returnn 1.20230825.121159__tar.gz → 1.20230829.130342__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of returnn might be problematic. Click here for more details.
- {returnn-1.20230825.121159/returnn.egg-info → returnn-1.20230829.130342}/PKG-INFO +1 -1
- returnn-1.20230829.130342/_setup_info_generated.py +2 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/run_ctx.py +6 -3
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/basic.py +187 -2
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/util/basic.py +20 -1
- {returnn-1.20230825.121159 → returnn-1.20230829.130342/returnn.egg-info}/PKG-INFO +1 -1
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFNetworkLayer.py +45 -0
- returnn-1.20230825.121159/_setup_info_generated.py +0 -2
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/.editorconfig +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/.gitignore +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/.gitmodules +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/.kateconfig +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/CHANGELOG.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/CODEOWNERS +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/CONTRIBUTING.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/LICENSE +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/MANIFEST.in +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/README.rst +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/12AX.cluster_map +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/_setup_returnn_env.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-fwd.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-horovod-mpi.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-horovod-mpi.py.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-horovod-mpi.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-hyper-param-tuning.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-iter-dataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-list-devices.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-lua-torch-layer.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-pretrain.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-record-and-push-to-webserver.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-returnn-as-framework.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-rf.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-rhn-enwik8.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-sprint-interface.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-att-copy.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-attention.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-chunking-blstm.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-contribrnn-lstm.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-enc-dec.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-hard-att-copy.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-lstm-benchmark.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-maxgradnorm-lstm.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm-lowmem.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm2.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm2.12ax.tuned.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-neural-transducer.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-rec-explicit-lstm.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-rec-explicit-rnn.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-rec-self-att.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-search-compiled-graph.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-vanilla-lstm.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-timit-lstm-ctc.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-torch.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-upd-mult-model.lstm.12ax.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/README.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/chars.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/config_demo +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/config_fwd +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/config_real +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/create_IAM_dataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/decode.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/features/raw/demo.h5 +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/go.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/lines.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/split/eval.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/split/train.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/split/valid.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial/create_test_h5.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial/forwardconfig +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial/go.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial/trainconfig +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial_rgb/create_test_h5.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial_rgb/forwardconfig +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial_rgb/go.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial_rgb/trainconfig +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/pyproject.toml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/requirements.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/__main__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/__old_mod_loader__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/__setup__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/config.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/audio.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/basic.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/bundle_file.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/cached.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/cached2.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/generating.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/hdf.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/lm.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/map.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/meta.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/multi_proc.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/normalization_data.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/numpy_dump.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/raw_wav.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/sprint.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/stereo.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/util/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/util/feature_extraction.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/util/strings.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/util/vocabulary.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/engine/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/engine/base.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/engine/batch.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/__main__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/.git +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/.gitignore +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/LICENSE +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/aligner.gif +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/check.png +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/core.cu +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/core.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/core_cpu.cpp +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/LICENSE +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/MANIFEST.in +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/binding.cpp +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.cu +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/core.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/requirements.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/setup.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/pytorch_binding/warp_rna/test.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/ref_rna.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/setup.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op.cc +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/src/warp_rna_op_kernel_tmpl.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/tensorflow_binding/warp_rna/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/WarpRna/warp-rna/test.cpp +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/edit.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/reroute.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/select.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/subgraph.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/transform.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/extern/graph_editor/util.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/forward_iface.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/_backend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/_numpy_backend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/_random_journal.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/_utils.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/array_.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/attention.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/audio/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/audio/mel.