returnn 1.20240719.152107__tar.gz → 1.20240720.4642__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

Files changed (455) hide show
  1. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/PKG-INFO +1 -1
  2. returnn-1.20240720.4642/_setup_info_generated.py +2 -0
  3. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_numpy_backend.py +29 -1
  4. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/array_.py +9 -0
  5. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/dims.py +20 -19
  6. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/util/array_.py +11 -3
  7. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn.egg-info/PKG-INFO +1 -1
  8. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_base.py +37 -0
  9. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_torch_frontend.py +137 -7
  10. returnn-1.20240719.152107/_setup_info_generated.py +0 -2
  11. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/.editorconfig +0 -0
  12. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/.gitignore +0 -0
  13. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/.gitmodules +0 -0
  14. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/.kateconfig +0 -0
  15. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/CHANGELOG.md +0 -0
  16. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/CODEOWNERS +0 -0
  17. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/CONTRIBUTING.md +0 -0
  18. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/LICENSE +0 -0
  19. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/MANIFEST.in +0 -0
  20. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/README.rst +0 -0
  21. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/__init__.py +0 -0
  22. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/12AX.cluster_map +0 -0
  23. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/_setup_returnn_env.py +0 -0
  24. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-fwd.config +0 -0
  25. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-horovod-mpi.py +0 -0
  26. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-horovod-mpi.py.sh +0 -0
  27. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-horovod-mpi.sh +0 -0
  28. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-hyper-param-tuning.config +0 -0
  29. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-iter-dataset.py +0 -0
  30. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-list-devices.py +0 -0
  31. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-lua-torch-layer.config +0 -0
  32. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-pretrain.config +0 -0
  33. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-record-and-push-to-webserver.py +0 -0
  34. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-returnn-as-framework.py +0 -0
  35. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-rf-pt-benchmark.py +0 -0
  36. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-rf.config +0 -0
  37. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-rhn-enwik8.config +0 -0
  38. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-sprint-interface.py +0 -0
  39. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-att-copy.config +0 -0
  40. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-attention.config +0 -0
  41. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
  42. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
  43. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-enc-dec.config +0 -0
  44. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-hard-att-copy.config +0 -0
  45. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-lstm-benchmark.py +0 -0
  46. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
  47. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
  48. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-native-lstm.12ax.config +0 -0
  49. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-native-lstm2.12ax.config +0 -0
  50. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
  51. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-neural-transducer.12ax.config +0 -0
  52. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-rec-explicit-lstm.config +0 -0
  53. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-rec-explicit-rnn.config +0 -0
  54. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-rec-self-att.config +0 -0
  55. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-search-compiled-graph.py +0 -0
  56. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
  57. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-timit-lstm-ctc.config +0 -0
  58. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-torch.config +0 -0
  59. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
  60. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/demo.sh +0 -0
  61. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
  62. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
  63. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
  64. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/README.txt +0 -0
  65. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/chars.txt +0 -0
  66. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/config_demo +0 -0
  67. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/config_fwd +0 -0
  68. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/config_real +0 -0
  69. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
  70. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/decode.py +0 -0
  71. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
  72. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/go.sh +0 -0
  73. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/lines.txt +0 -0
  74. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/split/eval.txt +0 -0
  75. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/split/train.txt +0 -0
  76. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/IAM/split/valid.txt +0 -0
  77. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/README.md +0 -0
  78. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial/create_test_h5.py +0 -0
  79. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial/forwardconfig +0 -0
  80. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial/go.sh +0 -0
  81. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial/trainconfig +0 -0
  82. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
  83. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
  84. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial_rgb/go.sh +0 -0
  85. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
  86. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/pyproject.toml +0 -0
  87. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/requirements.txt +0 -0
  88. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/__init__.py +0 -0
  89. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/__main__.py +0 -0
  90. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/__old_mod_loader__.py +0 -0
  91. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/__setup__.py +0 -0
  92. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/config.py +0 -0
  93. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/__init__.py +0 -0
  94. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/audio.py +0 -0
  95. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/basic.py +0 -0
  96. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/bundle_file.py +0 -0
  97. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/cached.py +0 -0
  98. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/cached2.py +0 -0
  99. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/distrib_files.py +0 -0
  100. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/generating.py +0 -0
  101. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/hdf.py +0 -0
  102. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/lm.py +0 -0
  103. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/map.py +0 -0
  104. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/meta.py +0 -0
  105. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/multi_proc.py +0 -0
  106. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/normalization_data.py +0 -0
  107. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/numpy_dump.py +0 -0
  108. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/raw_wav.py +0 -0
  109. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/sprint.py +0 -0
  110. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/stereo.py +0 -0
  111. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/util/__init__.py +0 -0
  112. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/util/feature_extraction.py +0 -0
  113. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/util/strings.py +0 -0
  114. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/datasets/util/vocabulary.py +0 -0
  115. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/engine/__init__.py +0 -0
  116. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/engine/base.py +0 -0
