approx: if True, use max instead of sum over alignments (max approx, Viterbi)
|
|
82
|
+
:return: loss shape [B...]
|
|
83
|
+
"""
|
|
84
|
+
# noinspection PyProtectedMember
|
|
85
|
+
return logits._raw_backend.ctc_loss(
|
|
86
|
+
logits=logits,
|
|
87
|
+
logits_normalized=logits_normalized,
|
|
88
|
+
targets=targets,
|
|
89
|
+
input_spatial_dim=input_spatial_dim,
|
|
90
|
+
targets_spatial_dim=targets_spatial_dim,
|
|
91
|
+
blank_index=blank_index,
|
|
92
|
+
max_approx=max_approx,
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def edit_distance(a: Tensor, a_spatial_dim: Dim, b: Tensor, b_spatial_dim: Dim, *, dtype: str = "int32") -> Tensor:
|
|
97
|
+
"""
|
|
98
|
+
:param a: [B,Ta]
|
|
99
|
+
:param a_spatial_dim: Ta
|
|
100
|
+
:param b: [B,Tb]
|
|
101
|
+
:param b_spatial_dim: Tb
|
|
102
|
+
:param dtype:
|
|
103
|
+
:return: [B]
|
|
104
|
+
"""
|
|
105
|
+
import numpy # just for iinfo on dtype to get max value
|
|
106
|
+
|
|
107
|
+
# The axis permutation is just an efficiency optimization.
|
|
108
|
+
a = a.copy_transpose([a_spatial_dim] + a.remaining_dims(a_spatial_dim))
|
|
109
|
+
b = b.copy_transpose([b_spatial_dim] + b.remaining_dims(b_spatial_dim))
|
|
110
|
+
dev = a.device
|
|
111
|
+
max_dist_err = numpy.iinfo(dtype).max
|
|
112
|
+
n_a_max_len = a_spatial_dim.get_dim_value()
|
|
113
|
+
n_b_max_len = b_spatial_dim.get_dim_value()
|
|
114
|
+
if int(n_a_max_len) < int(n_b_max_len):
|
|
115
|
+
a, b = b, a
|
|
116
|
+
a_spatial_dim, b_spatial_dim = b_spatial_dim, a_spatial_dim
|
|
117
|
+
n_a_max_len, n_b_max_len = n_b_max_len, n_a_max_len
|
|
118
|
+
# Now n_a_max_len >= n_b_max_len.
|
|
119
|
+
batch_dims = a.remaining_dims(a_spatial_dim)
|
|
120
|
+
for dim in b.remaining_dims(b_spatial_dim):
|
|
121
|
+
if dim not in batch_dims:
|
|
122
|
+
batch_dims.append(dim)
|
|
123
|
+
a_seq_len = a_spatial_dim.get_dyn_size_ext_for_device(dev) # [B]
|
|
124
|
+
b_seq_len = b_spatial_dim.get_dyn_size_ext_for_device(dev) # [B]
|
|
125
|
+
a_tensor_ext, (a_spatial_dim_ext,) = rf.pad(
|
|
126
|
+
a, axes=[a_spatial_dim], padding=[(b_spatial_dim, b_spatial_dim)], handle_dynamic_dims=False
|
|
127
|
+
) # [Tb+Ta+Tb,B]
|
|
128
|
+
a_spatial_dim_ext: Dim
|
|
129
|
+
b_tensor_flipped = rf.reverse_sequence(b, axis=b_spatial_dim, handle_dynamic_dims=False) # [Tb,B]
|
|
130
|
+
entry_idx_ = rf.range_over_dim(b_spatial_dim, device=dev) # [Tb]->Tb
|
|
131
|
+
b_spatial_dim1 = b_spatial_dim + 1
|
|
132
|
+
buffer_dim = Dim(3 * b_spatial_dim1.get_dim_value_tensor(), name="buffer")
|
|
133
|
+
buffer = rf.Parameter([buffer_dim] + batch_dims, device=dev, dtype=dtype, auxiliary=True) # [3*(Tb+1),B]
|
|
134
|
+
buffer_offsets = [0, b_spatial_dim1.get_dim_value_tensor(), b_spatial_dim1.get_dim_value_tensor() * 2]
|
|
135
|
+
result = rf.where((a_seq_len == 0) & (b_seq_len == 0), 0, max_dist_err) # [B] # noqa
