returnn 1.20240905.172412__tar.gz → 1.20240906.11340__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

Files changed (464) hide show
  1. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/PKG-INFO +1 -1
  2. returnn-1.20240906.11340/_setup_info_generated.py +2 -0
  3. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_utils.py +1 -1
  4. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/array_.py +9 -8
  5. returnn-1.20240906.11340/returnn/frontend/loss.py +181 -0
  6. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/parameter.py +0 -2
  7. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/_backend.py +1 -2
  8. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/PKG-INFO +1 -1
  9. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_base.py +115 -0
  10. returnn-1.20240905.172412/_setup_info_generated.py +0 -2
  11. returnn-1.20240905.172412/returnn/frontend/loss.py +0 -93
  12. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.editorconfig +0 -0
  13. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.gitignore +0 -0
  14. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.gitmodules +0 -0
  15. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/.kateconfig +0 -0
  16. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/CHANGELOG.md +0 -0
  17. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/CODEOWNERS +0 -0
  18. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/CONTRIBUTING.md +0 -0
  19. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/LICENSE +0 -0
  20. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/MANIFEST.in +0 -0
  21. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/README.rst +0 -0
  22. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/__init__.py +0 -0
  23. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/12AX.cluster_map +0 -0
  24. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/_setup_returnn_env.py +0 -0
  25. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-fwd.config +0 -0
  26. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-horovod-mpi.py +0 -0
  27. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-horovod-mpi.py.sh +0 -0
  28. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-horovod-mpi.sh +0 -0
  29. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-hyper-param-tuning.config +0 -0
  30. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-iter-dataset.py +0 -0
  31. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-list-devices.py +0 -0
  32. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-lua-torch-layer.config +0 -0
  33. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-pretrain.config +0 -0
  34. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-record-and-push-to-webserver.py +0 -0
  35. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-returnn-as-framework.py +0 -0
  36. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-rf-pt-benchmark.py +0 -0
  37. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-rf.config +0 -0
  38. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-rhn-enwik8.config +0 -0
  39. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-sprint-interface.py +0 -0
  40. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-att-copy.config +0 -0
  41. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-attention.config +0 -0
  42. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
  43. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
  44. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-enc-dec.config +0 -0
  45. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-hard-att-copy.config +0 -0
  46. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-lstm-benchmark.py +0 -0
  47. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
  48. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
  49. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm.12ax.config +0 -0
  50. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm2.12ax.config +0 -0
  51. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
  52. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-neural-transducer.12ax.config +0 -0
  53. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-explicit-lstm.config +0 -0
  54. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-explicit-rnn.config +0 -0
  55. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-rec-self-att.config +0 -0
  56. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-search-compiled-graph.py +0 -0
  57. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
  58. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-timit-lstm-ctc.config +0 -0
  59. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-torch.config +0 -0
  60. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
  61. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/demo.sh +0 -0
  62. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
  63. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
  64. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
  65. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/README.txt +0 -0
  66. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/chars.txt +0 -0
  67. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/config_demo +0 -0
  68. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/config_fwd +0 -0
  69. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/config_real +0 -0
  70. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
  71. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/decode.py +0 -0
  72. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
  73. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/go.sh +0 -0
  74. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/lines.txt +0 -0
  75. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/split/eval.txt +0 -0
  76. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/split/train.txt +0 -0
  77. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/IAM/split/valid.txt +0 -0
  78. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/README.md +0 -0
  79. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/create_test_h5.py +0 -0
  80. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/forwardconfig +0 -0
  81. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/go.sh +0 -0
  82. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial/trainconfig +0 -0
  83. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
  84. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
  85. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/go.sh +0 -0
  86. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
  87. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/pyproject.toml +0 -0
  88. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/requirements.txt +0 -0
  89. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__init__.py +0 -0
  90. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__main__.py +0 -0
  91. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__old_mod_loader__.py +0 -0
  92. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/__setup__.py +0 -0
  93. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/config.py +0 -0
  94. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/__init__.py +0 -0
  95. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/audio.py +0 -0
  96. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/basic.py +0 -0
  97. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/bundle_file.py +0 -0
  98. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/cached.py +0 -0
  99. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/cached2.py +0 -0
  100. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/distrib_files.py +0 -0
  101. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/generating.py +0 -0
  102. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/hdf.py +0 -0
  103. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/lm.py +0 -0
  104. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/map.py +0 -0
  105. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/meta.py +0 -0
  106. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/multi_proc.py +0 -0
  107. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/normalization_data.py +0 -0
  108. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/numpy_dump.py +0 -0
  109. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/postprocessing.py +0 -0
  110. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/raw_wav.py +0 -0
  111. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/sprint.py +0 -0
  112. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/stereo.py +0 -0
  113. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/__init__.py +0 -0
  114. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/feature_extraction.py +0 -0
  115. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/strings.py +0 -0
  116. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/datasets/util/vocabulary.py +0 -0
  117. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/engine/__init__.py +0 -0
  118. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/engine/base.py +0 -0
  119. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/engine/batch.py +0 -0
  120. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/__init__.py +0 -0
  121. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/__main__.py +0 -0
  122. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/.git +0 -0
  123. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
  124. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
  125. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
  126. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