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/audio/specaugment.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/cond.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/const.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/container.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/control_flow_ctx.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/conv.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/device.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/dims.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/dropout.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/dtype.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/encoder/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/encoder/base.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/encoder/conformer.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/gradient.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/graph.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/init.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/label_smoothing.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/linear.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/loop.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/loss.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/math_.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/matmul.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/module.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/normalization.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/parameter.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/rand.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/rec.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/reduce.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/signal.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/state.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/tensor_array.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/frontend/types.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/import_/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/import_/common.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/import_/git.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/import_/import_.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/learning_rate_control.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/log.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/native_op.cpp +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/native_op.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/pretrain.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/sprint/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/sprint/cache.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/sprint/control.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/sprint/error_signals.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/sprint/extern_interface.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/sprint/interface.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/_dim_extra.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/_tensor_extra.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/_tensor_mixin_base.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/_tensor_op_overloads.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/control_flow_ctx.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/dim.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/marked_dim.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/tensor.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/tensor_dict.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tensor/utils.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/compat.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/data_pipeline.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/distributed.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/engine.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/_backend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/_utils.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/cond.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/config_entry_points.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/debug_eager_mode.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/dims.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/layer.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/loop.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/make_layer.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/masked_computation.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/parameter_assign.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_layers/prev_tensor_ref.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_low_level/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/frontend_low_level/_backend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/horovod.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/hyper_param_tuning.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/base.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/rec.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/segmental_model.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/signal_processing.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/layers/variable.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/native_op.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/network.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/sprint.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/updater.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/util/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/util/data.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/util/gradient_checkpoint.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/util/ken_lm.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/tf/util/open_fst.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/data/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/data/pipeline.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/data/returnn_dataset_wrapper.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/data/tensor_utils.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/distributed.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/engine.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/frontend/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/frontend/_backend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/frontend/_rand.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/frontend/bridge.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/functional/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/functional/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/functional/scaled_gradient.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/torch/updater.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/__init__.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/basic.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/better_exchook.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/bpe.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/debug.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/debug_helpers.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/fsa.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/literal_py_to_pickle.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/math.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/pprint.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/py-to-pickle.cpp +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/py_compat.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/sig_proc.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/util/task_system.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn.egg-info/SOURCES.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn.egg-info/dependency_links.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn.egg-info/top_level.txt +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/rnn.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/setup.cfg +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/setup.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/DummySprintExec.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm-inspection-profile.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/.gitignore +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/.name +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/codeStyleSettings.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/codeStyles/Project.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/codeStyles/codeStyleConfig.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/inspectionProfiles/Project_Default.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/inspectionProfiles/profiles_settings.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/misc.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/modules.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/returnn.iml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/PyCharm.idea/scopes/scope_settings.xml +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/_set_num_threads1.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/_setup_returnn_env.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/_setup_test_env.