reme-ai 0.1.3__tar.gz → 0.1.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (105) hide show
  1. {reme_ai-0.1.3/reme_ai.egg-info → reme_ai-0.1.5}/PKG-INFO +298 -133
  2. reme_ai-0.1.5/README.md +434 -0
  3. {reme_ai-0.1.3 → reme_ai-0.1.5}/pyproject.toml +10 -4
  4. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/__init__.py +1 -1
  5. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/app.py +1 -1
  6. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/config/default.yaml +56 -5
  7. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/constants/common_constants.py +0 -2
  8. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/constants/language_constants.py +1 -1
  9. reme_ai-0.1.5/reme_ai/enumeration/language_enum.py +14 -0
  10. reme_ai-0.1.5/reme_ai/react/simple_react_op.py +24 -0
  11. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/extract_time_op.py +2 -3
  12. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/fuse_rerank_op.py +1 -1
  13. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/print_memory_op.py +1 -1
  14. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/read_message_op.py +1 -1
  15. reme_ai-0.1.5/reme_ai/retrieve/personal/retrieve_memory_op.py +43 -0
  16. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/semantic_rank_op.py +4 -4
  17. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/set_query_op.py +1 -1
  18. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/build_query_op.py +2 -2
  19. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/merge_memory_op.py +1 -1
  20. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/rerank_memory_op.py +4 -4
  21. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/rewrite_memory_op.py +6 -6
  22. reme_ai-0.1.5/reme_ai/service/base_memory_service.py +112 -0
  23. reme_ai-0.1.5/reme_ai/service/personal_memory_service.py +128 -0
  24. reme_ai-0.1.5/reme_ai/service/task_memory_service.py +126 -0
  25. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/contra_repeat_op.py +2 -2
  26. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/get_observation_op.py +4 -4
  27. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/get_observation_with_time_op.py +4 -4
  28. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/get_reflection_subject_op.py +4 -4
  29. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/info_filter_op.py +4 -4
  30. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/load_today_memory_op.py +6 -7
  31. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/long_contra_repeat_op.py +4 -4
  32. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/update_insight_op.py +4 -4
  33. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/__init__.py +0 -1
  34. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/comparative_extraction_op.py +9 -7
  35. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/failure_extraction_op.py +7 -5
  36. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/memory_deduplication_op.py +6 -6
  37. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/memory_validation_op.py +8 -6
  38. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/simple_comparative_summary_op.py +6 -4
  39. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/simple_summary_op.py +6 -4
  40. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/success_extraction_op.py +7 -5
  41. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/trajectory_preprocess_op.py +3 -32
  42. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/trajectory_segmentation_op.py +6 -4
  43. reme_ai-0.1.5/reme_ai/utils/__init__.py +0 -0
  44. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/utils/datetime_handler.py +1 -1
  45. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/vector_store/delete_memory_op.py +1 -1
  46. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/vector_store/recall_vector_store_op.py +3 -3
  47. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/vector_store/update_memory_freq_op.py +1 -1
  48. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/vector_store/update_memory_utility_op.py +1 -1
  49. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/vector_store/update_vector_store_op.py +3 -3
  50. reme_ai-0.1.5/reme_ai/vector_store/vector_store_action_op.py +58 -0
  51. {reme_ai-0.1.3 → reme_ai-0.1.5/reme_ai.egg-info}/PKG-INFO +298 -133
  52. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai.egg-info/SOURCES.txt +5 -3
  53. reme_ai-0.1.5/reme_ai.egg-info/requires.txt +1 -0
  54. reme_ai-0.1.3/README.md +0 -270
  55. reme_ai-0.1.3/reme_ai/enumeration/language_constants.py +0 -215
  56. reme_ai-0.1.3/reme_ai/react/simple_react_op.py +0 -21