|
|
136
|
+
|
|
137
|
+
# We are going diagonal over (Ta+1) and (Tb+1). (Similar as RETURNN native EditDistanceOp.)
|
|
138
|
+
# You need to draw the grid on paper to understand all the index math...
|
|
139
|
+
for u in range(1, n_a_max_len + n_b_max_len + 1):
|
|
140
|
+
|
|
141
|
+
prev2_dist, _ = rf.slice(
|
|
142
|
+
buffer, axis=buffer_dim, start=buffer_offsets[u % 3], size=b_spatial_dim1, out_dim=b_spatial_dim1
|
|
143
|
+
) # [Tb+1,B]
|
|
144
|
+
prev_dist, _ = rf.slice(
|
|
145
|
+
buffer, axis=buffer_dim, start=buffer_offsets[(u + 1) % 3], size=b_spatial_dim1, out_dim=b_spatial_dim1
|
|
146
|
+
) # [Tb+1,B]
|
|
147
|
+
cur_dist_start_offset = buffer_offsets[(u + 2) % 3]
|
|
148
|
+
|
|
149
|
+
del_cost = (
|
|
150
|
+
rf.slice(prev_dist, axis=b_spatial_dim1, end=b_spatial_dim.get_dim_value_tensor(), out_dim=b_spatial_dim)[0]
|
|
151
|
+
+ 1
|
|
152
|
+
) # [Tb,B]
|
|
153
|
+
ins_cost = rf.slice(prev_dist, axis=b_spatial_dim1, start=1, out_dim=b_spatial_dim)[0] + 1 # [Tb,B]
|
|
154
|
+
sub_cost = rf.slice(prev2_dist, axis=b_spatial_dim1, start=1, out_dim=b_spatial_dim)[0] + rf.cast(
|
|
155
|
+
rf.slice(a_tensor_ext, axis=a_spatial_dim_ext, start=u - 1, size=b_spatial_dim, out_dim=b_spatial_dim)[0]
|
|
156
|
+
!= b_tensor_flipped,
|
|
157
|
+
dtype=dtype,
|
|
158
|
+
)
|
|
159
|
+
min_cost = rf.minimum(del_cost, ins_cost, sub_cost) # [Tb,B]
|
|
160
|
+
t_a_gt_zero_mask = entry_idx_ > n_b_max_len - u # [Tb]
|
|
161
|
+
|
|
162
|
+
buffer.assign_key(
|
|
163
|
+
axis=buffer_dim,
|
|
164
|
+
key=slice(cur_dist_start_offset, cur_dist_start_offset + b_spatial_dim.get_dim_value_tensor()),
|
|
165
|
+
key_dim=b_spatial_dim,
|
|
166
|
+
value=rf.where(t_a_gt_zero_mask, min_cost, u),
|
|
167
|
+
)
|
|
168
|
+
# last entry in cur_dist, that is where t_b == 0
|
|
169
|
+
buffer.assign_key(
|
|
170
|
+
axis=buffer_dim, key=cur_dist_start_offset + b_spatial_dim.get_dim_value_tensor(), key_dim=None, value=u
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
end_offset_a = n_b_max_len + a_seq_len - u # [B]
|
|
174
|
+
end_offset_b = n_b_max_len - b_seq_len # [B]
|
|
175
|
+
result = rf.where(
|
|
176
|
+
end_offset_a == end_offset_b,
|
|
177
|
+
rf.gather(buffer, axis=buffer_dim, indices=cur_dist_start_offset + end_offset_a, clip_to_valid=True),
|
|
178
|
+
result,
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
return result
|
|
@@ -75,8 +75,6 @@ class Parameter(Tensor[T]):
|
|
|
75
75
|
raise TypeError(f"rf.Parameter: invalid type for dims_or_tensor: {type(dims_or_tensor)}")
|
|
76
76
|
if not all(isinstance(dim, Dim) for dim in dims):
|
|
77
77
|
raise TypeError(f"rf.Parameter: shape {dims} must be a sequence of Dim")
|
|
78
|
-
if not all(isinstance(dim.dimension, int) for dim in dims):
|
|
79
|
-
raise ValueError(f"rf.Parameter: shape {dims} must be static")
|
|
80
78
|
if len(dims) != len(set((d, d.match_priority) for d in dims)):
|
|
81
79
|
raise ValueError(f"rf.Parameter: shape {dims} dims must be unique")
|
|
82
80
|
super(Parameter, self).__init__(
|
|
@@ -690,9 +690,8 @@ class TorchBackend(Backend[torch.Tensor]):
|
|
|
690
690
|
"""
|
|
691
691
|
:return: parameter
|
|
692
692
|
"""
|
|
693
|
-
assert all(d.is_static() for d in tensor.dims)
|
|
694
693
|
data = torch.zeros(
|
|
695
|
-
[d.