  127. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
  128. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
  129. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
  130. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
  131. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
  132. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
  133. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
  134. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
  135. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
  136. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
  137. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
  138. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
  139. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
  140. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
  141. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
  142. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
  143. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
  144. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
  145. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
  146. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
  147. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/__init__.py +0 -0
  148. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/README.md +0 -0
  149. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/__init__.py +0 -0
  150. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/edit.py +0 -0
  151. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/reroute.py +0 -0
  152. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/select.py +0 -0
  153. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/subgraph.py +0 -0
  154. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/transform.py +0 -0
  155. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/extern/graph_editor/util.py +0 -0
  156. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/forward_iface.py +0 -0
  157. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/__init__.py +0 -0
  158. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_backend.py +0 -0
  159. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/__init__.py +0 -0
  160. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/backend.cpp +0 -0
  161. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/backend.hpp +0 -0
  162. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/module.cpp +0 -0
  163. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/module.hpp +0 -0
  164. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/py_utils.hpp +0 -0
  165. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/tensor_ops.cpp +0 -0
  166. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_native/tensor_ops.hpp +0 -0
  167. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_numpy_backend.py +0 -0
  168. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/_random_journal.py +0 -0
  169. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/attention.py +0 -0
  170. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/audio/__init__.py +0 -0
  171. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/audio/mel.py +0 -0
  172. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/audio/specaugment.py +0 -0
  173. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/backend.py +0 -0
  174. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/build_from_dict.py +0 -0
  175. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/cond.py +0 -0
  176. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/const.py +0 -0
  177. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/container.py +0 -0
  178. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/control_flow_ctx.py +0 -0
  179. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conv.py +0 -0
  180. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/__init__.py +0 -0
  181. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/espnet_e_branchformer.py +0 -0
  182. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/hf_llama.py +0 -0
  183. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/conversions/torch_nn.py +0 -0
  184. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/decoder/__init__.py +0 -0
  185. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/decoder/transformer.py +0 -0
  186. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/device.py +0 -0
  187. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/dims.py +0 -0
  188. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/dropout.py +0 -0
  189. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/dtype.py +0 -0
  190. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/__init__.py +0 -0
  191. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/base.py +0 -0
  192. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/conformer.py +0 -0
  193. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/encoder/e_branchformer.py +0 -0
  194. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/gradient.py +0 -0
  195. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/graph.py +0 -0
  196. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/hooks.py +0 -0
  197. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/init.py +0 -0
  198. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/label_smoothing.py +0 -0
  199. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/linear.py +0 -0
  200. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/loop.py +0 -0
  201. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/math_.py +0 -0
  202. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/matmul.py +0 -0
  203. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/module.py +0 -0
  204. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/normalization.py +0 -0
  205. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/parametrizations.py +0 -0
  206. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/parametrize.py +0 -0
  207. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/piecewise_linear.py +0 -0
  208. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/rand.py +0 -0
  209. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/rec.py +0 -0
  210. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/reduce.py +0 -0
  211. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/run_ctx.py +0 -0
  212. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/signal.py +0 -0
  213. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/state.py +0 -0
  214. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/stepwise_scheduler.py +0 -0
  215. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/tensor_array.py +0 -0
  216. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/frontend/types.py +0 -0
  217. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/__init__.py +0 -0
  218. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/common.py +0 -0
  219. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/git.py +0 -0
  220. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/import_/import_.py +0 -0
  221. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/learning_rate_control.py +0 -0
  222. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/log.py +0 -0
  223. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/native_op.cpp +0 -0
  224. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/native_op.py +0 -0
  225. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/pretrain.py +0 -0
  226. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/__init__.py +0 -0
  227. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/cache.py +0 -0
  228. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/control.py +0 -0
  229. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/error_signals.py +0 -0
  230. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/extern_interface.py +0 -0
  231. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/sprint/interface.py +0 -0
  232. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/README.md +0 -0
  233. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/__init__.py +0 -0
  234. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_dim_extra.py +0 -0
  235. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_tensor_extra.py +0 -0
  236. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_tensor_mixin_base.py +0 -0
  237. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/_tensor_op_overloads.py +0 -0
  238. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/control_flow_ctx.py +0 -0
  239. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/dim.py +0 -0
  240. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/marked_dim.py +0 -0
  241. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/tensor.py +0 -0
  242. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/tensor_dict.py +0 -0
  243. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tensor/utils.py +0 -0
  244. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/__init__.py +0 -0
  245. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/compat.py +0 -0
  246. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/data_pipeline.py +0 -0
  247. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/distributed.py +0 -0
  248. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/engine.py +0 -0
  249. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/README.md +0 -0
  250. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/__init__.py +0 -0
  251. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/_backend.py +0 -0
  252. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/_utils.py +0 -0
  253. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/cond.py +0 -0
  254. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