  57. reme_ai-0.1.3/reme_ai/retrieve/personal/retrieve_memory_op.py +0 -13
  58. reme_ai-0.1.3/reme_ai/summary/task/pdf_preprocess_op_wrapper.py +0 -50
  59. reme_ai-0.1.3/reme_ai/utils/miner_u_pdf_processor.py +0 -726
  60. reme_ai-0.1.3/reme_ai/vector_store/vector_store_action_op.py +0 -55
  61. reme_ai-0.1.3/reme_ai.egg-info/requires.txt +0 -1
  62. {reme_ai-0.1.3 → reme_ai-0.1.5}/LICENSE +0 -0
  63. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/config/__init__.py +0 -0
  64. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/config/config_parser.py +0 -0
  65. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/constants/__init__.py +0 -0
  66. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/enumeration/__init__.py +0 -0
  67. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/react/__init__.py +0 -0
  68. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/__init__.py +0 -0
  69. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/__init__.py +0 -0
  70. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/extract_time_prompt.yaml +0 -0
  71. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/personal/print_memory_prompt.yaml +0 -0
  72. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/__init__.py +0 -0
  73. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/build_query_prompt.yaml +0 -0
  74. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/rerank_memory_prompt.yaml +0 -0
  75. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/retrieve/task/rewrite_memory_prompt.yaml +0 -0
  76. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/schema/__init__.py +0 -0
  77. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/schema/memory.py +0 -0
  78. {reme_ai-0.1.3/reme_ai/utils → reme_ai-0.1.5/reme_ai/service}/__init__.py +0 -0
  79. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/__init__.py +0 -0
  80. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/__init__.py +0 -0
  81. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/contra_repeat_prompt.yaml +0 -0
  82. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/get_observation_prompt.yaml +0 -0
  83. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/get_observation_with_time_prompt.yaml +0 -0
  84. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/get_reflection_subject_prompt.yaml +0 -0
  85. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/info_filter_prompt.yaml +0 -0
  86. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/long_contra_repeat_prompt.yaml +0 -0
  87. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/personal/update_insight_prompt.yaml +0 -0
  88. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/comparative_extraction_prompt.yaml +0 -0
  89. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/failure_extraction_prompt.yaml +0 -0
  90. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/memory_validation_prompt.yaml +0 -0
  91. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/simple_comparative_summary_prompt.yaml +0 -0
  92. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/simple_summary_prompt.yaml +0 -0
  93. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/success_extraction_prompt.yaml +0 -0
  94. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/summary/task/trajectory_segmentation_prompt.yaml +0 -0
  95. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/utils/op_utils.py +0 -0
  96. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai/vector_store/__init__.py +0 -0
  97. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai.egg-info/dependency_links.txt +0 -0
  98. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai.egg-info/entry_points.txt +0 -0
  99. {reme_ai-0.1.3 → reme_ai-0.1.5}/reme_ai.egg-info/top_level.txt +0 -0
  100. {reme_ai-0.1.3 → reme_ai-0.1.5}/setup.cfg +0 -0
  101. {reme_ai-0.1.3 → reme_ai-0.1.5}/test/test1.py +0 -0
  102. {reme_ai-0.1.3 → reme_ai-0.1.5}/test/test2.py +0 -0
  103. {reme_ai-0.1.3 → reme_ai-0.1.5}/test/test3.py +0 -0
  104. {reme_ai-0.1.3 → reme_ai-0.1.5}/test/test4.py +0 -0
  105. {reme_ai-0.1.3 → reme_ai-0.1.5}/test/test_update_insight_op.py +0 -0
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: reme_ai
3
- Version: 0.1.3
3
+ Version: 0.1.5
4
4
  Summary: Remember me
5
- Author-email: reme_team <reme_team@alibaba-inc.com>
5
+ Author-email: "jinli.yl" <jinli.yl@alibaba-inc.com>, "dengjiaji.djj" <dengjiaji.djj@alibaba-inc.com>, "caozouying.czy" <caozouying.czy@alibaba-inc.com>
6
6
  License: Apache License
7
7
  Version 2.0, January 2004
8
8
  http://www.apache.org/licenses/
@@ -205,132 +205,142 @@ License: Apache License
205
205
  See the License for the specific language governing permissions and
206
206
  limitations under the License.
207
207
 