|
|
694
|
+
[d.get_dim_value() for d in tensor.dims],
|
|
696
695
|
dtype=TorchBackend.as_dtype_raw(tensor.dtype),
|
|
697
696
|
device=device or rf.get_default_device(),
|
|
698
697
|
)
|
|
@@ -560,3 +560,118 @@ def test_weight_noise():
|
|
|
560
560
|
rf.weight_noise(conv, "filter", std=0.1)
|
|
561
561
|
time_dim = Dim(11, name="time")
|
|
562
562
|
conv(rf.random_normal([time_dim, in_dim]), in_spatial_dim=time_dim)
|
|
563
|
+
|
|
564
|
+
|
|
565
|
+
def test_edit_distance():
|
|
566
|
+
import numpy
|
|
567
|
+
import torch
|
|
568
|
+
from typing import Sequence
|
|
569
|
+
from collections import namedtuple
|
|
570
|
+
import itertools
|
|
571
|
+
|
|
572
|
+
def _edit_distance_ref_b1(a: Sequence[int], b: Sequence[int]) -> int:
|
|
573
|
+
"""
|
|
574
|
+
Reference implementation for edit distance.
|
|
575
|
+
"""
|
|
576
|
+
n = len(a) + 1
|
|
577
|
+
m = len(b) + 1
|
|
578
|
+
d = torch.zeros((n, m), dtype=torch.int32)
|
|
579
|
+
for i in range(n):
|
|
580
|
+
d[i, 0] = i
|
|
581
|
+
for j in range(m):
|
|
582
|
+
d[0, j] = j
|
|
583
|
+
for j in range(1, m):
|
|
584
|
+
for i in range(1, n):
|
|
585
|
+
if a[i - 1] == b[j - 1]:
|
|
586
|
+
d[i, j] = d[i - 1, j - 1]
|
|
587
|
+
else:
|
|
588
|
+
d[i, j] = min(
|
|
589
|
+
d[i - 1, j] + 1, # deletion
|
|
590
|
+
d[i, j - 1] + 1, # insertion
|
|
591
|
+
d[i - 1, j - 1] + 1, # substitution
|
|
592
|
+
)
|
|
593
|
+
return int(d[n - 1, m - 1])
|
|
594
|
+
|
|
595
|
+
# noinspection PyShadowingNames
|
|
596
|
+
def _edit_distance_ref(a: Tensor, a_spatial_dim: Dim, b: Tensor, b_spatial_dim: Dim) -> torch.Tensor:
|
|
597
|
+
"""
|
|
598
|
+
Reference implementation for edit distance.