  255. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
  256. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/dims.py +0 -0
  257. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/layer.py +0 -0
  258. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/loop.py +0 -0
  259. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/make_layer.py +0 -0
  260. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/masked_computation.py +0 -0
  261. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
  262. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
  263. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_low_level/__init__.py +0 -0
  264. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/frontend_low_level/_backend.py +0 -0
  265. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/horovod.py +0 -0
  266. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/hyper_param_tuning.py +0 -0
  267. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/__init__.py +0 -0
  268. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/base.py +0 -0
  269. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/basic.py +0 -0
  270. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/rec.py +0 -0
  271. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/segmental_model.py +0 -0
  272. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/signal_processing.py +0 -0
  273. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/layers/variable.py +0 -0
  274. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/native_op.py +0 -0
  275. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/network.py +0 -0
  276. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/sprint.py +0 -0
  277. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/updater.py +0 -0
  278. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/__init__.py +0 -0
  279. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/basic.py +0 -0
  280. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/data.py +0 -0
  281. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/gradient_checkpoint.py +0 -0
  282. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/ken_lm.py +0 -0
  283. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/tf/util/open_fst.py +0 -0
  284. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/README.md +0 -0
  285. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/__init__.py +0 -0
  286. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/__init__.py +0 -0
  287. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/extern_data.py +0 -0
  288. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/pipeline.py +0 -0
  289. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/queued_data_iter.py +0 -0
  290. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
  291. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/data/tensor_utils.py +0 -0
  292. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/distributed.py +0 -0
  293. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/engine.py +0 -0
  294. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/__init__.py +0 -0
  295. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/_rand.py +0 -0
  296. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/bridge.py +0 -0
  297. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/frontend/raw_ops.py +0 -0
  298. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/updater.py +0 -0
  299. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/README.md +0 -0
  300. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/__init__.py +0 -0
  301. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/array_.py +0 -0
  302. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/diagnose_gpu.py +0 -0
  303. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/gradient_checkpoint.py +0 -0
  304. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/module.py +0 -0
  305. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/torch/util/scaled_gradient.py +0 -0
  306. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/__init__.py +0 -0
  307. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/basic.py +0 -0
  308. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/better_exchook.py +0 -0
  309. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/bpe.py +0 -0
  310. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/debug.py +0 -0
  311. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/debug_helpers.py +0 -0
  312. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/file_cache.py +0 -0
  313. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/fsa.py +0 -0
  314. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/literal_py_to_pickle.py +0 -0
  315. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/math.py +0 -0
  316. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
  317. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/native_code_compiler.py +0 -0
  318. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/pprint.py +0 -0
  319. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/py-to-pickle.cpp +0 -0
  320. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/py_compat.py +0 -0
  321. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/py_ext_mod_compiler.py +0 -0
  322. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/result_with_reason.py +0 -0
  323. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/sig_proc.py +0 -0
  324. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/task_system.py +0 -0
  325. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/train_proc_manager.py +0 -0
  326. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn/util/watch_memory.py +0 -0
  327. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/SOURCES.txt +0 -0
  328. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/dependency_links.txt +0 -0
  329. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/returnn.egg-info/top_level.txt +0 -0
  330. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/rnn.py +0 -0
  331. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/setup.cfg +0 -0
  332. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/setup.py +0 -0
  333. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/DummySprintExec.py +0 -0
  334. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm-inspection-profile.xml +0 -0
  335. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/.gitignore +0 -0
  336. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/.name +0 -0
  337. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
  338. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
  339. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
  340. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
  341. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
  342. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/misc.xml +0 -0
  343. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/modules.xml +0 -0
  344. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/returnn.iml +0 -0
  345. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
  346. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/_set_num_threads1.py +0 -0
  347. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/_setup_returnn_env.py +0 -0
  348. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/_setup_test_env.py +0 -0
  349. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/bpe-unicode-demo.codes +0 -0
  350. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/bpe-unicode-demo.vocab +0 -0
  351. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.fst +0 -0
  352. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.isyms +0 -0
  353. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.jpg +0 -0
  354. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lexicon_opt.osyms +0 -0
  355. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/lint_common.py +0 -0
  356. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/pycharm-inspect.py +0 -0
  357. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/pylint.py +0 -0
  358. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/returnn-as-framework.py +0 -0
  359. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/rf_utils.py +0 -0
  360. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/spelling.dic +0 -0
  361. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Config.py +0 -0
  362. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Dataset.py +0 -0
  363. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Fsa.py +0 -0
  364. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_GeneratingDataset.py +0 -0
  365. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_HDFDataset.py +0 -0
  366. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_LearningRateControl.py +0 -0
  367. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Log.py +0 -0
  368. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_MultiProcDataset.py +0 -0
  369. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Pretrain.py +0 -0
  370. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_ResNet.py +0 -0
  371. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_SprintDataset.py +0 -0
  372. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_SprintInterface.py +0 -0
  373. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFEngine.py +0 -0
  374. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNativeOp.py +0 -0
  375. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNetworkLayer.py +0 -0
  376. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNetworkRecLayer.py +0 -0
  377. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFNetworkSigProcLayer.py +0 -0