208
+ Keywords: llm,memory,experience,memoryscope,ai,mcp,http
208
209
  Classifier: Programming Language :: Python :: 3
209
210
  Classifier: License :: OSI Approved :: Apache Software License
210
211
  Classifier: Operating System :: OS Independent
211
- Requires-Python: >=3.12
212
+ Requires-Python: >=3.11
212
213
  Description-Content-Type: text/markdown
213
214
  License-File: LICENSE
214
- Requires-Dist: flowllm>=0.1.3
215
+ Requires-Dist: flowllm>=0.1.5
215
216
  Dynamic: license-file
216
217
 
217
- # ReMe.ai
218
+ English | [**中文**](./README_ZH.md)
218
219
 
219
220
  <p align="center">
220
- <img src="doc/figure/logo.jpg" alt="ReMe.ai Logo" width="100%">
221
+ <img src="docs/figure/reme_logo.png" alt="ReMe Logo" width="50%">
221
222
  </p>
222
223
 
223
224
  <p align="center">
224
225
  <a href="https://pypi.org/project/reme-ai/"><img src="https://img.shields.io/badge/python-3.12+-blue" alt="Python Version"></a>
225
- <a href="https://pypi.org/project/reme-ai/"><img src="https://img.shields.io/badge/pypi-v1.0.0-blue?logo=pypi" alt="PyPI Version"></a>
226
+ <a href="https://pypi.org/project/reme-ai/"><img src="https://img.shields.io/badge/pypi-v0.1-blue?logo=pypi" alt="PyPI Version"></a>
226
227
  <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache--2.0-black" alt="License"></a>
227
- <a href="https://github.com/modelscope/ReMe.ai"><img src="https://img.shields.io/github/stars/modelscope/ReMe.ai?style=social" alt="GitHub Stars"></a>
228
+ <a href="https://github.com/modelscope/ReMe"><img src="https://img.shields.io/github/stars/modelscope/ReMe?style=social" alt="GitHub Stars"></a>
228
229
  </p>
229
230
 
230
231
  <p align="center">
231
- <strong>记忆驱动的AI智能体框架</strong><br>
232
- <em>"如果说我比别人看得更远些,那是因为我站在了巨人的肩膀上。" —— 牛顿</em>
232
+ <strong>ReMe (formerly MemoryScope): Memory Management Framework for Agents</strong><br>
233
+ <em>Remember Me, Refine Me.</em>
233
234
  </p>
234
235
 
235
236
  ---
236
-
237
- Remember Everyone, Recreate Everything
238
-
239
- Remember Me, Reshape Me
240
-
241
- Remember Me, Refine Me
242
-
243
- Remember Me, Reinvent Me
244
-
245
- 今天的每个AI智能体都在从零开始。每当智能体处理任务时,它都在重新发明无数其他智能体已经发现的解决方案。这就像要求每个人都从头发现火、农业和数学一样。
246
-
247
- ReMe.ai希望改变这一点。我们为AI智能体提供了统一的记忆与经验系统——在跨用户、跨任务、跨智能体下抽取、复用和分享记忆的能力。
237
+ ReMe provides AI agents with a unified memory system—enabling the ability to extract, reuse, and share memories across
238
+ users, tasks, and agents.
248
239
 
249
240
  ```
250
- 任务经验 (Task Memory) + 个人记忆 (Personal Memory) = agent的记忆管理
241
+ Personal Memory + Task Memory = Agent Memory
251
242
  ```
252
243
 
253
- 个人记忆回答"**如何理解用户需要**",任务记忆回答"**如何做得更好**"
244
+ Personal memory helps "**understand user preferences**", while task memory helps agents "**perform better**".
254
245
 