|
|
599
|
+
"""
|
|
600
|
+
batch_dim = a.dims[0]
|
|
601
|
+
assert a.dims == (batch_dim, a_spatial_dim) and b.dims == (batch_dim, b_spatial_dim)
|
|
602
|
+
res = []
|
|
603
|
+
for i in range(batch_dim.dimension):
|
|
604
|
+
assert a_spatial_dim.dyn_size[i] <= a.raw_tensor.size(1)
|
|
605
|
+
assert b_spatial_dim.dyn_size[i] <= b.raw_tensor.size(1)
|
|
606
|
+
res.append(
|
|
607
|
+
_edit_distance_ref_b1(
|
|
608
|
+
a.raw_tensor[i, : a_spatial_dim.dyn_size[i]], b.raw_tensor[i, : b_spatial_dim.dyn_size[i]]
|
|
609
|
+
)
|
|
610
|
+
)
|
|
611
|
+
return torch.tensor(res, dtype=torch.int32)
|
|
612
|
+
|
|
613
|
+
# noinspection PyShadowingNames
|
|
614
|
+
def _check_edit_distance(a: Tensor, a_spatial_dim: Dim, b: Tensor, b_spatial_dim: Dim):
|
|
615
|
+
ref = _edit_distance_ref(a, a_spatial_dim, b, b_spatial_dim)
|
|
616
|
+
res = rf.edit_distance(a, a_spatial_dim, b, b_spatial_dim)
|
|
617
|
+
assert res.raw_tensor.shape == ref.shape == a_spatial_dim.dyn_size.shape == b_spatial_dim.dyn_size.shape
|
|
618
|
+
assert len(ref.shape) == 1
|
|
619
|
+
print("ref:", ref, "res:", res.raw_tensor)
|
|
620
|
+
batch_size = ref.shape[0]
|
|
621
|
+
for i in range(batch_size):
|
|
622
|
+
assert res.raw_tensor[i] == ref[i], (
|
|
623
|
+
f"batch idx i={i}, a[i]={a.raw_tensor[i]} len {a_spatial_dim.dyn_size[i]},"
|
|
624
|
+
f" b[i]={b.raw_tensor[i]} len {b_spatial_dim.dyn_size[i]},"
|
|
625
|
+
f" ref[i]={ref[i]}, res[i]={res.raw_tensor[i]};\n"
|
|
626
|
+
f" a={a.raw_tensor} lens {a_spatial_dim.dyn_size},"
|
|
627
|
+
f" b={b.raw_tensor} lens {b_spatial_dim.dyn_size}"
|
|
628
|
+
)
|
|
629
|
+
assert (res.raw_tensor == ref).all()
|
|
630
|
+
|
|
631
|
+
SizedTensor = namedtuple("SizedTensor", ["tensor", "seq_lens"])
|
|
632
|
+
|
|
633
|
+
_SeqsB1 = [
|
|
634
|
+
SizedTensor(torch.tensor([[1, 2, 3, 4]]), torch.tensor([4])),
|
|
635
|
+
SizedTensor(torch.tensor([[1, 2, 3]]), torch.tensor([3])),
|
|
636
|
+
SizedTensor(torch.tensor([[1, 2, 4]]), torch.tensor([3])),
|
|
637
|
+
SizedTensor(torch.tensor([[1, 4]]), torch.tensor([2])),
|
|
638
|
+
SizedTensor(torch.tensor([[5, 2, 4]]), torch.tensor([3])),
|
|
639
|
+
SizedTensor(torch.tensor([[]], dtype=torch.int64), torch.tensor([0])),
|
|
640
|
+
]
|
|
641
|
+
|
|
642
|
+
for a, b in itertools.product(_SeqsB1, _SeqsB1):
|
|
643
|
+
a: SizedTensor
|
|
644
|
+
b: SizedTensor
|
|
645
|
+
# noinspection PyShadowingNames
|
|
646
|
+
batch_dim = Dim(1, name="batch")
|
|
647
|
+
a_spatial_dim = Dim(Tensor("a_sizes", [batch_dim], dtype="int64", raw_tensor=a.seq_lens))
|
|
648
|
+
b_spatial_dim = Dim(Tensor("b_sizes", [batch_dim], dtype="int64", raw_tensor=b.seq_lens))
|
|
649