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/bpe-unicode-demo.codes +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/bpe-unicode-demo.vocab +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/lexicon_opt.fst +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/lexicon_opt.isyms +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/lexicon_opt.jpg +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/lexicon_opt.osyms +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/lint_common.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/pycharm-inspect.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/pylint.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/returnn-as-framework.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/rf_utils.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/spelling.dic +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_Config.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_Dataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_Fsa.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_GeneratingDataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_HDFDataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_LearningRateControl.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_Log.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_MultiProcDataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_PTDataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_Pretrain.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_ResNet.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_SprintDataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_SprintInterface.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFEngine.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFNativeOp.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFNetworkRecLayer.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFNetworkSigProcLayer.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFUpdater.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TFUtil.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TF_determinism.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TaskSystem.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TaskSystem_SharedMem.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_TranslationDataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_Util.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_demos.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_fork_exec.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_hdf_dump.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_array.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_attention.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_base.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_cond.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_const.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_container.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_conv.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_encoder_conformer.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_gradient.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_label_smoothing.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_loop.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_math.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_normalization.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_rec.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_reduce.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_rf_signal.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_tensor.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_tools.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_torch_engine.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_torch_frontend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tests/test_torch_internal_frontend.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/_setup_returnn_env.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/analyze-dataset-batches.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/bliss-collect-seq-lens.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/bliss-dump-text.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/bliss-get-segment-names.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/bliss-to-ogg-zip.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/bpe-create-lexicon.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/calculate-word-error-rate.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/cleanup-old-models.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/collect-orth-symbols.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/collect-words.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/compile_native_op.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/compile_tf_graph.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/debug-dump-search-scores.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/debug-plot-search-scores.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/dump-dataset-raw-strings.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/dump-dataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/dump-forward-stats.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/dump-forward.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/dump-network-json.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/dump-pickle.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/extract_state_tying_from_dataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/get-attention-weights.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/get-best-model-epoch.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/hdf_dump.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/hdf_dump_translation_dataset.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/import-blocks-mt-model.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/import-t2t-mt-model.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/.gitignore +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/Makefile +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/README.md +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/libs_list +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/network.040/i600_m600_m600.sgd_b16_lr0_cl2.newbobabs.keep_over_epoch.lstm2.config +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/rescore_lattice.sh +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/state_vars_list +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/example/tensor_names_list +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/file.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/htklatticerescorer.cc +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/htklatticerescorer.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/main.cc +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/rescorer.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/vocabulary.cc +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/lattice_rescorer/vocabulary.h +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/tf_avg_checkpoints.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/tf_inspect_checkpoint.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/tf_inspect_summary_log.py +0 -0
- {returnn-1.20230825.121159 → returnn-1.20230829.130342}/tools/torch_export_to_onnx.py +0 -0
|
@@ -23,7 +23,8 @@ _init_run_ctx = None # type: Optional[RunCtx]
|
|
|
23
23
|
|
|
24
24
|
def reset_run_ctx():
|
|
25
25
|
"""
|
|
26
|
-
|
|
26
|
+
Call this after a train_step or forward_step function has been called,
|
|
27
|
+
when you write your own training or forward loop.
|
|
27
28
|
"""
|
|
28
29
|
global _run_ctx
|
|
29
30
|
_run_ctx = None
|
|
@@ -31,7 +32,8 @@ def reset_run_ctx():
|
|
|
31
32
|
|
|
32
33
|
def init_train_step_run_ctx(*, train_flag: Union[bool, Tensor], step: Union[int, Tensor]):
|
|
33
34
|
"""
|
|
34
|
-
Call this
|
|
35
|
+
Call this before the train_step function is called,
|
|
36
|
+
when you write your own training loop.
|
|
35
37
|
"""
|
|
36
38
|
global _run_ctx
|
|
37
39
|
_run_ctx = RunCtx(stage="train_step", train_flag=train_flag, step=step)
|
|
@@ -39,7 +41,8 @@ def init_train_step_run_ctx(*, train_flag: Union[bool, Tensor], step: Union[int,
|
|
|
39
41
|
|
|
40
42
|
def init_forward_step_run_ctx(*, expected_outputs: Optional[TensorDict] = None, step: Union[int, Tensor]):
|
|
41
43
|
"""
|
|
42
|
-
Call this
|
|
44
|
+
Call this before the forward_step function is called,
|
|
45
|
+
when you write your own forward loop.
|
|
43
46
|
"""
|
|
44
47
|
global _run_ctx
|
|
45
48
|
_run_ctx = RunCtx(stage="forward_step", expected_outputs=expected_outputs, step=step)
|
|
@@ -3724,15 +3724,21 @@ class WindowLayer(_ConcatInputLayer):
|
|
|
3724
3724
|
Adds a window dimension.
|
|
3725
3725
|
By default, uses the time axis and goes over it with a sliding window.
|
|
3726
3726
|
The new axis for the window is created right after the time axis.
|
|
3727
|
-
|
|
3727
|
+
In PyTorch, this is called ``unfold``.
|
|
3728
|
+
We sometimes call this "chunking".
|
|
3729
|
+
There is also the similar :class:`TimeChunkingLayer`.
|
|
3730
|
+
|
|
3728
3731
|
E.g. if the input is (batch, time, dim), the output is (batch, time, window_size, dim).
|
|
3729
3732
|
If you want to merge the (window_size, dim) together to (window_size * dim,),
|
|
3730
3733
|
you can use the MergeDimsLayer, e.g. {"class": "merge_dims", "axes": "except_time"}.
|
|
3734
|
+
|
|
3731
3735
|
Use stride==window_size and window_right=window_size - 1 in combination with a
|
|
3732
3736
|
MergeDimsLayer to achieve feature stacking with right-hand zero padding.
