replay-rec 0.18.1__tar.gz → 0.18.1rc0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- replay_rec-0.18.1rc0/NOTICE +41 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/PKG-INFO +12 -4
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/pyproject.toml +16 -9
- replay_rec-0.18.1rc0/replay/__init__.py +3 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/__init__.py +62 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/base_metric.py +602 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/coverage.py +97 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/experiment.py +175 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/hitrate.py +26 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/map.py +30 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/mrr.py +18 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/ncis_precision.py +31 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/ndcg.py +49 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/precision.py +22 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/recall.py +25 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/rocauc.py +49 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/surprisal.py +90 -0
- replay_rec-0.18.1rc0/replay/experimental/metrics/unexpectedness.py +76 -0
- replay_rec-0.18.1rc0/replay/experimental/models/__init__.py +13 -0
- replay_rec-0.18.1rc0/replay/experimental/models/admm_slim.py +205 -0
- replay_rec-0.18.1rc0/replay/experimental/models/base_neighbour_rec.py +204 -0
- replay_rec-0.18.1rc0/replay/experimental/models/base_rec.py +1340 -0
- replay_rec-0.18.1rc0/replay/experimental/models/base_torch_rec.py +234 -0
- replay_rec-0.18.1rc0/replay/experimental/models/cql.py +454 -0
- replay_rec-0.18.1rc0/replay/experimental/models/ddpg.py +923 -0
- replay_rec-0.18.1rc0/replay/experimental/models/dt4rec/dt4rec.py +189 -0
- replay_rec-0.18.1rc0/replay/experimental/models/dt4rec/gpt1.py +401 -0
- replay_rec-0.18.1rc0/replay/experimental/models/dt4rec/trainer.py +127 -0
- replay_rec-0.18.1rc0/replay/experimental/models/dt4rec/utils.py +265 -0
- replay_rec-0.18.1rc0/replay/experimental/models/extensions/spark_custom_models/als_extension.py +792 -0
- replay_rec-0.18.1rc0/replay/experimental/models/hierarchical_recommender.py +331 -0
- replay_rec-0.18.1rc0/replay/experimental/models/implicit_wrap.py +131 -0
- replay_rec-0.18.1rc0/replay/experimental/models/lightfm_wrap.py +302 -0
- replay_rec-0.18.1rc0/replay/experimental/models/mult_vae.py +332 -0
- replay_rec-0.18.1rc0/replay/experimental/models/neural_ts.py +986 -0
- replay_rec-0.18.1rc0/replay/experimental/models/neuromf.py +406 -0
- replay_rec-0.18.1rc0/replay/experimental/models/scala_als.py +296 -0
- replay_rec-0.18.1rc0/replay/experimental/models/u_lin_ucb.py +115 -0
- replay_rec-0.18.1rc0/replay/experimental/nn/data/__init__.py +1 -0
- replay_rec-0.18.1rc0/replay/experimental/nn/data/schema_builder.py +102 -0
- replay_rec-0.18.1rc0/replay/experimental/preprocessing/__init__.py +3 -0
- replay_rec-0.18.1rc0/replay/experimental/preprocessing/data_preparator.py +839 -0
- replay_rec-0.18.1rc0/replay/experimental/preprocessing/padder.py +229 -0
- replay_rec-0.18.1rc0/replay/experimental/preprocessing/sequence_generator.py +208 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/__init__.py +1 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/obp_wrapper/__init__.py +8 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/obp_wrapper/obp_optuna_objective.py +74 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/obp_wrapper/replay_offline.py +261 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/obp_wrapper/utils.py +87 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/two_stages/reranker.py +117 -0
- replay_rec-0.18.1rc0/replay/experimental/scenarios/two_stages/two_stages_scenario.py +757 -0
- replay_rec-0.18.1rc0/replay/experimental/utils/logger.py +24 -0
- replay_rec-0.18.1rc0/replay/experimental/utils/model_handler.py +186 -0
- replay_rec-0.18.1rc0/replay/experimental/utils/session_handler.py +44 -0
- replay_rec-0.18.1rc0/replay/models/extensions/ann/__init__.py +0 -0
- replay_rec-0.18.1rc0/replay/models/extensions/ann/entities/__init__.py +0 -0
- replay_rec-0.18.1rc0/replay/models/extensions/ann/index_builders/__init__.py +0 -0
- replay_rec-0.18.1rc0/replay/models/extensions/ann/index_inferers/__init__.py +0 -0
- replay_rec-0.18.1rc0/replay/models/extensions/ann/index_stores/__init__.py +0 -0
- replay_rec-0.18.1/replay/__init__.py +0 -3
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/LICENSE +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/README.md +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/dataset.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/dataset_utils/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/dataset_utils/dataset_label_encoder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/nn/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/nn/schema.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/nn/sequence_tokenizer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/nn/sequential_dataset.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/nn/torch_sequential_dataset.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/nn/utils.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/schema.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/data/spark_schema.py +0 -0
- {replay_rec-0.18.1/replay/models/extensions → replay_rec-0.18.1rc0/replay/experimental}/__init__.py +0 -0
- {replay_rec-0.18.1/replay/models/extensions/ann → replay_rec-0.18.1rc0/replay/experimental/models/dt4rec}/__init__.py +0 -0
- {replay_rec-0.18.1/replay/models/extensions/ann/entities → replay_rec-0.18.1rc0/replay/experimental/models/extensions/spark_custom_models}/__init__.py +0 -0
- {replay_rec-0.18.1/replay/models/extensions/ann/index_builders → replay_rec-0.18.1rc0/replay/experimental/scenarios/two_stages}/__init__.py +0 -0
- {replay_rec-0.18.1/replay/models/extensions/ann/index_inferers → replay_rec-0.18.1rc0/replay/experimental/utils}/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/base_metric.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/categorical_diversity.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/coverage.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/descriptors.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/experiment.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/hitrate.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/map.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/mrr.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/ndcg.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/novelty.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/offline_metrics.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/precision.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/recall.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/rocauc.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/surprisal.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/torch_metrics_builder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/metrics/unexpectedness.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/als.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/association_rules.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/base_neighbour_rec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/base_rec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/cat_pop_rec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/cluster.py +0 -0