|
+
a_ = Tensor("a", [batch_dim, a_spatial_dim], dtype="int64", raw_tensor=a.tensor)
|
|
650
|
+
b_ = Tensor("b", [batch_dim, b_spatial_dim], dtype="int64", raw_tensor=b.tensor)
|
|
651
|
+
_check_edit_distance(a_, a_spatial_dim, b_, b_spatial_dim)
|
|
652
|
+
|
|
653
|
+
rnd = numpy.random.RandomState(42)
|
|
654
|
+
for a, b in itertools.product(_SeqsB1, _SeqsB1):
|
|
655
|
+
batch_size = rnd.randint(2, 11)
|
|
656
|
+
a_max_len = rnd.randint(a.seq_lens[0], a.seq_lens[0] + 5)
|
|
657
|
+
b_max_len = rnd.randint(b.seq_lens[0], b.seq_lens[0] + 5)
|
|
658
|
+
a_sizes = rnd.randint(0, a_max_len + 1, size=(batch_size,))
|
|
659
|
+
b_sizes = rnd.randint(0, b_max_len + 1, size=(batch_size,))
|
|
660
|
+
a_sizes[0] = a.seq_lens[0]
|
|
661
|
+
b_sizes[0] = b.seq_lens[0]
|
|
662
|
+
a_max_len = max(a_sizes)
|
|
663
|
+
b_max_len = max(b_sizes)
|
|
664
|
+
a_values = rnd.randint(0, 10, (batch_size, a_max_len))
|
|
665
|
+
b_values = rnd.randint(0, 10, (batch_size, b_max_len))
|
|
666
|
+
a_values[0, : a.seq_lens[0]] = a.tensor[0, : a.seq_lens[0]]
|
|
667
|
+
b_values[0, : b.seq_lens[0]] = b.tensor[0, : b.seq_lens[0]]
|
|
668
|
+
a_sizes = torch.tensor(a_sizes, dtype=torch.int32)
|
|
669
|
+
b_sizes = torch.tensor(b_sizes, dtype=torch.int32)
|
|
670
|
+
|
|
671
|
+
# noinspection PyShadowingNames
|
|
672
|
+
batch_dim = Dim(batch_size, name="batch")
|
|
673
|
+
a_spatial_dim = Dim(Tensor("a_sizes", [batch_dim], dtype="int32", raw_tensor=a_sizes))
|
|
674
|
+
b_spatial_dim = Dim(Tensor("b_sizes", [batch_dim], dtype="int32", raw_tensor=b_sizes))
|
|
675
|
+
a_ = Tensor("a", [batch_dim, a_spatial_dim], dtype="int64", raw_tensor=torch.tensor(a_values))
|
|
676
|
+
b_ = Tensor("b", [batch_dim, b_spatial_dim], dtype="int64", raw_tensor=torch.tensor(b_values))
|
|
677
|
+
_check_edit_distance(a_, a_spatial_dim, b_, b_spatial_dim)
|
|
@@ -1,93 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Loss functions
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
from __future__ import annotations
|
|
6
|
-
from returnn.tensor import Tensor, Dim
|
|
7
|
-
import returnn.frontend as rf
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
__all__ = ["cross_entropy", "ctc_loss"]
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
def cross_entropy(
|
|
14
|
-
*,
|
|
15
|
-
estimated: Tensor,
|
|
16
|
-
target: Tensor,
|
|
17
|
-
axis: Dim,
|
|
18
|
-
estimated_type: str,
|
|
19
|
-
) -> Tensor:
|
|
20
|
-
"""
|
|
21
|
-
``target`` is supposed to be in probability space (normalized). It can also be sparse, i.e. contain class indices.
|
|
22
|
-
``estimated`` can be probs, log-probs or logits, specified via ``estimated_type``.