  117. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/engine/batch.py +0 -0
  118. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/__init__.py +0 -0
  119. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/__main__.py +0 -0
  120. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/.git +0 -0
  121. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
  122. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
  123. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
  124. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
  125. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
  126. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
  127. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
  128. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
  129. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
  130. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
  131. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
  132. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
  133. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
  134. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
  135. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
  136. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
  137. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
  138. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
  139. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
  140. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
  141. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
  142. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
  143. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
  144. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
  145. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/__init__.py +0 -0
  146. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/README.md +0 -0
  147. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/__init__.py +0 -0
  148. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/edit.py +0 -0
  149. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/reroute.py +0 -0
  150. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/select.py +0 -0
  151. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/subgraph.py +0 -0
  152. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/transform.py +0 -0
  153. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/extern/graph_editor/util.py +0 -0
  154. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/forward_iface.py +0 -0
  155. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/__init__.py +0 -0
  156. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_backend.py +0 -0
  157. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/__init__.py +0 -0
  158. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/backend.cpp +0 -0
  159. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/backend.hpp +0 -0
  160. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/module.cpp +0 -0
  161. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/module.hpp +0 -0
  162. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/py_utils.hpp +0 -0
  163. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/tensor_ops.cpp +0 -0
  164. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_native/tensor_ops.hpp +0 -0
  165. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_random_journal.py +0 -0
  166. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/_utils.py +0 -0
  167. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/attention.py +0 -0
  168. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/audio/__init__.py +0 -0
  169. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/audio/mel.py +0 -0
  170. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/audio/specaugment.py +0 -0
  171. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/backend.py +0 -0
  172. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/build_from_dict.py +0 -0
  173. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/cond.py +0 -0
  174. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/const.py +0 -0
  175. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/container.py +0 -0
  176. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/control_flow_ctx.py +0 -0
  177. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/conv.py +0 -0
  178. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/decoder/__init__.py +0 -0
  179. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/decoder/transformer.py +0 -0
  180. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/device.py +0 -0
  181. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/dropout.py +0 -0
  182. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/dtype.py +0 -0
  183. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/encoder/__init__.py +0 -0
  184. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/encoder/base.py +0 -0
  185. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/encoder/conformer.py +0 -0
  186. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/gradient.py +0 -0
  187. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/graph.py +0 -0
  188. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/hooks.py +0 -0
  189. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/init.py +0 -0
  190. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/label_smoothing.py +0 -0
  191. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/linear.py +0 -0
  192. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/loop.py +0 -0
  193. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/loss.py +0 -0
  194. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/math_.py +0 -0
  195. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/matmul.py +0 -0
  196. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/module.py +0 -0
  197. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/normalization.py +0 -0
  198. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/parameter.py +0 -0
  199. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/parametrizations.py +0 -0
  200. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/parametrize.py +0 -0
  201. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/piecewise_linear.py +0 -0
  202. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/rand.py +0 -0
  203. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/rec.py +0 -0
  204. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/reduce.py +0 -0
  205. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/run_ctx.py +0 -0
  206. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/signal.py +0 -0
  207. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/state.py +0 -0
  208. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/stepwise_scheduler.py +0 -0
  209. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/tensor_array.py +0 -0
  210. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/frontend/types.py +0 -0
  211. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/import_/__init__.py +0 -0
  212. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/import_/common.py +0 -0
  213. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/import_/git.py +0 -0
  214. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/import_/import_.py +0 -0
  215. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/learning_rate_control.py +0 -0
  216. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/log.py +0 -0
  217. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/native_op.cpp +0 -0
  218. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/native_op.py +0 -0
  219. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/pretrain.py +0 -0
  220. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/sprint/__init__.py +0 -0
  221. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/sprint/cache.py +0 -0
  222. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/sprint/control.py +0 -0
  223. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/sprint/error_signals.py +0 -0
  224. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/sprint/extern_interface.py +0 -0
  225. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/sprint/interface.py +0 -0
  226. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/README.md +0 -0
  227. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/__init__.py +0 -0
  228. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/_dim_extra.py +0 -0
  229. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/_tensor_extra.py +0 -0
  230. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/_tensor_mixin_base.py +0 -0
  231. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/_tensor_op_overloads.py +0 -0
  232. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/control_flow_ctx.py +0 -0
  233. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/dim.py +0 -0
  234. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/marked_dim.py +0 -0
  235. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/tensor.py +0 -0
  236. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/tensor_dict.py +0 -0