- {replay_rec-0.18.1/replay/models/extensions/ann/index_stores → replay_rec-0.18.1rc0/replay/models/extensions}/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/ann_mixin.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/entities/base_hnsw_param.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/entities/hnswlib_param.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/entities/nmslib_hnsw_param.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_builders/base_index_builder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_builders/driver_hnswlib_index_builder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_builders/driver_nmslib_index_builder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_builders/executor_hnswlib_index_builder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_builders/executor_nmslib_index_builder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_builders/nmslib_index_builder_mixin.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_inferers/base_inferer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_inferers/hnswlib_filter_index_inferer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_inferers/hnswlib_index_inferer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_inferers/nmslib_filter_index_inferer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_inferers/nmslib_index_inferer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_inferers/utils.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_stores/base_index_store.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_stores/hdfs_index_store.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_stores/shared_disk_index_store.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_stores/spark_files_index_store.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/index_stores/utils.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/extensions/ann/utils.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/kl_ucb.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/knn.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/lin_ucb.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/optimizer_utils/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/optimizer_utils/optimizer_factory.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/bert4rec/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/bert4rec/dataset.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/bert4rec/lightning.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/bert4rec/model.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/callbacks/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/callbacks/prediction_callbacks.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/callbacks/validation_callback.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/compiled/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/compiled/base_compiled_model.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/compiled/bert4rec_compiled.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/compiled/sasrec_compiled.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/postprocessors/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/postprocessors/_base.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/postprocessors/postprocessors.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/sasrec/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/sasrec/dataset.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/sasrec/lightning.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/nn/sequential/sasrec/model.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/pop_rec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/query_pop_rec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/random_rec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/slim.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/thompson_sampling.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/ucb.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/wilson.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/models/word2vec.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/optimization/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/optimization/optuna_objective.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/converter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/discretizer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/filters.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/history_based_fp.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/label_encoder.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/preprocessing/sessionizer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/scenarios/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/scenarios/fallback.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/base_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/cold_user_random_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/k_folds.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/last_n_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/new_users_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/random_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/ratio_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/time_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/splitters/two_stage_splitter.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/__init__.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/common.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/dataframe_bucketizer.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/distributions.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/model_handler.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/session_handler.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/spark_utils.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/time.py +0 -0
- {replay_rec-0.18.1 → replay_rec-0.18.1rc0}/replay/utils/types.py +0 -0
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
Apache Spark
|
|
2
|
+
Copyright 2014 and onwards The Apache Software Foundation.
|
|
3
|
+
|
|
4
|
+
This product includes software developed at
|
|
5
|
+
The Apache Software Foundation (http://www.apache.org/).