255
246
  ---
256
247
 
257
- ## 📰 最新动态
258
- - **[2025-09]** 🎉 ReMe.ai v1.0.0 正式发布,整合任务经验与个人记忆
259
- - **[2025-08]** 🚀 MCP协议支持已上线!→ [快速开始指南](./doc/mcp_quick_start.md)
260
- - **[2025-07]** 📚 完整文档和快速开始指南发布
261
- - **[2025-06]** 🚀 多后端向量存储支持 (Elasticsearch & ChromaDB)
248
+ ## 📰 Latest Updates
249
+
250
+ - **[2025-09]** 🎉 ReMe v0.1
251
+ officially released, integrating task memory and personal memory. If you want to use the original memoryscope project,
252
+ you can find it in [MemoryScope](https://github.com/modelscope/Reme/tree/memoryscope_branch).
253
+ - **[2025-09]** 🧪 We validated the effectiveness of task memory extraction and reuse in agents in appworld, bfcl(v3),
254
+ and frozenlake environments. For more information,
255
+ check [appworld exp](./cookbook/appworld/quickstart.md), [bfcl exp](./cookbook/bfcl/quickstart.md),
256
+ and [frozenlake exp](./cookbook/frozenlake/quickstart.md).
257
+ - **[2025-08]** 🚀 MCP protocol support is now available -> [MCP Quick Start](docs/mcp_quick_start.md).
258
+ - **[2025-06]** 🚀 Multiple backend vector storage support (Elasticsearch &
259
+ ChromaDB) -> [Vector DB quick start](docs/vector_store_api_guide.md).
260
+ - **[2024-09]** 🧠 [MemoryScope](https://github.com/modelscope/Reme/tree/memoryscope_branch) v0.1 released,
261
+ personalized and time-aware memory storage and usage.
262
262
 
263
263
  ---
264
264
 
265
- ## ✨ 架构设计
265
+ ## ✨ Architecture Design
266
+
267
+ <p align="center">
268
+ <img src="docs/figure/reme_structure.jpg" alt="ReMe Logo" width="100%">
269
+ </p>
266
270
 
267
- ### 🎯 双模记忆系统
271
+ ReMe integrates two complementary memory capabilities:
268
272
 
269
- ReMe.ai整合两种互补的记忆能力:
273
+ #### 🧠 **Task Memory/Experience**
270
274
 
271
- #### 🧠 **任务经验 (Task Memory/Experience)**
272
- 跨智能体复用的程序性知识
273
- - **成功模式识别**:识别有效策略并理解其根本原理
274
- - **失败分析学习**:从错误中学习,避免重复同样的问题
275
- - **规划策略**:不同问题类型的规划策略
276
- - **工具使用模式**:经过验证的有效工具使用方法
277
- - **标准操作流程**:经过验证的方法论和流程
275
+ Procedural knowledge reused across agents
278
276
 
279
- 你可以从[快速开始指南](./doc/task_memory_readme.md)了解更多如何使用task memory的方法
277
+ - **Success Pattern Recognition**: Identify effective strategies and understand their underlying principles
278
+ - **Failure Analysis Learning**: Learn from mistakes and avoid repeating the same issues
279
+ - **Comparative Patterns**: Different sampling trajectories provide more valuable memories through comparison
280
+ - **Validation Patterns**: Confirm the effectiveness of extracted memories through validation modules
280
281
 
281
- #### 👤 **个人记忆 (personal memory)**
282
- 特定用户的情境化记忆
283
- - **个体偏好**:用户的习惯、偏好和交互风格
284
- - **情境适应**:基于时间和上下文的智能记忆管理
285
- - **渐进学习**:通过长期交互逐步建立深度理解
286
- - **时间感知**:检索和整合时都具备时间敏感性
282
+ Learn more about how to use task memory from [task memory](docs/task_memory/task_memory.md)
287
283
 
288
- - 你可以从[快速开始指南](./doc/personal_memory_readme.md)了解更多如何使用personal memory的方法
284
+ #### 👤 **Personal Memory**
289
285
 
286
+ Contextualized memory for specific users
287
+
288
+ - **Individual Preferences**: User habits, preferences, and interaction styles
289
+ - **Contextual Adaptation**: Intelligent memory management based on time and context
290
+ - **Progressive Learning**: Gradually build deep understanding through long-term interaction
291
+ - **Time Awareness**: Time sensitivity in both retrieval and integration
292
+
293
+ Learn more about how to use personal memory from [personal memory](docs/personal_memory/personal_memory.md)
290
294
 