  237. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tensor/utils.py +0 -0
  238. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/__init__.py +0 -0
  239. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/compat.py +0 -0
  240. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/data_pipeline.py +0 -0
  241. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/distributed.py +0 -0
  242. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/engine.py +0 -0
  243. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/README.md +0 -0
  244. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/__init__.py +0 -0
  245. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/_backend.py +0 -0
  246. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/_utils.py +0 -0
  247. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/cond.py +0 -0
  248. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
  249. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
  250. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/dims.py +0 -0
  251. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/layer.py +0 -0
  252. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/loop.py +0 -0
  253. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/make_layer.py +0 -0
  254. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/masked_computation.py +0 -0
  255. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
  256. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
  257. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_low_level/__init__.py +0 -0
  258. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/frontend_low_level/_backend.py +0 -0
  259. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/horovod.py +0 -0
  260. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/hyper_param_tuning.py +0 -0
  261. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/__init__.py +0 -0
  262. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/base.py +0 -0
  263. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/basic.py +0 -0
  264. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/rec.py +0 -0
  265. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/segmental_model.py +0 -0
  266. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/signal_processing.py +0 -0
  267. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/layers/variable.py +0 -0
  268. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/native_op.py +0 -0
  269. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/network.py +0 -0
  270. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/sprint.py +0 -0
  271. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/updater.py +0 -0
  272. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/util/__init__.py +0 -0
  273. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/util/basic.py +0 -0
  274. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/util/data.py +0 -0
  275. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/util/gradient_checkpoint.py +0 -0
  276. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/util/ken_lm.py +0 -0
  277. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/tf/util/open_fst.py +0 -0
  278. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/README.md +0 -0
  279. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/__init__.py +0 -0
  280. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/data/__init__.py +0 -0
  281. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/data/extern_data.py +0 -0
  282. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/data/pipeline.py +0 -0
  283. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/data/queued_data_iter.py +0 -0
  284. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
  285. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/data/tensor_utils.py +0 -0
  286. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/distributed.py +0 -0
  287. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/engine.py +0 -0
  288. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/frontend/__init__.py +0 -0
  289. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/frontend/_backend.py +0 -0
  290. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/frontend/_rand.py +0 -0
  291. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/frontend/bridge.py +0 -0
  292. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/frontend/raw_ops.py +0 -0
  293. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/updater.py +0 -0
  294. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/util/README.md +0 -0
  295. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/util/__init__.py +0 -0
  296. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/util/diagnose_gpu.py +0 -0
  297. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/util/gradient_checkpoint.py +0 -0
  298. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/torch/util/scaled_gradient.py +0 -0
  299. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/__init__.py +0 -0
  300. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/basic.py +0 -0
  301. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/better_exchook.py +0 -0
  302. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/bpe.py +0 -0
  303. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/debug.py +0 -0
  304. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/debug_helpers.py +0 -0
  305. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/file_cache.py +0 -0
  306. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/fsa.py +0 -0
  307. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/literal_py_to_pickle.py +0 -0
  308. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/math.py +0 -0
  309. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/multi_proc_non_daemonic_spawn.py +0 -0
  310. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/native_code_compiler.py +0 -0
  311. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/pprint.py +0 -0
  312. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/py-to-pickle.cpp +0 -0
  313. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/py_compat.py +0 -0
  314. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/py_ext_mod_compiler.py +0 -0
  315. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/result_with_reason.py +0 -0
  316. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/sig_proc.py +0 -0
  317. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/task_system.py +0 -0
  318. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/train_proc_manager.py +0 -0
  319. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn/util/watch_memory.py +0 -0
  320. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn.egg-info/SOURCES.txt +0 -0
  321. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn.egg-info/dependency_links.txt +0 -0
  322. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/returnn.egg-info/top_level.txt +0 -0
  323. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/rnn.py +0 -0
  324. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/setup.cfg +0 -0
  325. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/setup.py +0 -0
  326. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/DummySprintExec.py +0 -0
  327. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm-inspection-profile.xml +0 -0
  328. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/.gitignore +0 -0
  329. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/.name +0 -0
  330. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
  331. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
  332. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
  333. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
  334. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
  335. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/misc.xml +0 -0
  336. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/modules.xml +0 -0
  337. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/returnn.iml +0 -0
  338. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
  339. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/_set_num_threads1.py +0 -0
  340. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/_setup_returnn_env.py +0 -0
  341. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/_setup_test_env.py +0 -0
  342. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/bpe-unicode-demo.codes +0 -0
  343. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/bpe-unicode-demo.vocab +0 -0
  344. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/lexicon_opt.fst +0 -0
  345. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/lexicon_opt.isyms +0 -0
  346. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/lexicon_opt.jpg +0 -0
  347. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/lexicon_opt.osyms +0 -0
  348. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/lint_common.py +0 -0
  349. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/pycharm-inspect.py +0 -0
  350. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/pylint.py +0 -0