  378. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFUpdater.py +0 -0
  379. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TFUtil.py +0 -0
  380. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TF_determinism.py +0 -0
  381. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TaskSystem.py +0 -0
  382. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TaskSystem_SharedMem.py +0 -0
  383. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_TranslationDataset.py +0 -0
  384. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_Util.py +0 -0
  385. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_demos.py +0 -0
  386. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_fork_exec.py +0 -0
  387. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_hdf_dump.py +0 -0
  388. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_array.py +0 -0
  389. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_attention.py +0 -0
  390. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_cond.py +0 -0
  391. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_const.py +0 -0
  392. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_container.py +0 -0
  393. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_conv.py +0 -0
  394. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_decoder_transformer.py +0 -0
  395. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_encoder_conformer.py +0 -0
  396. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_gradient.py +0 -0
  397. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_label_smoothing.py +0 -0
  398. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_loop.py +0 -0
  399. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_math.py +0 -0
  400. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_normalization.py +0 -0
  401. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_piecewise_linear.py +0 -0
  402. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_rec.py +0 -0
  403. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_reduce.py +0 -0
  404. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_rf_signal.py +0 -0
  405. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_tensor.py +0 -0
  406. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_tools.py +0 -0
  407. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_dataset.py +0 -0
  408. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_engine.py +0 -0
  409. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_frontend.py +0 -0
  410. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_internal_frontend.py +0 -0
  411. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/test_torch_util.py +0 -0
  412. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tests/torch_utils.py +0 -0
  413. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/_setup_returnn_env.py +0 -0
  414. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/analyze-dataset-batches.py +0 -0
  415. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-collect-seq-lens.py +0 -0
  416. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-dump-text.py +0 -0
  417. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-get-segment-names.py +0 -0
  418. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bliss-to-ogg-zip.py +0 -0
  419. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/bpe-create-lexicon.py +0 -0
  420. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/calculate-word-error-rate.py +0 -0
  421. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/cleanup-old-models.py +0 -0
  422. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/collect-orth-symbols.py +0 -0
  423. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/collect-words.py +0 -0
  424. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/compile_native_op.py +0 -0
  425. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/compile_tf_graph.py +0 -0
  426. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/debug-dump-search-scores.py +0 -0
  427. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/debug-plot-search-scores.py +0 -0
  428. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-dataset-raw-strings.py +0 -0
  429. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-dataset.py +0 -0
  430. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-forward-stats.py +0 -0
  431. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-forward.py +0 -0
  432. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-network-json.py +0 -0
  433. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/dump-pickle.py +0 -0
  434. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/extract_state_tying_from_dataset.py +0 -0
  435. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/get-attention-weights.py +0 -0
  436. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/get-best-model-epoch.py +0 -0
  437. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/hdf_dump.py +0 -0
  438. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/hdf_dump_translation_dataset.py +0 -0
  439. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/import-blocks-mt-model.py +0 -0
  440. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/import-t2t-mt-model.py +0 -0
  441. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/.gitignore +0 -0
  442. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/Makefile +0 -0
  443. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/README.md +0 -0
  444. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/README.md +0 -0
  445. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/libs_list +0 -0
  446. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
  447. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
  448. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
  449. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/state_vars_list +0 -0
  450. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/example/tensor_names_list +0 -0
  451. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/file.h +0 -0
  452. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
  453. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
  454. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/main.cc +0 -0
  455. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/rescorer.h +0 -0
  456. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/vocabulary.cc +0 -0
  457. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/lattice_rescorer/vocabulary.h +0 -0
  458. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/tf_avg_checkpoints.py +0 -0
  459. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/tf_inspect_checkpoint.py +0 -0
  460. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/tf_inspect_summary_log.py +0 -0
  461. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_avg_checkpoints.py +0 -0
  462. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_export_to_onnx.py +0 -0
  463. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_inspect_checkpoint.py +0 -0
  464. {returnn-1.20240905.172412 → returnn-1.20240906.11340}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20240905.172412
3
+ Version: 1.20240906.11340
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -0,0 +1,2 @@
1
+ version = '1.20240906.011340'
2
+ long_version = '1.20240906.011340+git.1eb8103'
@@ -292,5 +292,5 @@ def _slice_value_is_reduce(v: Union[None, slice, int, numpy.number, numpy.ndarra
292
292
  return v.ndim == 0
293
293
  if isinstance(v, Tensor):
294
294
  assert len(v.dims) <= 1, f"strided_slice: expect scalar or vector, got Tensor with dims {v.dims}"
295
- return v.dims == 0
295
+ return len(v.dims) == 0
296
296
  raise TypeError(f"strided_slice: got unexpected value of type {type(v).__name__}")
@@ -412,16 +412,17 @@ def pad(
412
412
  :return: padded tensor, out_dims. out dims are for each dim in axes
413
413
  """
414
414
  assert len(axes) == len(padding)
415
- if not out_dims:
416
- for left, right in padding:
417
- if isinstance(left, Dim):
418
- assert not left.need_masking(), f"padding {padding} does not support dynamic left padding"
419
- if isinstance(right, Dim):
420
- assert not right.need_masking(), f"padding {padding} does not support dynamic right padding"
421
- # Note that even dynamic middle dims is not exactly correct...
422
- out_dims = [left + middle + right for middle, (left, right) in zip(axes, padding)]
423
415
  if handle_dynamic_dims is None:
424
416
  handle_dynamic_dims = _pad_handle_dynamic_dims_default(axes, padding, mode=mode)
417
+ if not out_dims:
418
+ if handle_dynamic_dims:
419
+ for left, right in padding:
420
+ if isinstance(left, Dim):
421
+ assert not left.need_masking(), f"padding {padding} does not support dynamic left padding"
422
+ if isinstance(right, Dim):
423
+ assert not right.need_masking(), f"padding {padding} does not support dynamic right padding"
424
+ # Note that even dynamic middle dims is not exactly correct...
425
+ out_dims = [left + middle + right for middle, (left, right) in zip(axes, padding)]
425
426
  # noinspection PyProtectedMember
426
427
  return (
427
428
  source._raw_backend.pad(
@@ -0,0 +1,181 @@
1
+ """
2
+ Loss functions
3
+ """
4
+
5
+ from __future__ import annotations
6
+ from returnn.tensor import Tensor, Dim
7
+ import returnn.frontend as rf
8
+
9
+
10
+ __all__ = ["cross_entropy", "ctc_loss", "edit_distance"]
11
+
12
+
13
+ def cross_entropy(
14
+ *,
15
+ estimated: Tensor,
16
+ target: Tensor,
17
+ axis: Dim,
18
+ estimated_type: str,
19
+ ) -> Tensor:
20
+ """
21
+ ``target`` is supposed to be in probability space (normalized). It can also be sparse, i.e. contain class indices.
22
+ ``estimated`` can be probs, log-probs or logits, specified via ``estimated_type``.