291
295
  ---
292
296
 
293
- ## 🛠️ 安装
297
+ ## 🛠️ Installation
298
+
299
+ ### Install from PyPI (Recommended)
294
300
 
295
- ### 从PyPI安装(推荐)
296
301
  ```bash
297
302
  pip install reme-ai
298
303
  ```
299
304
 
300
- ### 从源码安装
305
+ ### Install from Source
306
+
301
307
  ```bash
302
- git clone https://github.com/modelscope/ReMe.ai.git
303
- cd ReMe.ai
308
+ git clone https://github.com/modelscope/ReMe.git
309
+ cd ReMe
304
310
  pip install .
305
311
  ```
306
312
 
307
- ### 环境配置
308
- 创建`.env`文件:
313
+ ### Environment Configuration
314
+
315
+ Copy `example.env` to .env and modify the corresponding parameters:
316
+
309
317
  ```bash
310
- # 必需:LLM API配置
311
- LLM_API_KEY="sk-xxx"
312
- LLM_BASE_URL="https://xxx.com/v1"
318
+ # Required: LLM API Configuration
319
+ FLOW_LLM_API_KEY=sk-xxxx
320
+ FLOW_LLM_BASE_URL=https://xxxx/v1
313
321
 
314
- # 必需:嵌入模型配置
315
- EMBEDDING_MODEL_API_KEY="sk-xxx"
316
- EMBEDDING_MODEL_BASE_URL="https://xxx.com/v1"
322
+ # Required: Embedding Model Configuration
323
+ FLOW_EMBEDDING_API_KEY=sk-xxxx
324
+ FLOW_EMBEDDING_BASE_URL=https://xxxx/v1
317
325
  ```
318
326
 
319
327
  ---
320
328
 
321
- ## 🚀 快速开始
329
+ ## 🚀 Quick Start
330
+
331
+ ### HTTP Service Startup
322
332
 
323
- ### HTTP服务启动
324
333
  ```bash
325
334
  reme \
326
- backend=http \
327
- http.port=8001 \
335
+ backend=http \
336
+ http.port=8002 \
328
337
  llm.default.model_name=qwen3-30b-a3b-thinking-2507 \
329
338
  embedding_model.default.model_name=text-embedding-v4 \
330
339
  vector_store.default.backend=local
331
340
  ```
332
341
 
333
- ### MCP服务器支持
342
+ ### MCP Server Support
343
+
334
344
  ```bash
335
345
  reme \
336
346
  backend=mcp \
@@ -340,147 +350,302 @@ reme \
340
350
  vector_store.default.backend=local
341
351
  ```
342
352
 
343
- ### 核心API使用
353
+ ### Core API Usage
354
+
355
+ #### Task Memory Management
344
356
 
345
- #### 任务经验管理
346
357
  ```python
347
358
  import requests
348
359
 
349
- # 经验总结器:从执行轨迹学习
360
+ # Experience Summarizer: Learn from execution trajectories
350
361
  response = requests.post("http://localhost:8002/summary_task_memory", json={
351
362
  "workspace_id": "task_workspace",
352
363
  "trajectories": [
353
- {"messages": [{"role": "user", "content": "帮我制定项目计划"}], "score": 1.0}
364
+ {"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0}
354
365
  ]
355
366
  })
356
367
 
357
- # 经验检索器:获取相关经验
368
+ # Retriever: Get relevant memories
358
369
  response = requests.post("http://localhost:8002/retrieve_task_memory", json={
359
370
  "workspace_id": "task_workspace",
360
- "query": "如何高效管理项目进度?",
371
+ "query": "How to efficiently manage project progress?",
361
372
  "top_k": 1
362
373
  })
363
374
  ```
364
375
 