  351. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/returnn-as-framework.py +0 -0
  352. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/rf_utils.py +0 -0
  353. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/spelling.dic +0 -0
  354. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_Config.py +0 -0
  355. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_Dataset.py +0 -0
  356. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_Fsa.py +0 -0
  357. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_GeneratingDataset.py +0 -0
  358. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_HDFDataset.py +0 -0
  359. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_LearningRateControl.py +0 -0
  360. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_Log.py +0 -0
  361. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_MultiProcDataset.py +0 -0
  362. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_Pretrain.py +0 -0
  363. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_ResNet.py +0 -0
  364. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_SprintDataset.py +0 -0
  365. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_SprintInterface.py +0 -0
  366. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFEngine.py +0 -0
  367. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFNativeOp.py +0 -0
  368. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFNetworkLayer.py +0 -0
  369. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFNetworkRecLayer.py +0 -0
  370. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFNetworkSigProcLayer.py +0 -0
  371. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFUpdater.py +0 -0
  372. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TFUtil.py +0 -0
  373. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TF_determinism.py +0 -0
  374. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TaskSystem.py +0 -0
  375. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TaskSystem_SharedMem.py +0 -0
  376. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_TranslationDataset.py +0 -0
  377. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_Util.py +0 -0
  378. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_demos.py +0 -0
  379. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_fork_exec.py +0 -0
  380. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_hdf_dump.py +0 -0
  381. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_array.py +0 -0
  382. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_attention.py +0 -0
  383. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_cond.py +0 -0
  384. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_const.py +0 -0
  385. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_container.py +0 -0
  386. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_conv.py +0 -0
  387. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_encoder_conformer.py +0 -0
  388. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_gradient.py +0 -0
  389. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_label_smoothing.py +0 -0
  390. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_loop.py +0 -0
  391. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_math.py +0 -0
  392. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_normalization.py +0 -0
  393. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_piecewise_linear.py +0 -0
  394. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_rec.py +0 -0
  395. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_reduce.py +0 -0
  396. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_rf_signal.py +0 -0
  397. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_tensor.py +0 -0
  398. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_tools.py +0 -0
  399. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_torch_dataset.py +0 -0
  400. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_torch_engine.py +0 -0
  401. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_torch_internal_frontend.py +0 -0
  402. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/test_torch_util.py +0 -0
  403. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tests/torch_utils.py +0 -0
  404. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/_setup_returnn_env.py +0 -0
  405. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/analyze-dataset-batches.py +0 -0
  406. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/bliss-collect-seq-lens.py +0 -0
  407. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/bliss-dump-text.py +0 -0
  408. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/bliss-get-segment-names.py +0 -0
  409. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/bliss-to-ogg-zip.py +0 -0
  410. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/bpe-create-lexicon.py +0 -0
  411. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/calculate-word-error-rate.py +0 -0
  412. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/cleanup-old-models.py +0 -0
  413. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/collect-orth-symbols.py +0 -0
  414. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/collect-words.py +0 -0
  415. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/compile_native_op.py +0 -0
  416. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/compile_tf_graph.py +0 -0
  417. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/debug-dump-search-scores.py +0 -0
  418. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/debug-plot-search-scores.py +0 -0
  419. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/dump-dataset-raw-strings.py +0 -0
  420. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/dump-dataset.py +0 -0
  421. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/dump-forward-stats.py +0 -0
  422. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/dump-forward.py +0 -0
  423. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/dump-network-json.py +0 -0
  424. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/dump-pickle.py +0 -0
  425. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/extract_state_tying_from_dataset.py +0 -0
  426. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/get-attention-weights.py +0 -0
  427. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/get-best-model-epoch.py +0 -0
  428. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/hdf_dump.py +0 -0
  429. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/hdf_dump_translation_dataset.py +0 -0
  430. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/import-blocks-mt-model.py +0 -0
  431. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/import-t2t-mt-model.py +0 -0
  432. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/.gitignore +0 -0
  433. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/Makefile +0 -0
  434. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/README.md +0 -0
  435. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/README.md +0 -0
  436. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/libs_list +0 -0
  437. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
  438. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
  439. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
  440. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/state_vars_list +0 -0
  441. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/example/tensor_names_list +0 -0
  442. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/file.h +0 -0
  443. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
  444. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
  445. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/main.cc +0 -0
  446. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/rescorer.h +0 -0
  447. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/vocabulary.cc +0 -0
  448. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/lattice_rescorer/vocabulary.h +0 -0
  449. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/tf_avg_checkpoints.py +0 -0
  450. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/tf_inspect_checkpoint.py +0 -0
  451. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/tf_inspect_summary_log.py +0 -0
  452. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/torch_avg_checkpoints.py +0 -0
  453. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/torch_export_to_onnx.py +0 -0
  454. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/torch_inspect_checkpoint.py +0 -0
  455. {returnn-1.20240719.152107 → returnn-1.20240720.4642}/tools/torch_inspect_checkpoint_and_opt.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20240719.152107
3
+ Version: 1.20240720.4642
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -0,0 +1,2 @@
1
+ version = '1.20240720.004642'
2
+ long_version = '1.20240720.004642+git.862dbd6'
@@ -10,6 +10,7 @@ import numpy
10
10
  from returnn.tensor import Tensor, Dim
11
11
  import returnn.frontend as rf
12
12
  from ._backend import Backend
13
+ from returnn.frontend import RawTensorTypes
13
14
 