23
+
24
+ Assuming both are in probability space, the cross entropy is:
25
+
26
+ H(target,estimated) = -reduce_sum(target * log(estimated), axis=axis)
27
+ = -matmul(target, log(estimated), reduce=axis)
28
+
29
+ In case you want label smoothing, you can use e.g.::
30
+
31
+ ce = nn.cross_entropy(
32
+ target=nn.label_smoothing(target, 0.1),
33
+ estimated=estimated)
34
+
35
+ :param estimated: probs, log-probs or logits, specified via ``estimated_type``
36
+ :param target: probs, normalized, can also be sparse
37
+ :param axis: class labels dim over which softmax is computed
38
+ :param estimated_type: "probs", "log-probs" or "logits"
39
+ :return: cross entropy (same Dims as 'estimated' but without 'axis')
40
+ """
41
+
42
+ if estimated_type == "logits":
43
+ # This is a common case and most backends provide optimized functions for it.
44
+ # noinspection PyProtectedMember
45
+ return estimated._raw_backend.softmax_cross_entropy_with_logits(logits=estimated, targets=target, axis=axis)
46
+ if estimated_type == "probs":
47
+ log_prob = rf.log(estimated) # TODO: make numerically stable
48
+ elif estimated_type == "log-probs":
49
+ log_prob = estimated
50
+ else:
51
+ raise ValueError("estimated_type must be 'probs', 'log-probs' or 'logits'")
52
+ if target.sparse_dim:
53
+ return -rf.gather(log_prob, indices=target, axis=axis)
54
+ return -rf.matmul(target, log_prob, reduce=axis)
55
+
56
+
57
+ def ctc_loss(
58
+ *,
59
+ logits: Tensor,
60
+ logits_normalized: bool = False,
61
+ targets: Tensor,
62
+ input_spatial_dim: Dim,
63
+ targets_spatial_dim: Dim,
64
+ blank_index: int,
65
+ max_approx: bool = False,
66
+ ) -> Tensor:
67
+ """
68
+ Calculates the CTC loss.
69
+
70
+ Internally, this uses :func:`returnn.tf.native_op.ctc_loss`
71
+ which is equivalent to tf.nn.ctc_loss but more efficient.
72
+
73
+ Output is of shape [B].
74
+
75
+ :param logits: (before softmax). shape [B...,input_spatial,C]
76
+ :param logits_normalized: whether the logits are already normalized (e.g. via log-softmax)
77
+ :param targets: sparse. shape [B...,targets_spatial] -> C
78
+ :param input_spatial_dim: spatial dim of input logits
79
+ :param targets_spatial_dim: spatial dim of targets
80
+ :param blank_index: vocab index of the blank symbol
81
+ :param max_approx: if True, use max instead of sum over alignments (max approx, Viterbi)
82
+ :return: loss shape [B...]
83
+ """
84
+ # noinspection PyProtectedMember
85
+ return logits._raw_backend.ctc_loss(
86
+ logits=logits,
87
+ logits_normalized=logits_normalized,
88
+ targets=targets,
89
+ input_spatial_dim=input_spatial_dim,
90
+ targets_spatial_dim=targets_spatial_dim,
91
+ blank_index=blank_index,
92
+ max_approx=max_approx,
93
+ )
94
+
95
+
96
+ def edit_distance(a: Tensor, a_spatial_dim: Dim, b: Tensor, b_spatial_dim: Dim, *, dtype: str = "int32") -> Tensor:
97
+ """
98
+ :param a: [B,Ta]
99
+ :param a_spatial_dim: Ta
100
+ :param b: [B,Tb]
101
+ :param b_spatial_dim: Tb
102
+ :param dtype:
103
+ :return: [B]
104
+ """
105
+ import numpy # just for iinfo on dtype to get max value
106
+
107
+ # The axis permutation is just an efficiency optimization.
108
+ a = a.copy_transpose([a_spatial_dim] + a.remaining_dims(a_spatial_dim))
109
+ b = b.copy_transpose([b_spatial_dim] + b.remaining_dims(b_spatial_dim))
110
+ dev = a.device
111
+ max_dist_err = numpy.iinfo(dtype).max
112
+ n_a_max_len = a_spatial_dim.get_dim_value()
113
+ n_b_max_len = b_spatial_dim.get_dim_value()
114
+ if int(n_a_max_len) < int(n_b_max_len):
115
+ a, b = b, a
116
+ a_spatial_dim, b_spatial_dim = b_spatial_dim, a_spatial_dim
117
+ n_a_max_len, n_b_max_len = n_b_max_len, n_a_max_len
118
+ # Now n_a_max_len >= n_b_max_len.
119
+ batch_dims = a.remaining_dims(a_spatial_dim)
120
+ for dim in b.remaining_dims(b_spatial_dim):
121
+ if dim not in batch_dims:
122
+ batch_dims.append(dim)
123
+ a_seq_len = a_spatial_dim.get_dyn_size_ext_for_device(dev) # [B]
124
+ b_seq_len = b_spatial_dim.get_dyn_size_ext_for_device(dev) # [B]
125
+ a_tensor_ext, (a_spatial_dim_ext,) = rf.pad(
126
+ a, axes=[a_spatial_dim], padding=[(b_spatial_dim, b_spatial_dim)], handle_dynamic_dims=False
127
+ ) # [Tb+Ta+Tb,B]
128
+ a_spatial_dim_ext: Dim
129
+ b_tensor_flipped = rf.reverse_sequence(b, axis=b_spatial_dim, handle_dynamic_dims=False) # [Tb,B]
130
+ entry_idx_ = rf.range_over_dim(b_spatial_dim, device=dev) # [Tb]->Tb
131
+ b_spatial_dim1 = b_spatial_dim + 1
132
+ buffer_dim = Dim(3 * b_spatial_dim1.get_dim_value_tensor(), name="buffer")
133
+ buffer = rf.Parameter([buffer_dim] + batch_dims, device=dev, dtype=dtype, auxiliary=True) # [3*(Tb+1),B]
134
+ buffer_offsets = [0, b_spatial_dim1.get_dim_value_tensor(), b_spatial_dim1.get_dim_value_tensor() * 2]
135
+ result = rf.where((a_seq_len == 0) & (b_seq_len == 0), 0, max_dist_err) # [B] # noqa
136
+
137
+ # We are going diagonal over (Ta+1) and (Tb+1). (Similar as RETURNN native EditDistanceOp.)