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
Export Control Notice
|
|
9
|
+
---------------------
|
|
10
|
+
|
|
11
|
+
This distribution includes cryptographic software. The country in which you currently reside may have
|
|
12
|
+
restrictions on the import, possession, use, and/or re-export to another country, of encryption software.
|
|
13
|
+
BEFORE using any encryption software, please check your country's laws, regulations and policies concerning
|
|
14
|
+
the import, possession, or use, and re-export of encryption software, to see if this is permitted. See
|
|
15
|
+
<http://www.wassenaar.org/> for more information.
|
|
16
|
+
|
|
17
|
+
The U.S. Government Department of Commerce, Bureau of Industry and Security (BIS), has classified this
|
|
18
|
+
software as Export Commodity Control Number (ECCN) 5D002.C.1, which includes information security software
|
|
19
|
+
using or performing cryptographic functions with asymmetric algorithms. The form and manner of this Apache
|
|
20
|
+
Software Foundation distribution makes it eligible for export under the License Exception ENC Technology
|
|
21
|
+
Software Unrestricted (TSU) exception (see the BIS Export Administration Regulations, Section 740.13) for
|
|
22
|
+
both object code and source code.
|
|
23
|
+
|
|
24
|
+
The following provides more details on the included cryptographic software:
|
|
25
|
+
|
|
26
|
+
This software uses Apache Commons Crypto (https://commons.apache.org/proper/commons-crypto/) to
|
|
27
|
+
support authentication, and encryption and decryption of data sent across the network between
|
|
28
|
+
services.
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
Metrics
|
|
32
|
+
Copyright 2010-2013 Coda Hale and Yammer, Inc.
|
|
33
|
+
|
|
34
|
+
This product includes software developed by Coda Hale and Yammer, Inc.
|
|
35
|
+
|
|
36
|
+
This product includes code derived from the JSR-166 project (ThreadLocalRandom, Striped64,
|
|
37
|
+
LongAdder), which was released with the following comments:
|
|
38
|
+
|
|
39
|
+
Written by Doug Lea with assistance from members of JCP JSR-166
|
|
40
|
+
Expert Group and released to the public domain, as explained at
|
|
41
|
+
http://creativecommons.org/publicdomain/zero/1.0/
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: replay-rec
|
|
3
|
-
Version: 0.18.
|
|
3
|
+
Version: 0.18.1rc0
|
|
4
4
|
Summary: RecSys Library
|
|
5
5
|
Home-page: https://sb-ai-lab.github.io/RePlay/
|
|
6
6
|
License: Apache-2.0
|
|
@@ -22,9 +22,16 @@ Provides-Extra: all
|
|
|
22
22
|
Provides-Extra: spark
|
|
23
23
|
Provides-Extra: torch
|
|
24
24
|
Provides-Extra: torch-openvino
|
|
25
|
+
Requires-Dist: d3rlpy (>=2.0.4,<3.0.0)
|
|
25
26
|
Requires-Dist: fixed-install-nmslib (==2.1.2)
|
|
27
|
+
Requires-Dist: gym (>=0.26.0,<0.27.0)
|
|
26
28
|
Requires-Dist: hnswlib (>=0.7.0,<0.8.0)
|
|
29
|
+
Requires-Dist: implicit (>=0.7.0,<0.8.0)
|
|
30
|
+
Requires-Dist: lightautoml (>=0.3.1,<0.4.0)
|
|
31
|
+
Requires-Dist: lightfm (==1.17)
|
|
27
32
|
Requires-Dist: lightning (>=2.0.2,<=2.4.0) ; extra == "torch" or extra == "torch-openvino" or extra == "all"
|
|
33
|
+
Requires-Dist: llvmlite (>=0.32.1)
|
|
34
|
+
Requires-Dist: numba (>=0.50)
|
|
28
35
|
Requires-Dist: numpy (>=1.20.0)
|
|
29
36
|
Requires-Dist: onnx (>=1.16.2,<1.17.0) ; extra == "torch-openvino" or extra == "all"
|
|
30
37
|
Requires-Dist: openvino (>=2024.3.0,<2024.4.0) ; extra == "torch-openvino" or extra == "all"
|
|
@@ -33,12 +40,13 @@ Requires-Dist: pandas (>=1.3.5,<=2.2.2)
|
|
|
33
40
|
Requires-Dist: polars (>=1.0.0,<1.1.0)
|
|
34
41
|
Requires-Dist: psutil (>=6.0.0,<6.1.0)
|
|
35
42
|
Requires-Dist: pyarrow (>=12.0.1)
|
|
36
|
-
Requires-Dist: pyspark (>=3.0,<3.