14
15
 
15
16
  # We do not expect that we will ever implement all the methods of the Backend interface.
@@ -75,6 +76,27 @@ class NumpyBackend(Backend[numpy.ndarray]):
75
76
  """
76
77
  return raw_tensor.shape
77
78
 
79
+ @staticmethod
80
+ def convert_to_tensor(
81
+ value: Union[Tensor, numpy.ndarray, RawTensorTypes],
82
+ *,
83
+ dims: Sequence[Dim],
84
+ dtype: str,
85
+ sparse_dim: Optional[Dim] = None,
86
+ device: Optional[str] = None,
87
+ name: Optional[str] = None,
88
+ ) -> Tensor[numpy.ndarray]:
89
+ """convert to tensor"""
90
+ if isinstance(value, Tensor):
91
+ return value
92
+ if isinstance(value, numpy.ndarray):
93
+ name = name or "raw_tensor"
94
+ else:
95
+ name = name or "const"
96
+ value = numpy.array(value, dtype=NumpyBackend.as_dtype_raw(dtype))
97
+ assert isinstance(value, numpy.ndarray)
98
+ return Tensor(name, dims=dims, dtype=dtype, sparse_dim=sparse_dim, raw_tensor=value)
99
+
78
100
  @staticmethod
79
101
  def expand_dims_raw(raw_tensor: numpy.ndarray, axis: int) -> numpy.ndarray:
80
102
  """
@@ -114,6 +136,8 @@ class NumpyBackend(Backend[numpy.ndarray]):
114
136
  op = getattr(numpy, kind) # e.g. numpy.equal
115
137
  return op(a, b)
116
138
 
139
+ _CombineKindMap = {"mul": numpy.multiply}
140
+
117
141
  @staticmethod
118
142
  def combine_raw(a: numpy.ndarray, kind: str, b: numpy.ndarray) -> numpy.ndarray:
119
143
  """
@@ -124,7 +148,11 @@ class NumpyBackend(Backend[numpy.ndarray]):
124
148
  :return: a `kind` b
125
149
  """
126
150
  assert a.ndim == b.ndim or a.ndim == 0 or b.ndim == 0
127
- op = getattr(numpy, kind) # e.g. numpy.add
151
+ op = getattr(numpy, kind, None) # e.g. numpy.add
152
+ if not op:
153
+ op = NumpyBackend._CombineKindMap.get(kind)
154
+ if not op:
155
+ raise ValueError(f"RF NumpyBackend: combine kind {kind!r} not supported")
128
156
  return op(a, b)
129
157
 
130
158
  @staticmethod
@@ -584,6 +584,15 @@ def pack_padded(
584
584
  assert not enforce_sorted # not implemented yet...
585
585
  mask = rf.sequence_mask(dims, device=source.device)
586
586
  assert mask.dims_set == set(dims)
587
+ # Note: We could already calculate out_dim here, as follows:
588
+ # out_dim = Dim(rf.num_elements_of_shape(dims), name="packed")
589
+ # This could trigger a more efficient calculation path in masked_select,
590
+ # where we can avoid a CUDA host-device synchronization, e.g. in the PyTorch backend.
591
+ # However, in our benchmarks so far, it seems it's not helping so far,
592
+ # so we don't do this, to also avoid the (minor) overhead of num_elements_of_shape here.
593
+ # See: https://github.com/rwth-i6/returnn/pull/1593
594
+ # This might change in the future when we have this:
595
+ # https://github.com/pytorch/pytorch/issues/131256
587
596
  return rf.masked_select(source, mask=mask, dims=dims, out_dim=out_dim)
588
597
 
589
598
 
@@ -141,25 +141,26 @@ def num_elements_of_shape(dims: Union[Dim, Sequence[Dim]], *, use_mask: bool = T
141
141
  n *= dim.dimension
142
142
  return n
143
143
 