|
|
23
|
-
|
|
24
|
-
Assuming both are in probability space, the cross entropy is:
|
|
25
|
-
|
|
26
|
-
H(target,estimated) = -reduce_sum(target * log(estimated), axis=axis)
|
|
27
|
-
= -matmul(target, log(estimated), reduce=axis)
|
|
28
|
-
|
|
29
|
-
In case you want label smoothing, you can use e.g.::
|
|
30
|
-
|
|
31
|
-
ce = nn.cross_entropy(
|
|
32
|
-
target=nn.label_smoothing(target, 0.1),
|
|
33
|
-
estimated=estimated)
|
|
34
|
-
|
|
35
|
-
:param estimated: probs, log-probs or logits, specified via ``estimated_type``
|
|
36
|
-
:param target: probs, normalized, can also be sparse
|
|
37
|
-
:param axis: class labels dim over which softmax is computed
|
|
38
|
-
:param estimated_type: "probs", "log-probs" or "logits"
|
|
39
|
-
:return: cross entropy (same Dims as 'estimated' but without 'axis')
|
|
40
|
-
"""
|
|
41
|
-
|
|
42
|
-
if estimated_type == "logits":
|
|
43
|
-
# This is a common case and most backends provide optimized functions for it.
|
|
44
|
-
# noinspection PyProtectedMember
|
|
45
|
-
return estimated._raw_backend.softmax_cross_entropy_with_logits(logits=estimated, targets=target, axis=axis)
|
|
46
|
-
if estimated_type == "probs":
|
|
47
|
-
log_prob = rf.log(estimated) # TODO: make numerically stable
|
|
48
|
-
elif estimated_type == "log-probs":
|
|
49
|
-
log_prob = estimated
|
|
50
|
-
else:
|
|
51
|
-
raise ValueError("estimated_type must be 'probs', 'log-probs' or 'logits'")
|
|
52
|
-
if target.sparse_dim:
|
|
53
|
-
return -rf.gather(log_prob, indices=target, axis=axis)
|
|
54
|
-
return -rf.matmul(target, log_prob, reduce=axis)
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
def ctc_loss(
|
|
58
|
-
*,
|
|
59
|
-
logits: Tensor,
|
|
60
|
-
logits_normalized: bool = False,
|
|
61
|
-
targets: Tensor,
|
|
62
|
-
input_spatial_dim: Dim,
|
|
63
|
-
targets_spatial_dim: Dim,
|
|
64
|
-
blank_index: int,
|
|
65
|
-
max_approx: bool = False,
|
|
66
|
-
) -> Tensor:
|
|
67
|
-
"""
|
|
68
|
-
Calculates the CTC loss.
|
|
69
|
-
|
|
70
|
-
Internally, this uses :func:`returnn.tf.native_op.ctc_loss`
|
|
71
|
-
which is equivalent to tf.nn.ctc_loss but more efficient.
|
|
72
|
-
|
|
73
|
-
Output is of shape [B].
|
|
74
|
-
|
|
75
|
-
:param logits: (before softmax). shape [B...,input_spatial,C]
|
|
76
|
-
:param logits_normalized: whether the logits are already normalized (e.g. via log-softmax)
|
|
77
|
-
:param targets: sparse. shape [B...,targets_spatial] -> C
|
|
78
|
-
:param input_spatial_dim: spatial dim of input logits
|
|
79
|
-
:param targets_spatial_dim: spatial dim of targets
|
|
80
|
-
:param blank_index: vocab index of the blank symbol
|
|
81
|
-
:param max_approx: if True, use max instead of sum over alignments (max approx, Viterbi)
|
|
82
|
-
:return: loss shape [B...]
|
|
83
|
-
"""
|
|
84
|
-
# noinspection PyProtectedMember
|
|
85
|
-
return logits._raw_backend.ctc_loss(
|
|
86
|
-
logits=logits,
|
|
87
|
-
logits_normalized=logits_normalized,
|
|
88
|
-
targets=targets,
|
|
89
|
-
input_spatial_dim=input_spatial_dim,
|
|
90
|
-
targets_spatial_dim=targets_spatial_dim,
|
|
91
|
-
blank_index=blank_index,
|
|
92
|
-
max_approx=max_approx,
|
|
93
|
-
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-record-and-push-to-webserver.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-chunking-blstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-contribrnn-lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-maxgradnorm-lstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm-lowmem.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm2.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm2.12ax.tuned.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-neural-transducer.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-explicit-lstm.config
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-explicit-rnn.config
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-search-compiled-graph.py
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-vanilla-lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-upd-mult-model.lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png
RENAMED
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/create_IAM_dataset.py
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/features/raw/demo.h5
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|