|
|
3733
3737
|
|
|
3734
|
-
This is not to take out a window from the time-dimension.
|
|
3738
|
+
This is not to take out a single window from the time-dimension.
|
|
3735
3739
|
See :class:`SliceLayer` or :class:`SliceNdLayer`.
|
|
3740
|
+
|
|
3741
|
+
The inverse layer is :class:`FoldLayer`.
|
|
3736
3742
|
"""
|
|
3737
3743
|
|
|
3738
3744
|
layer_class = "window"
|
|
@@ -3893,6 +3899,185 @@ class WindowLayer(_ConcatInputLayer):
|
|
|
3893
3899
|
return {}
|
|
3894
3900
|
|
|
3895
3901
|
|
|
3902
|
+
class FoldLayer(LayerBase):
|
|
3903
|
+
"""
|
|
3904
|
+
The inverse of :class:`WindowLayer`.
|
|
3905
|
+
We sometimes call this "unchunking".
|
|
3906
|
+
The :class:`TimeUnChunkingLayer` is similar.
|
|
3907
|
+
|
|
3908
|
+
Input (in_spatial_dim, window_dim, other_dims...)
|
|
3909
|
+
-> output (out_spatial_dim, other_dims...).
|
|
3910
|
+
|
|
3911
|
+
The window_dim is folded into the out_spatial_dim.
|
|
3912
|
+
This is also similar as the PyTorch fold operation (with mode="sum").
|
|
3913
|
+
"""
|
|
3914
|
+
|
|
3915
|
+
layer_class = "fold"
|
|
3916
|
+
recurrent = True # order matters
|
|
3917
|
+
|
|
3918
|
+
def __init__(
|
|
3919
|
+
self,
|
|
3920
|
+
mode: str,
|
|
3921
|
+
in_spatial_dim: Union[Dim, str],
|
|
3922
|
+
window_dim: Union[Dim, str],
|
|
3923
|
+
out_spatial_dim: Optional[Dim] = None,
|
|
3924
|
+
padding: str = "same",
|
|
3925
|
+
window_left: Optional[int] = None,
|
|
3926
|
+
window_right: Optional[int] = None,
|
|
3927
|
+
stride: int = 1,
|
|
3928
|
+
**kwargs,
|
|
3929
|
+
):
|
|
3930
|
+
"""
|
|
3931
|
+
:param mode: "sum" or "mean" (average), for overlapping frames
|
|
3932
|
+
:param in_spatial_dim:
|
|
3933
|
+
:param window_dim:
|
|
3934
|
+
:param out_spatial_dim:
|
|
3935
|
+
:param padding:
|
|
3936
|
+
:param window_left:
|
|
3937
|
+
:param window_right:
|
|
3938
|
+
:param stride:
|
|
3939
|
+
"""
|
|
3940
|
+
import returnn.frontend as rf
|
|
3941
|
+
|
|
3942
|
+
super().__init__(**kwargs)
|
|
3943
|
+
source = self.sources[0].output.copy()
|
|
3944
|
+
in_spatial_dim_axis = source.get_axis_from_description(in_spatial_dim, allow_int=False)
|
|
3945
|
+
window_dim_axis = source.get_axis_from_description(window_dim, allow_int=False)
|
|
3946
|
+
source = source.copy_transpose(
|
|
3947
|
+
[in_spatial_dim_axis, window_dim_axis]
|
|
3948
|
+
+ [i for i in range(source.batch_ndim) if i not in (in_spatial_dim_axis, window_dim_axis)]
|
|
3949
|
+
) # (in_spatial_dim,window,other_dims...)