144
- n = 1
145
- dims = list(dims)
146
- dims.sort(key=lambda dim__: -dim__.dyn_size_ext.batch_ndim if dim__.dyn_size_ext else 0)
147
- while dims:
148
- dim = dims.pop(0)
149
- if dim.is_static():
150
- n *= dim.dimension
151
- continue
152
- # E.g. dyn_size_ext is shape [B], and self has shape [B,T].
153
- # Due to the sorting of dims above, dims will be [T,B], and we will first process T.
154
- # We want to sum over dyn_size_ext, but then we need to remove the other dims it covers.
155
- dims_to_reduce = []
156
- for dim_ in dim.dyn_size_ext.dims:
157
- if dim_ in dims:
158
- assert not dim_.need_masking() # not implemented
159
- dims.remove(dim_)
160
- dims_to_reduce.append(dim_)
161
- n_ = rf.reduce_sum(dim.dyn_size_ext, axis=dims_to_reduce) if dims_to_reduce else dim.dyn_size_ext
162
- n *= n_
144
+ n: Union[int, Tensor] = 1
145
+ postponed_dims = []
146
+ for i, dim in enumerate(dims):
147
+ # E.g. if dim==B, and some other dim dyn_size_ext has B, then we need to postpone this.
148
+ related_dims = []
149
+ for j, dim_ in enumerate(dims):
150
+ if i == j:
151
+ continue
152
+ if dim_.dyn_size_ext and dim in dim_.dyn_size_ext.dims:
153
+ related_dims.append(dim_)
154
+ if not related_dims:
155
+ if dim.is_static():
156
+ n *= dim.dimension
157
+ else:
158
+ n *= dim.dyn_size_ext
159
+ else:
160
+ postponed_dims.append(dim)
161
+ if postponed_dims:
162
+ n: Tensor
163
+ n = rf.reduce_sum(n, axis=postponed_dims)
163
164
  return n
164
165
 
165
166
 
@@ -28,10 +28,14 @@ def masked_select(input: torch.Tensor, mask: torch.Tensor, *, mask_len: Optional
28
28
  assert input.ndim >= mask.ndim
29
29
  assert all(input.shape[i] == mask.shape[i] for i in range(mask.ndim))
30
30
  mask_flat = mask.flatten()
31
+ # Note: So far it seems that our custom nonzero is always slower than torch.nonzero,
32
+ # thus we always use torch.nonzero here for now.
33
+ # https://github.com/rwth-i6/returnn/pull/1593
34
+ # We might change this in the future. See also:
35
+ # https://github.com/pytorch/pytorch/issues/131256
36
+ indices = torch.nonzero(mask_flat).squeeze(1) # [out_len]
31
37
  if mask_len is not None:
32
- indices = nonzero(mask_flat, out_len=mask_len) # [out_len]
33
- else:
34
- indices = torch.nonzero(mask_flat).squeeze(1) # [out_len]
38
+ assert indices.shape[0] == mask_len
35
39
  input_flat = input.flatten(end_dim=mask.ndim - 1)
36
40
  return input_flat[indices]
37
41
 
@@ -42,6 +46,10 @@ def nonzero(mask: torch.Tensor, *, out_len: Union[int, torch.Tensor]) -> torch.T
42
46
  that we do not need to perform a CUDA synchronization.
43
47
  We can avoid that when we know the output length in advance.
44
48
 
49
+ However, in my benchmarks, it seems this is slower than torch.nonzero.
50
+ https://github.com/rwth-i6/returnn/pull/1593
51
+ https://github.com/pytorch/pytorch/issues/131256
52
+
45
53
  :param mask: flattened (dim() == 1) mask, bool
46
54
  :param out_len:
47
55
  :return: indices of True elements, shape [out_len].
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20240719.152107
3
+ Version: 1.20240720.4642
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -14,6 +14,13 @@ from rf_utils import run_model, run_model_torch_train
14
14
  # Keep test_linear_direct and test_linear first here to have some very canonical examples.
15
15
 
16
16
 
17
+ def _setup():
18
+ rf.select_backend_torch() # enables some of the native optimizations
19
+
20
+
21
+ _setup()
22
+
23
+
17
24
  def test_linear_direct():
18
25
  time_dim = Dim(Tensor("time", [batch_dim], dtype="int32"))
19
26
  in_dim, out_dim = Dim(7, name="in"), Dim(13, name="out")
@@ -289,6 +296,36 @@ def test_dim_mask():
289
296
  run_model(extern_data, lambda *, epoch, step: _Net(), _forward_step)
290
297
 
291
298
 
299
+ def test_num_elements_of_shape():
300
+ import numpy as np
301
+
302
+ batch_dim_ = Dim(5, name="batch")
303
+ enc_dim = Dim(Tensor("enc", dims=[batch_dim_], dtype="int64"))
304
+ dec_dim = Dim(Tensor("dec", dims=[batch_dim_], dtype="int64"))
305
+ enc_dim.dyn_size_ext.raw_tensor = np.array([17, 16, 15, 13, 12])
306
+ dec_dim.dyn_size_ext.raw_tensor = np.array([11, 10, 8, 7, 5])
307
+ calc_n_enc = sum(enc_dim.dyn_size_ext.raw_tensor)
308
+ calc_n_dec = sum(dec_dim.dyn_size_ext.raw_tensor)
309
+ calc_n_prod = sum(enc_dim.dyn_size_ext.raw_tensor * dec_dim.dyn_size_ext.raw_tensor)
310
+ assert rf.num_elements_of_shape([batch_dim_]) == batch_dim_.dimension
311
+ n_b_enc = rf.num_elements_of_shape([batch_dim_, enc_dim])
312
+ assert calc_n_enc == n_b_enc.raw_tensor.item()
313
+ n_b_dec = rf.num_elements_of_shape([dec_dim, batch_dim_])
314
+ assert calc_n_dec == n_b_dec.raw_tensor.item()
315
+ n_prod = rf.num_elements_of_shape([batch_dim_, enc_dim, dec_dim])
316
+ assert calc_n_prod == n_prod.raw_tensor.item()
317
+
318
+
319
+ def test_convert_to_tensor_numpy_backend():
320
+ import numpy as np
321
+ from returnn.frontend._numpy_backend import NumpyBackend
322
+
323
+ x = rf.convert_to_tensor(1, dims=(), dtype="int32", _backend=NumpyBackend)
324
+ assert isinstance(x.raw_tensor, np.ndarray)
325
+ assert x.raw_tensor.dtype == np.int32
326
+ assert x.raw_tensor.item() == 1
327
+
328
+
292
329
  def test_param_assign():
293
330
  time_dim = Dim(Tensor("time", [batch_dim], dtype="int32"))
294
331
  in_dim = Dim(7, name="in")
@@ -11,7 +11,6 @@ import pytest
11
11
  import math
12
12
  import sys
13
13
  import unittest
14
- from pprint import pprint
15
14
 