|
|
37
|
-
Requires-Dist: pyspark (>=3.4,<3.
|
|
43
|
+
Requires-Dist: pyspark (>=3.0,<3.5) ; (python_full_version >= "3.8.1" and python_version < "3.11") and (extra == "spark" or extra == "all")
|
|
44
|
+
Requires-Dist: pyspark (>=3.4,<3.5) ; (python_version >= "3.11" and python_version < "3.12") and (extra == "spark" or extra == "all")
|
|
38
45
|
Requires-Dist: pytorch-ranger (>=0.1.1,<0.2.0) ; extra == "torch" or extra == "torch-openvino" or extra == "all"
|
|
46
|
+
Requires-Dist: sb-obp (>=0.5.8,<0.6.0)
|
|
39
47
|
Requires-Dist: scikit-learn (>=1.0.2,<2.0.0)
|
|
40
48
|
Requires-Dist: scipy (>=1.8.1,<2.0.0)
|
|
41
|
-
Requires-Dist: torch (>=1.8,<=2.
|
|
49
|
+
Requires-Dist: torch (>=1.8,<=2.4.0) ; extra == "torch" or extra == "torch-openvino" or extra == "all"
|
|
42
50
|
Project-URL: Repository, https://github.com/sb-ai-lab/RePlay
|
|
43
51
|
Description-Content-Type: text/markdown
|
|
44
52
|
|
|
@@ -39,9 +39,8 @@ classifiers = [
|
|
|
39
39
|
]
|
|
40
40
|
exclude = [
|
|
41
41
|
"replay/conftest.py",
|
|
42
|
-
"replay/experimental",
|
|
43
42
|
]
|
|
44
|
-
version = "0.18.1"
|
|
43
|
+
version = "0.18.1.preview"
|
|
45
44
|
|
|
46
45
|
[tool.poetry.dependencies]
|
|
47
46
|
python = ">=3.8.1, <3.12"
|
|
@@ -55,15 +54,23 @@ scikit-learn = "^1.0.2"
|
|
|
55
54
|
pyarrow = ">=12.0.1"
|
|
56
55
|
openvino = {version = "~2024.3.0", optional = true}
|
|
57
56
|
onnx = {version = "~1.16.2", optional = true}
|
|
58
|
-
pyspark = [
|
|
59
|
-
{version = ">=3.4,<3.6", python = ">=3.11,<3.12", optional = true},
|
|
60
|
-
{version = ">=3.0,<3.6", python = ">=3.8.1,<3.11", optional = true},
|
|
61
|
-
]
|
|
62
|
-
torch = {version = ">=1.8, <=2.5.0", optional = true}
|
|
63
|
-
lightning = {version = ">=2.0.2, <=2.4.0", optional = true}
|
|
64
|
-
pytorch-ranger = {version = "^0.1.1", optional = true}
|
|
65
57
|
fixed-install-nmslib = "2.1.2"
|
|
66
58
|
hnswlib = "^0.7.0"
|
|
59
|
+
pyspark = [
|
|
60
|
+
{version = ">=3.4,<3.5", python = ">=3.11,<3.12"},
|
|
61
|
+
{version = ">=3.0,<3.5", python = ">=3.8.1,<3.11"},
|
|
62
|
+
]
|
|
63
|
+
torch = ">=1.8, <=2.4.0"
|
|
64
|
+
lightning = ">=2.0.2, <=2.4.0"
|
|
65
|
+
pytorch-ranger = "^0.1.1"
|
|
66
|
+
lightfm = "1.17"
|
|
67
|
+
lightautoml = "~0.3.1"
|
|
68
|
+
numba = ">=0.50"
|
|
69
|
+
llvmlite = ">=0.32.1"
|
|
70
|
+
sb-obp = "^0.5.8"
|
|
71
|
+
d3rlpy = "^2.0.4"
|
|
72
|
+
implicit = "~0.7.0"
|
|
73
|
+
gym = "^0.26.0"
|
|
67
74
|
|
|
68
75
|
[tool.poetry.extras]
|
|
69
76
|
spark = ["pyspark"]
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Most metrics require dataframe with recommendations
|
|
3
|
+
and dataframe with ground truth values —
|
|
4
|
+
which objects each user interacted with.