|
|
3950
|
+
out_spatial_dim # noqa # unused here, handled in get_out_data_from_opts
|
|
3951
|
+
out_spatial_dim = self.output.dims[0] # here we directly take it from the already created one
|
|
3952
|
+
out_spatial_dim.complete_dyn_size()
|
|
3953
|
+
|
|
3954
|
+
ones = Data("mask", dims=[in_spatial_dim, window_dim], dtype="bool", sparse=False)
|
|
3955
|
+
ones.raw_tensor = tf.ones([in_spatial_dim.get_dim_value(), window_dim.get_dim_value()], dtype="bool")
|
|
3956
|
+
if in_spatial_dim.need_masking():
|
|
3957
|
+
mask_ = in_spatial_dim.get_mask(dim_order=source.dims)
|
|
3958
|
+
source.raw_tensor = tf.where(
|
|
3959
|
+
mask_.copy_compatible_to(source, check_sparse=False, check_dtype=False).placeholder,
|
|
3960
|
+
source.placeholder,
|
|
3961
|
+
tf.zeros_like(source.placeholder),
|
|
3962
|
+
)
|
|
3963
|
+
ones = rf.combine_bc(ones, "logical_and", mask_)
|
|
3964
|
+
if window_dim.need_masking():
|
|
3965
|
+
mask_ = window_dim.get_mask(dim_order=source.dims)
|
|
3966
|
+
source.raw_tensor = tf.where(
|
|
3967
|
+
mask_.copy_compatible_to(source, check_sparse=False, check_dtype=False).placeholder,
|
|
3968
|
+
source.placeholder,
|
|
3969
|
+
tf.zeros_like(source.placeholder),
|
|
3970
|
+
)
|
|
3971
|
+
ones = rf.combine_bc(ones, "logical_and", mask_)
|
|
3972
|
+
|
|
3973
|
+
# See similar code in :func:`windowed_nd` for the reverse, which uses tf.gather.
|
|
3974
|
+
start_times = tf.range(in_spatial_dim.get_dim_value()) * stride # (in_spatial_dim,)
|
|
3975
|
+
win_range = tf.range(window_dim.get_dim_value()) # (window,)
|
|
3976
|
+
indices = start_times[:, None] + win_range[None, :] # (in_spatial_dim,window)
|
|
3977
|
+
indices = tf.reshape(indices, [-1, 1]) # (in_spatial_dim*window,1)
|
|
3978
|
+
source_flat = tf.reshape(
|
|
3979
|
+
source.placeholder, # (in_spatial_dim,window,other_dims...)
|
|
3980
|
+
[in_spatial_dim.get_dim_value() * window_dim.get_dim_value()]
|
|
3981
|
+
+ [dim.get_dim_value() for dim in source.dim_tags[2:]],
|
|
3982
|
+
) # (in_spatial_dim*window,other_dims...)
|
|
3983
|
+
# The maximum index we can get in indices, and one more.
|
|
3984
|
+
out_padded_dim_value = in_spatial_dim.get_dim_value() * stride + window_dim.get_dim_value() - stride
|
|
3985
|
+
out = tf.scatter_nd(
|
|
3986
|
+
indices,
|
|
3987
|
+
source_flat,
|
|
3988
|
+
[out_padded_dim_value] + [dim.get_dim_value() for dim in source.dim_tags[2:]],
|
|
3989
|
+
) # (out_spatial_dim,other_dims...)
|
|
3990
|
+
|
|
3991
|
+
if mode == "mean":
|
|
3992
|
+
ones = ones.copy_compatible_to(source, check_sparse=False, check_dtype=False)
|
|
3993
|
+
ones_rem_shape = [dim.get_dim_value() for dim in ones.dims[2:]]
|
|
3994
|
+
ones_flat = tf.reshape(
|
|
3995
|
+
ones.placeholder, # (in_spatial_dim,window,other_dims...)
|
|
3996
|
+
[in_spatial_dim.get_dim_value() * window_dim.get_dim_value()] + ones_rem_shape,
|
|
3997
|
+
) # (in_spatial_dim*window,other_dims'...)
|
|
3998
|
+
ones_ = tf.scatter_nd(
|
|
3999
|
+
indices,
|
|
4000
|
+
tf.cast(ones_flat, out.dtype),
|
|
4001
|
+
[out_padded_dim_value] + ones_rem_shape,
|
|
4002
|
+
) # (out_spatial_dim,other_dims...)