16
15
  from torch_utils import (
17
16
  report_profile,
@@ -25,15 +24,16 @@ from returnn.tensor import Tensor, Dim
25
24
  import returnn.frontend as rf
26
25
 
27
26
 
27
+ _torch_default_device = torch.device("cpu")
28
+
29
+
28
30
  def _setup():
29
31
  rf.select_backend_torch()
30
- dev = None
32
+ global _torch_default_device
31
33
  if torch.cuda.is_available():
32
- dev = "cuda"
34
+ _torch_default_device = torch.device("cuda")
33
35
  elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
34
- dev = "mps"
35
- if dev:
36
- torch.set_default_device(dev)
36
+ _torch_default_device = torch.device("mps")
37
37
 
38
38
 
39
39
  _setup()
@@ -470,7 +470,8 @@ def test_pack_padded_memory():
470
470
  enc_dim.dyn_size_ext.raw_tensor.max(),
471
471
  dec_dim.dyn_size_ext.raw_tensor.max(),
472
472
  vocab_dim.dimension,
473
- ).astype(np.float32)
473
+ ).astype(np.float32),
474
+ device=_torch_default_device,
474
475
  ),
475
476
  dims=[batch_dim_, enc_dim, dec_dim, vocab_dim],
476
477
  )
@@ -587,6 +588,135 @@ def test_pack_padded_memory():
587
588
  print("dev:", rf_pack_padded_res.device)
588
589
 