|
|
5
|
+
|
|
6
|
+
- recommendations (Union[pandas.DataFrame, spark.DataFrame]):
|
|
7
|
+
predictions of a recommender system,
|
|
8
|
+
DataFrame with columns ``[user_id, item_id, relevance]``
|
|
9
|
+
- ground_truth (Union[pandas.DataFrame, spark.DataFrame]):
|
|
10
|
+
test data, DataFrame with columns
|
|
11
|
+
``[user_id, item_id, timestamp, relevance]``
|
|
12
|
+
|
|
13
|
+
Metric is calculated for all users, presented in ``ground_truth``
|
|
14
|
+
for accurate metric calculation in case when the recommender system generated
|
|
15
|
+
recommendation not for all users. It is assumed, that all users,
|
|
16
|
+
we want to calculate metric for, have positive interactions.
|
|
17
|
+
|
|
18
|
+
But if we have users, who observed the recommendations, but have not responded,
|
|
19
|
+
those users will be ignored and metric will be overestimated.
|
|
20
|
+
For such case we propose additional optional parameter ``ground_truth_users``,
|
|
21
|
+
the dataframe with all users, which should be considered during the metric calculation.
|
|
22
|
+
|
|
23
|
+
- ground_truth_users (Optional[Union[pandas.DataFrame, spark.DataFrame]]):
|
|
24
|
+
full list of users to calculate metric for, DataFrame with ``user_id`` column
|
|
25
|
+
|
|
26
|
+
Every metric is calculated using top ``K`` items for each user.
|
|
27
|
+
It is also possible to calculate metrics
|
|
28
|
+
using multiple values for ``K`` simultaneously.
|
|
29
|
+
In this case the result will be a dictionary and not a number.
|
|
30
|
+
|
|
31
|
+
Make sure your recommendations do not contain user-item duplicates
|
|
32
|
+
as duplicates could lead to the wrong calculation results.
|
|
33
|
+
|
|
34
|
+
- k (Union[Iterable[int], int]):
|
|
35
|
+
a single number or a list, specifying the
|
|
36
|
+
truncation length for recommendation list for each user
|
|
37
|
+
|
|
38
|
+
By default, metrics are averaged by users,
|
|
39
|
+
but you can alternatively use method ``metric.median``.
|
|
40
|
+
Also, you can get the lower bound
|
|
41
|
+
of ``conf_interval`` for a given ``alpha``.
|
|
42
|
+
|
|
43
|
+
Diversity metrics require extra parameters on initialization stage,
|
|
44
|
+
but do not use ``ground_truth`` parameter.
|
|
45
|
+
|
|
46
|
+
For each metric, a formula for its calculation is given, because this is
|
|
47
|
+
important for the correct comparison of algorithms, as mentioned in our
|
|
48
|
+
`article <https://arxiv.org/abs/2206.12858>`_.
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
from replay.experimental.metrics.base_metric import Metric, NCISMetric
|
|
52
|
+
from replay.experimental.metrics.coverage import Coverage
|
|
53
|
+
from replay.experimental.metrics.hitrate import HitRate
|
|
54
|
+
from replay.experimental.metrics.map import MAP
|
|
55
|
+
from replay.experimental.metrics.mrr import MRR
|
|
56
|
+
from replay.experimental.metrics.ncis_precision import NCISPrecision
|
|
57
|
+
from replay.experimental.metrics.ndcg import NDCG
|
|
58
|
+
from replay.experimental.metrics.precision import Precision
|
|
59
|
+
from replay.experimental.metrics.recall import Recall
|
|
60
|
+
from replay.experimental.metrics.rocauc import RocAuc
|
|
61
|
+
from replay.experimental.metrics.surprisal import Surprisal
|
|
62
|
+
from replay.experimental.metrics.unexpectedness import Unexpectedness
|