|
|
4003
|
+
out = out / tf.maximum(ones_, 1.0)
|
|
4004
|
+
elif mode == "sum":
|
|
4005
|
+
pass # already have that
|
|
4006
|
+
else:
|
|
4007
|
+
raise ValueError(f"{self}: unsupported mode {mode!r}")
|
|
4008
|
+
|
|
4009
|
+
# Handle padding. Note that we basically do the inverse of the logic of windowed_nd.
|
|
4010
|
+
if padding.lower() == "valid":
|
|
4011
|
+
pass # nothing to do
|
|
4012
|
+
elif padding.lower() == "same":
|
|
4013
|
+
if window_left is None and window_right is None:
|
|
4014
|
+
window_left = ((window_dim - 1) // 2).get_dim_value()
|
|
4015
|
+
elif window_left is None:
|
|
4016
|
+
window_left = ((window_dim - 1) - window_right).get_dim_value()
|
|
4017
|
+
# Only strip away left padding. The right padding will be handled by the out spatial dim tag slicing below.
|
|
4018
|
+
out = out[window_left:]
|
|
4019
|
+
else:
|
|
4020
|
+
raise ValueError(f"{self}: invalid padding {padding!r}")
|
|
4021
|
+
# Slice in any case because the user might have specified out_spatial_dim
|
|
4022
|
+
out = out[: out_spatial_dim.get_dim_value()]
|
|
4023
|
+
|
|
4024
|
+
self.output.placeholder = out
|
|
4025
|
+
|
|
4026
|
+
@classmethod
|
|
4027
|
+
def get_out_data_from_opts(
|
|
4028
|
+
cls,
|
|
4029
|
+
name: str,
|
|
4030
|
+
sources: List[LayerBase],
|
|
4031
|
+
in_spatial_dim: Union[Dim, str],
|
|
4032
|
+
window_dim: Union[Dim, str],
|
|
4033
|
+
out_spatial_dim: Optional[Dim] = None,
|
|
4034
|
+
padding: str = "same",
|
|
4035
|
+
window_left: Optional[int] = None,
|
|
4036
|
+
window_right: Optional[int] = None,
|
|
4037
|
+
stride: int = 1,
|
|
4038
|
+
**kwargs,
|
|
4039
|
+
) -> Data:
|
|
4040
|
+
"""out data"""
|
|
4041
|
+
assert len(sources) == 1, f"{cls.__name__} {name!r}: requires single source, got {sources}"
|
|
4042
|
+
source = sources[0].output
|
|
4043
|
+
in_spatial_dim_axis = source.get_axis_from_description(in_spatial_dim, allow_int=False)
|
|
4044
|
+
in_spatial_dim = source.dim_tags[in_spatial_dim_axis]
|
|
4045
|
+
in_spatial_is_time_dim = in_spatial_dim_axis == source.time_dim_axis
|
|
4046
|
+
window_dim_axis = source.get_axis_from_description(window_dim, allow_int=False)
|
|
4047
|
+
assert in_spatial_dim_axis != window_dim_axis
|
|
4048
|
+
out = source.copy_template(name="%s_output" % name)
|
|
4049
|
+
for rem_axis in sorted((in_spatial_dim_axis, window_dim_axis), reverse=True):
|
|
4050
|
+
out = out.copy_template_excluding_axis(rem_axis)
|
|
4051
|
+
if (
|
|
4052
|
+
not out_spatial_dim
|
|
4053
|
+
or not out_spatial_dim.is_dim_known()
|
|
4054
|
+
or (out_spatial_dim.dyn_size_ext and out_spatial_dim.dyn_size_ext.raw_tensor is None)
|
|
4055
|
+
):