138
+ # You need to draw the grid on paper to understand all the index math...
139
+ for u in range(1, n_a_max_len + n_b_max_len + 1):
140
+
141
+ prev2_dist, _ = rf.slice(
142
+ buffer, axis=buffer_dim, start=buffer_offsets[u % 3], size=b_spatial_dim1, out_dim=b_spatial_dim1
143
+ ) # [Tb+1,B]
144
+ prev_dist, _ = rf.slice(
145
+ buffer, axis=buffer_dim, start=buffer_offsets[(u + 1) % 3], size=b_spatial_dim1, out_dim=b_spatial_dim1
146
+ ) # [Tb+1,B]
147
+ cur_dist_start_offset = buffer_offsets[(u + 2) % 3]
148
+
149
+ del_cost = (
150
+ rf.slice(prev_dist, axis=b_spatial_dim1, end=b_spatial_dim.get_dim_value_tensor(), out_dim=b_spatial_dim)[0]
151
+ + 1
152
+ ) # [Tb,B]
153
+ ins_cost = rf.slice(prev_dist, axis=b_spatial_dim1, start=1, out_dim=b_spatial_dim)[0] + 1 # [Tb,B]
154
+ sub_cost = rf.slice(prev2_dist, axis=b_spatial_dim1, start=1, out_dim=b_spatial_dim)[0] + rf.cast(
155
+ rf.slice(a_tensor_ext, axis=a_spatial_dim_ext, start=u - 1, size=b_spatial_dim, out_dim=b_spatial_dim)[0]
156
+ != b_tensor_flipped,
157
+ dtype=dtype,
158
+ )
159
+ min_cost = rf.minimum(del_cost, ins_cost, sub_cost) # [Tb,B]
160
+ t_a_gt_zero_mask = entry_idx_ > n_b_max_len - u # [Tb]
161
+
162
+ buffer.assign_key(
163
+ axis=buffer_dim,
164
+ key=slice(cur_dist_start_offset, cur_dist_start_offset + b_spatial_dim.get_dim_value_tensor()),
165
+ key_dim=b_spatial_dim,
166
+ value=rf.where(t_a_gt_zero_mask, min_cost, u),
167
+ )
168
+ # last entry in cur_dist, that is where t_b == 0
169
+ buffer.assign_key(
170
+ axis=buffer_dim, key=cur_dist_start_offset + b_spatial_dim.get_dim_value_tensor(), key_dim=None, value=u
171
+ )
172
+
173
+ end_offset_a = n_b_max_len + a_seq_len - u # [B]
174
+ end_offset_b = n_b_max_len - b_seq_len # [B]
175
+ result = rf.where(
176
+ end_offset_a == end_offset_b,
177
+ rf.gather(buffer, axis=buffer_dim, indices=cur_dist_start_offset + end_offset_a, clip_to_valid=True),
178
+ result,
179
+ )
180
+
181
+ return result
@@ -75,8 +75,6 @@ class Parameter(Tensor[T]):
75
75
  raise TypeError(f"rf.Parameter: invalid type for dims_or_tensor: {type(dims_or_tensor)}")
76
76
  if not all(isinstance(dim, Dim) for dim in dims):
77
77
  raise TypeError(f"rf.Parameter: shape {dims} must be a sequence of Dim")
78
- if not all(isinstance(dim.dimension, int) for dim in dims):
79
- raise ValueError(f"rf.Parameter: shape {dims} must be static")
80
78
  if len(dims) != len(set((d, d.match_priority) for d in dims)):
81
79
  raise ValueError(f"rf.Parameter: shape {dims} dims must be unique")
82
80
  super(Parameter, self).__init__(
@@ -690,9 +690,8 @@ class TorchBackend(Backend[torch.Tensor]):
690
690
  """
691
691
  :return: parameter
692
692
  """
693
- assert all(d.is_static() for d in tensor.dims)
694
693
  data = torch.zeros(
695
- [d.dimension for d in tensor.dims],
694
+ [d.get_dim_value() for d in tensor.dims],
696
695
  dtype=TorchBackend.as_dtype_raw(tensor.dtype),
697
696
  device=device or rf.get_default_device(),
698
697
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20240905.172412
3
+ Version: 1.20240906.11340
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -560,3 +560,118 @@ def test_weight_noise():
560
560
  rf.weight_noise(conv, "filter", std=0.1)
561
561
  time_dim = Dim(11, name="time")
562
562
  conv(rf.random_normal([time_dim, in_dim]), in_spatial_dim=time_dim)
563
+
564
+
565
+ def test_edit_distance():
566
+ import numpy
567
+ import torch
568
+ from typing import Sequence
569
+ from collections import namedtuple
570
+ import itertools
571
+
572
+ def _edit_distance_ref_b1(a: Sequence[int], b: Sequence[int]) -> int:
573
+ """
574
+ Reference implementation for edit distance.