589
590
 
591
+ def _benchmark_pack_padded():
592
+ from torch.utils.benchmark import Timer
593
+ import numpy as np
594
+ import torch
595
+ from returnn.tensor import Dim
596
+
597
+ rnd = np.random.RandomState(42)
598
+ batch_dim_ = Dim(113, name="batch")
599
+ batch_dims = [batch_dim_]
600
+ vocab_dim = Dim(1023, name="vocab")
601
+ enc_dim = Dim(
602
+ rf.convert_to_tensor(
603
+ torch.tensor(rnd.randint(11, 55, size=[batch_dim_.dimension]), device="cpu"), dims=[batch_dim_]
604
+ ),
605
+ name="enc",
606
+ )
607
+ dec_dim = Dim(
608
+ rf.convert_to_tensor(
609
+ torch.tensor(rnd.randint(7, 23, size=[batch_dim_.dimension]), device="cpu"), dims=[batch_dim_]
610
+ ),
611
+ name="dec",
612
+ )
613
+ logits = rf.convert_to_tensor(
614
+ torch.tensor(
615
+ rnd.randn(
616
+ batch_dim_.dimension,
617
+ enc_dim.dyn_size_ext.raw_tensor.max(),
618
+ dec_dim.dyn_size_ext.raw_tensor.max(),
619
+ vocab_dim.dimension,
620
+ ).astype(np.float32),
621
+ device=_torch_default_device,
622
+ ),
623
+ dims=[batch_dim_, enc_dim, dec_dim, vocab_dim],
624
+ )
625
+ eye = rf.convert_to_tensor(
626
+ torch.eye(vocab_dim.dimension, device=logits.raw_tensor.device, dtype=logits.raw_tensor.dtype),
627
+ dims=[vocab_dim.copy(match_priority=1), vocab_dim],
628
+ )
629
+ sizeof_float = 4
630
+ print("logits size:", logits.raw_tensor.numel() * sizeof_float, "bytes")
631
+ print("dev:", logits.device)
632
+
633
+ # Call this once because this will cache some things.
634
+ # Exclude this part for the benchmark to have it fair.
635
+ dims = batch_dims + [enc_dim, dec_dim]
636
+ rf.sequence_mask(dims, device=logits.device)
637
+
638
+ def _no_op_test():
639
+ pass
640
+
641
+ def _get_logits() -> Tensor:
642
+ # Maybe do sth with logits, to better see effects of CUDA host-device synchronization.
643
+ # return rf.matmul(logits, eye, reduce=vocab_dim)
644
+ # return logits * 0.9 + 0.1
645
+ return logits
646
+
647
+ def _get_rf_pack_packed() -> torch.Tensor:
648
+ logits_ = _get_logits()
649
+ logits_packed, pack_dim = rf.pack_padded(logits_, dims=dims, enforce_sorted=False) # [B * T * S, D]
650
+ return logits_packed.raw_tensor
651
+
652
+ def _get_rf_pack_padded_known_lens() -> torch.Tensor:
653
+ logits_ = _get_logits()
654
+ mask = rf.sequence_mask(dims, device=logits.device)
655
+ assert mask.dims_set == set(dims)
656
+ # Note: Already calculating out_dim here can trigger a more efficient calculation path in masked_select,
657
+ # where we can avoid a CUDA host-device synchronization, e.g. in the PyTorch backend.
658
+ # See https://github.com/rwth-i6/returnn/pull/1593.
659
+ pack_dim = Dim(rf.num_elements_of_shape(dims), name="packed")
660
+ logits_packed, _ = rf.masked_select(logits_, mask=mask, dims=dims, out_dim=pack_dim)
661
+ return logits_packed.raw_tensor
662
+
663
+ def _get_rf_pack_padded_no_known_lens() -> torch.Tensor:
664
+ logits_ = _get_logits()
665
+ mask = rf.sequence_mask(dims, device=logits.device)
666
+ assert mask.dims_set == set(dims)
667
+ logits_packed, pack_dim = rf.masked_select(logits_, mask=mask, dims=dims)
668
+ return logits_packed.raw_tensor
669
+
670
+ def _get_torch_masked_select_pack_padded() -> torch.Tensor:
671
+ logits_ = _get_logits()
672
+ # This was the old implementation of rf.pack_padded before https://github.com/rwth-i6/returnn/pull/1586.
673
+ remaining_dims = [vocab_dim]
674
+ tensor_templ_dims = dims + remaining_dims
675
+ mask = rf.sequence_mask(dims, device=logits.device)
676
+ in_raw = logits_.copy_compatible_to_dims_raw(tensor_templ_dims)
677
+ mask_raw = mask.copy_compatible_to_dims_raw(tensor_templ_dims)
678
+ out_raw = torch.masked_select(in_raw, mask_raw)
679
+ remaining_shape = [d.get_dim_value() for d in remaining_dims]
680
+ remaining_num_elements = numpy.prod(remaining_shape) if remaining_shape else 1
681
+ assert out_raw.numel() % remaining_num_elements == 0
682
+ flattened_num_elements = out_raw.numel() // remaining_num_elements
683
+ out_raw = torch.reshape(out_raw, [flattened_num_elements] + remaining_shape)
684
+ return out_raw
685
+
686
+ def _get_naive_pack_padded() -> torch.Tensor:
687
+ logits_ = _get_logits()
688
+ tensor_templ_dims = dims + [vocab_dim]
689
+ logits_raw = logits_.copy_compatible_to_dims_raw(tensor_templ_dims)
690
+ enc_lens = enc_dim.dyn_size_ext.raw_tensor
691
+ non_blank_lens = dec_dim.dyn_size_ext.raw_tensor
692
+ vocab_len = vocab_dim.dimension
693
+
694
+ batch_tensors = []
695
+
696
+ for b in range(logits_raw.shape[0]):
697
+ enc_len = enc_lens[b]
698
+ non_blank_len = non_blank_lens[b]
699
+ combined_len = enc_len * non_blank_len
700
+ logits_single = logits_raw[b, :enc_len, :non_blank_len]
701
+ logits_single = torch.reshape(logits_single, (combined_len, vocab_len))
702
+ batch_tensors.append(logits_single)
703
+
704
+ return torch.cat(batch_tensors, dim=0)
705
+
706
+ for f in [
707
+ _no_op_test, # test
708
+ _get_logits, # warmup dummy
709
+ _get_rf_pack_packed,
710
+ _get_rf_pack_padded_known_lens,
711
+ _get_rf_pack_padded_no_known_lens,
712
+ _get_torch_masked_select_pack_padded,
713
+ _get_naive_pack_padded,
714
+ ]:
715
+ print("func:", f)
716
+ t = Timer(stmt="func()", globals={"func": f})
717
+ print(t.blocked_autorange(min_run_time=0.5))
718
+
719
+
590
720
  def test_Data_copy_compatible_to_match_priority():
591
721
  feat_dim = Dim(2, name="feature")
592
722
  in_dim = feat_dim.copy(match_priority=1)
@@ -1,2 +0,0 @@
1
- version = '1.20240719.152107'
2
- long_version = '1.20240719.152107+git.eb10e7c'