|
|
4056
|
+
# We are basically reverting ConvLayer.calc_out_dim.
|
|
4057
|
+
out_spatial_dim_: Dim = in_spatial_dim * stride
|
|
4058
|
+
if padding.lower() == "same":
|
|
4059
|
+
pass # nothing to do
|
|
4060
|
+
elif padding.lower() == "valid":
|
|
4061
|
+
if window_left is None and window_right is None:
|
|
4062
|
+
window_left = (window_dim - 1) // 2
|
|
4063
|
+
if window_right is None:
|
|
4064
|
+
window_right = (window_dim - 1) - window_left
|
|
4065
|
+
elif window_left is None:
|
|
4066
|
+
window_left = (window_dim - 1) - window_right
|
|
4067
|
+
out_spatial_dim_ = window_left + out_spatial_dim_ + window_right
|
|
4068
|
+
else:
|
|
4069
|
+
raise ValueError(f"{cls.__name__} {name!r}: invalid padding {padding!r}")
|
|
4070
|
+
if out_spatial_dim:
|
|
4071
|
+
out_spatial_dim_.declare_same_as(out_spatial_dim)
|
|
4072
|
+
else:
|
|
4073
|
+
out_spatial_dim = out_spatial_dim_
|
|
4074
|
+
out_spatial_dim_.complete_dyn_size(template_only=True)
|
|
4075
|
+
out = out.copy_add_dim_by_tag(axis=0, dim_tag=out_spatial_dim, unbroadcast=True)
|
|
4076
|
+
if in_spatial_is_time_dim:
|
|
4077
|
+
out.time_dim_axis = 0
|
|
4078
|
+
return out
|
|
4079
|
+
|
|
4080
|
+
|
|
3896
4081
|
class CumsumLayer(_ConcatInputLayer):
|
|
3897
4082
|
"""
|
|
3898
4083
|
Basically wraps tf.cumsum. Also supports that in the RecLayer.
|
|
@@ -4137,7 +4137,26 @@ def windowed_nd(
|
|
|
4137
4137
|
):
|
|
4138
4138
|
"""
|
|
4139
4139
|
Constructs a new "window" axis which is a moving input over the time-axis.
|
|
4140
|
-
If you want to take out a window, i.e. a slice, see :func:`slice_nd`.
|
|
4140
|
+
If you want to take out a single window, i.e. a slice, see :func:`slice_nd`.
|
|
4141
|
+
|
|
4142
|
+
The windowing logic behaves just as in convolution or pooling.
|
|
4143
|
+
|
|
4144
|
+
There are multiple implementations:
|
|
4145
|
+
|
|
4146
|
+
- By tiling + padding and then reshaping, we can get what we want.
|
|
4147
|
+
This is the "clever" implementation which is efficient but difficult to understand.
|
|
4148
|
+
To really understand it, it's best to visualize it.
|
|
4149
|
+
This is the default implementation.
|
|
4150
|
+
It is only efficient with no striding (stride=1),
|
|
4151
|
+
so we only use it for that case.
|
|
4152
|
+
- We can do with :func:`tf.gather` by calculating the exact indices in the input tensor
|
|
4153
|
+
for all windows.
|
|
4154
|
+
This is quite straight-forward and still reasonably efficient.
|
|
4155
|
+
We use this for striding.
|
|
4156
|
+
- :func:`tf.image.extract_patches` is quite similar in behavior.
|
|
4157
|
+
- We also have native implementations for chunk and unchunk,
|
|
4158
|
+
which are also similar in behavior.
|
|
4159
|
+
- PyTorch unfold is also similar in behavior.
|
|
4141
4160
|
|
|
4142
4161
|
:param tf.Tensor source: N-D tensor of shape (..., n_time, ...)