575
+ """
576
+ n = len(a) + 1
577
+ m = len(b) + 1
578
+ d = torch.zeros((n, m), dtype=torch.int32)
579
+ for i in range(n):
580
+ d[i, 0] = i
581
+ for j in range(m):
582
+ d[0, j] = j
583
+ for j in range(1, m):
584
+ for i in range(1, n):
585
+ if a[i - 1] == b[j - 1]:
586
+ d[i, j] = d[i - 1, j - 1]
587
+ else:
588
+ d[i, j] = min(
589
+ d[i - 1, j] + 1, # deletion
590
+ d[i, j - 1] + 1, # insertion
591
+ d[i - 1, j - 1] + 1, # substitution
592
+ )
593
+ return int(d[n - 1, m - 1])
594
+
595
+ # noinspection PyShadowingNames
596
+ def _edit_distance_ref(a: Tensor, a_spatial_dim: Dim, b: Tensor, b_spatial_dim: Dim) -> torch.Tensor:
597
+ """
598
+ Reference implementation for edit distance.
599
+ """
600
+ batch_dim = a.dims[0]
601
+ assert a.dims == (batch_dim, a_spatial_dim) and b.dims == (batch_dim, b_spatial_dim)
602
+ res = []
603
+ for i in range(batch_dim.dimension):
604
+ assert a_spatial_dim.dyn_size[i] <= a.raw_tensor.size(1)
605
+ assert b_spatial_dim.dyn_size[i] <= b.raw_tensor.size(1)
606
+ res.append(
607
+ _edit_distance_ref_b1(
608
+ a.raw_tensor[i, : a_spatial_dim.dyn_size[i]], b.raw_tensor[i, : b_spatial_dim.dyn_size[i]]
609
+ )
610
+ )
611
+ return torch.tensor(res, dtype=torch.int32)
612
+
613
+ # noinspection PyShadowingNames
614
+ def _check_edit_distance(a: Tensor, a_spatial_dim: Dim, b: Tensor, b_spatial_dim: Dim):
615
+ ref = _edit_distance_ref(a, a_spatial_dim, b, b_spatial_dim)
616
+ res = rf.edit_distance(a, a_spatial_dim, b, b_spatial_dim)
617
+ assert res.raw_tensor.shape == ref.shape == a_spatial_dim.dyn_size.shape == b_spatial_dim.dyn_size.shape
618
+ assert len(ref.shape) == 1
619
+ print("ref:", ref, "res:", res.raw_tensor)
620
+ batch_size = ref.shape[0]
621
+ for i in range(batch_size):
622
+ assert res.raw_tensor[i] == ref[i], (
623
+ f"batch idx i={i}, a[i]={a.raw_tensor[i]} len {a_spatial_dim.dyn_size[i]},"
624
+ f" b[i]={b.raw_tensor[i]} len {b_spatial_dim.dyn_size[i]},"
625
+ f" ref[i]={ref[i]}, res[i]={res.raw_tensor[i]};\n"
626
+ f" a={a.raw_tensor} lens {a_spatial_dim.dyn_size},"
627
+ f" b={b.raw_tensor} lens {b_spatial_dim.dyn_size}"
628
+ )
629
+ assert (res.raw_tensor == ref).all()
630
+
631
+ SizedTensor = namedtuple("SizedTensor", ["tensor", "seq_lens"])
632
+
633
+ _SeqsB1 = [
634
+ SizedTensor(torch.tensor([[1, 2, 3, 4]]), torch.tensor([4])),
635
+ SizedTensor(torch.tensor([[1, 2, 3]]), torch.tensor([3])),
636
+ SizedTensor(torch.tensor([[1, 2, 4]]), torch.tensor([3])),
637
+ SizedTensor(torch.tensor([[1, 4]]), torch.tensor([2])),
638
+ SizedTensor(torch.tensor([[5, 2, 4]]), torch.tensor([3])),
639
+ SizedTensor(torch.tensor([[]], dtype=torch.int64), torch.tensor([0])),
640
+ ]
641
+
642
+ for a, b in itertools.product(_SeqsB1, _SeqsB1):
643
+ a: SizedTensor
644
+ b: SizedTensor
645
+ # noinspection PyShadowingNames
646
+ batch_dim = Dim(1, name="batch")
647
+ a_spatial_dim = Dim(Tensor("a_sizes", [batch_dim], dtype="int64", raw_tensor=a.seq_lens))
648
+ b_spatial_dim = Dim(Tensor("b_sizes", [batch_dim], dtype="int64", raw_tensor=b.seq_lens))
649
+ a_ = Tensor("a", [batch_dim, a_spatial_dim], dtype="int64", raw_tensor=a.tensor)
650
+ b_ = Tensor("b", [batch_dim, b_spatial_dim], dtype="int64", raw_tensor=b.tensor)
651
+ _check_edit_distance(a_, a_spatial_dim, b_, b_spatial_dim)
652
+
653
+ rnd = numpy.random.RandomState(42)
654
+ for a, b in itertools.product(_SeqsB1, _SeqsB1):
655
+ batch_size = rnd.randint(2, 11)
656
+ a_max_len = rnd.randint(a.seq_lens[0], a.seq_lens[0] + 5)
657
+ b_max_len = rnd.randint(b.seq_lens[0], b.seq_lens[0] + 5)
658
+ a_sizes = rnd.randint(0, a_max_len + 1, size=(batch_size,))
659
+ b_sizes = rnd.randint(0, b_max_len + 1, size=(batch_size,))
660
+ a_sizes[0] = a.seq_lens[0]
661
+ b_sizes[0] = b.seq_lens[0]
662
+ a_max_len = max(a_sizes)
663
+ b_max_len = max(b_sizes)
664
+ a_values = rnd.randint(0, 10, (batch_size, a_max_len))
665
+ b_values = rnd.randint(0, 10, (batch_size, b_max_len))
666
+ a_values[0, : a.seq_lens[0]] = a.tensor[0, : a.seq_lens[0]]
667
+ b_values[0, : b.seq_lens[0]] = b.tensor[0, : b.seq_lens[0]]