|
|
4143
4162
|
:param int|tf.Tensor window_size: window size
|
|
@@ -8230,6 +8230,51 @@ def test_WindowLayer_output_placeholder():
|
|
|
8230
8230
|
assert_equal(seq_lens.tolist(), [3, 1, 0])
|
|
8231
8231
|
|
|
8232
8232
|
|
|
8233
|
+
def test_FoldLayer_unchunk():
|
|
8234
|
+
from returnn.tensor import Tensor, Dim, batch_dim
|
|
8235
|
+
|
|
8236
|
+
in_spatial_dim = Dim(Tensor("in_spatial", [batch_dim], dtype="int32"))
|
|
8237
|
+
out_spatial_dim = Dim(None, name="out_spatial")
|
|
8238
|
+
window_dim = Dim(3, name="win")
|
|
8239
|
+
|
|
8240
|
+
with make_scope() as session:
|
|
8241
|
+
net = TFNetwork(extern_data=ExternData())
|
|
8242
|
+
net.extern_data.set_batch_info(BatchInfo.make_global_batch_info(tf.constant(3)))
|
|
8243
|
+
src = InternalLayer(
|
|
8244
|
+
name="src",
|
|
8245
|
+
network=net,
|
|
8246
|
+
output=Data(name="src", dims=[batch_dim, in_spatial_dim, window_dim], dtype="float32"),
|
|
8247
|
+
)
|
|
8248
|
+
src.output.dims[1].dyn_size_ext.raw_tensor = tf.constant([3, 2, 1])
|
|
8249
|
+
src.output.raw_tensor = tf.constant(
|
|
8250
|
+
[
|
|
8251
|
+
[[1, 2, 3], [2, 3, 4], [3, 4, 5]],
|
|
8252
|
+
[[6, 7, 8], [7, 8, 9], [8, 9, 10]],
|
|
8253
|
+
[[11, 12, 13], [12, 13, 14], [13, 14, 15]],
|
|
8254
|
+
],
|
|
8255
|
+
dtype=tf.float32,
|
|
8256
|
+
)
|
|
8257
|
+
opts = dict(
|
|
8258
|
+
name="fold",
|
|
8259
|
+
network=net,
|
|
8260
|
+
sources=[src],
|
|
8261
|
+
in_spatial_dim=in_spatial_dim,
|
|
8262
|
+
window_dim=window_dim,
|
|
8263
|
+
out_spatial_dim=out_spatial_dim,
|
|
8264
|
+
padding="valid",
|
|
8265
|
+
mode="mean",
|
|
8266
|
+
)
|
|
8267
|
+
layer = FoldLayer(**opts, output=FoldLayer.get_out_data_from_opts(**opts))
|
|
8268
|
+
print(layer)
|
|
8269
|
+
assert layer.output.dims == (out_spatial_dim, batch_dim)
|
|
8270
|
+
output = layer.output.copy_transpose((batch_dim, out_spatial_dim))
|
|
8271
|
+
out, seq_lens = session.run([output.raw_tensor, output.dims[1].dyn_size_ext.raw_tensor])
|
|
8272
|
+
print(out)
|
|
8273
|
+
print(seq_lens)
|
|
8274
|
+
assert_equal(out.tolist(), [[1, 2, 3, 4, 5], [6, 7, 8, 9, 0], [11, 12, 13, 0, 0]])
|
|
8275
|
+
assert_equal(seq_lens.tolist(), [5, 4, 3])
|
|
8276
|
+
|
|
8277
|
+
|
|
8233
8278
|
def test_conv_window_merge_dims():
|
|
8234
8279
|
n_in = 1
|
|
8235
8280
|
n_out = 13
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-hyper-param-tuning.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-record-and-push-to-webserver.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-chunking-blstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-contribrnn-lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-maxgradnorm-lstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm-lowmem.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm2.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-native-lstm2.12ax.tuned.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-neural-transducer.12ax.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-rec-explicit-lstm.config
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-rec-explicit-rnn.config
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-search-compiled-graph.py
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-tf-vanilla-lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/demo-upd-mult-model.lstm.12ax.config
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/IAM_lines/a01-000u-00.png
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/IAM_lines/a01-007-04.png
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/IAM_lines/a01-007-06.png
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/create_IAM_dataset.py
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/IAM/features/raw/demo.h5
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial/create_test_h5.py
RENAMED
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial/forwardconfig
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial_rgb/forwardconfig
RENAMED
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/demos/mdlstm/artificial_rgb/trainconfig
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/normalization_data.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{returnn-1.20230825.121159 → returnn-1.20230829.130342}/returnn/datasets/util/feature_extraction.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|