668
+ a_sizes = torch.tensor(a_sizes, dtype=torch.int32)
669
+ b_sizes = torch.tensor(b_sizes, dtype=torch.int32)
670
+
671
+ # noinspection PyShadowingNames
672
+ batch_dim = Dim(batch_size, name="batch")
673
+ a_spatial_dim = Dim(Tensor("a_sizes", [batch_dim], dtype="int32", raw_tensor=a_sizes))
674
+ b_spatial_dim = Dim(Tensor("b_sizes", [batch_dim], dtype="int32", raw_tensor=b_sizes))
675
+ a_ = Tensor("a", [batch_dim, a_spatial_dim], dtype="int64", raw_tensor=torch.tensor(a_values))
676
+ b_ = Tensor("b", [batch_dim, b_spatial_dim], dtype="int64", raw_tensor=torch.tensor(b_values))
677
+ _check_edit_distance(a_, a_spatial_dim, b_, b_spatial_dim)
@@ -1,2 +0,0 @@
1
- version = '1.20240905.172412'
2
- long_version = '1.20240905.172412+git.fb9d5c3'
@@ -1,93 +0,0 @@
1
- """
2
- Loss functions
3
- """
4
-
5
- from __future__ import annotations
6
- from returnn.tensor import Tensor, Dim
7
- import returnn.frontend as rf
8
-
9
-
10
- __all__ = ["cross_entropy", "ctc_loss"]
11
-
12
-
13
- def cross_entropy(
14
- *,
15
- estimated: Tensor,
16
- target: Tensor,
17
- axis: Dim,
18
- estimated_type: str,
19
- ) -> Tensor:
20
- """
21
- ``target`` is supposed to be in probability space (normalized). It can also be sparse, i.e. contain class indices.
22
- ``estimated`` can be probs, log-probs or logits, specified via ``estimated_type``.
23
-
24
- Assuming both are in probability space, the cross entropy is:
25
-
26
- H(target,estimated) = -reduce_sum(target * log(estimated), axis=axis)
27
- = -matmul(target, log(estimated), reduce=axis)
28
-
29
- In case you want label smoothing, you can use e.g.::
30
-
31
- ce = nn.cross_entropy(
32
- target=nn.label_smoothing(target, 0.1),
33
- estimated=estimated)
34
-
35
- :param estimated: probs, log-probs or logits, specified via ``estimated_type``
36
- :param target: probs, normalized, can also be sparse
37
- :param axis: class labels dim over which softmax is computed
38
- :param estimated_type: "probs", "log-probs" or "logits"
39
- :return: cross entropy (same Dims as 'estimated' but without 'axis')
40
- """
41
-
42
- if estimated_type == "logits":
43
- # This is a common case and most backends provide optimized functions for it.
44
- # noinspection PyProtectedMember
45
- return estimated._raw_backend.softmax_cross_entropy_with_logits(logits=estimated, targets=target, axis=axis)
46
- if estimated_type == "probs":
47
- log_prob = rf.log(estimated) # TODO: make numerically stable
48
- elif estimated_type == "log-probs":
49
- log_prob = estimated
50
- else:
51
- raise ValueError("estimated_type must be 'probs', 'log-probs' or 'logits'")
52
- if target.sparse_dim:
53
- return -rf.gather(log_prob, indices=target, axis=axis)
54
- return -rf.matmul(target, log_prob, reduce=axis)
55
-
56
-
57
- def ctc_loss(
58
- *,
59
- logits: Tensor,
60
- logits_normalized: bool = False,
61
- targets: Tensor,
62
- input_spatial_dim: Dim,
63
- targets_spatial_dim: Dim,
64
- blank_index: int,
65
- max_approx: bool = False,
66
- ) -> Tensor:
67
- """
68
- Calculates the CTC loss.
69
-
70
- Internally, this uses :func:`returnn.tf.native_op.ctc_loss`
71
- which is equivalent to tf.nn.ctc_loss but more efficient.
72
-
73
- Output is of shape [B].
74
-
75
- :param logits: (before softmax). shape [B...,input_spatial,C]
76
- :param logits_normalized: whether the logits are already normalized (e.g. via log-softmax)
77
- :param targets: sparse. shape [B...,targets_spatial] -> C
78
- :param input_spatial_dim: spatial dim of input logits
79
- :param targets_spatial_dim: spatial dim of targets
80
- :param blank_index: vocab index of the blank symbol
81
- :param max_approx: if True, use max instead of sum over alignments (max approx, Viterbi)
82
- :return: loss shape [B...]
83
- """
84
- # noinspection PyProtectedMember
85
- return logits._raw_backend.ctc_loss(
86
- logits=logits,
87
- logits_normalized=logits_normalized,
88
- targets=targets,
89
- input_spatial_dim=input_spatial_dim,
90
- targets_spatial_dim=targets_spatial_dim,
91
- blank_index=blank_index,
92
- max_approx=max_approx,
93
- )