365
- #### 个人记忆管理
376
+ <details>
377
+ <summary>curl version</summary>
378
+
379
+ ```bash
380
+ # Experience Summarizer: Learn from execution trajectories
381
+ curl -X POST http://localhost:8002/summary_task_memory \
382
+ -H "Content-Type: application/json" \
383
+ -d '{
384
+ "workspace_id": "task_workspace",
385
+ "trajectories": [
386
+ {"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0}
387
+ ]
388
+ }'
389
+
390
+ # Retriever: Get relevant memories
391
+ curl -X POST http://localhost:8002/retrieve_task_memory \
392
+ -H "Content-Type: application/json" \
393
+ -d '{
394
+ "workspace_id": "task_workspace",
395
+ "query": "How to efficiently manage project progress?",
396
+ "top_k": 1
397
+ }'
398
+ ```
399
+
400
+ </details>
401
+
402
+ <details>
403
+ <summary>Node.js version</summary>
404
+
405
+ ```javascript
406
+ // Experience Summarizer: Learn from execution trajectories
407
+ fetch("http://localhost:8002/summary_task_memory", {
408
+ method: "POST",
409
+ headers: {
410
+ "Content-Type": "application/json",
411
+ },
412
+ body: JSON.stringify({
413
+ workspace_id: "task_workspace",
414
+ trajectories: [
415
+ {messages: [{role: "user", content: "Help me create a project plan"}], score: 1.0}
416
+ ]
417
+ })
418
+ })
419
+ .then(response => response.json())
420
+ .then(data => console.log(data));
421
+
422
+ // Retriever: Get relevant memories
423
+ fetch("http://localhost:8002/retrieve_task_memory", {
424
+ method: "POST",
425
+ headers: {
426
+ "Content-Type": "application/json",
427
+ },
428
+ body: JSON.stringify({
429
+ workspace_id: "task_workspace",
430
+ query: "How to efficiently manage project progress?",
431
+ top_k: 1
432
+ })
433
+ })
434
+ .then(response => response.json())
435
+ .then(data => console.log(data));
436
+ ```
437
+
438
+ </details>
439
+
440
+ #### Personal Memory Management
441
+
366
442
  ```python
367
- # 记忆整合:从用户交互中学习
443
+ # Memory Integration: Learn from user interactions
368
444
  response = requests.post("http://localhost:8002/summary_personal_memory", json={
369
445
  "workspace_id": "task_workspace",
370
446
  "trajectories": [
371
447
  {"messages":
372
448
  [
373
- {"role": "user", "content": "我喜欢早上喝咖啡工作"},
374
- {"role": "assistant", "content": "了解,您习惯早上用咖啡提神来开始工作"}
449
+ {"role": "user", "content": "I like to drink coffee while working in the morning"},
450
+ {"role": "assistant",
451
+ "content": "I understand, you prefer to start your workday with coffee to stay energized"}
375
452
  ]
376
453
  }
377
454
  ]
378
455
  })
379
456
 
380
- # 记忆检索:获取个人记忆片段
457
+ # Memory Retrieval: Get personal memory fragments
381
458
  response = requests.post("http://localhost:8002/retrieve_personal_memory", json={
382
459
  "workspace_id": "task_workspace",
383
- "query": "用户的工作习惯是什么?",
460
+ "query": "What are the user's work habits?",
384
461
  "top_k": 5
385
462
  })
386
463
  ```
387
464
 
388
- ---
389
-
390
- ## 🧪 实验结果
465
+ <details>
466
+ <summary>curl version</summary>
391
467
 
392
- ### Appworld基准测试
393
- 使用qwen3-8b在Appworld上的测试结果:
394
-
395
- | 方法 | pass@1 | pass@2 | pass@4 |
396
- |----------------------------|-----------|-------------|-----------|
397
- | 无记忆(基线) | 0.083 | 0.140 | 0.228 |
398
- | **使用任务经验** | **0.109** | **0.175** | **0.281** |
468
+ ```bash
469
+ # Memory Integration: Learn from user interactions
470
+ curl -X POST http://localhost:8002/summary_personal_memory \
471
+ -H "Content-Type: application/json" \
472
+ -d '{
473
+ "workspace_id": "task_workspace",
474
+ "trajectories": [
475
+ {"messages": [
476
+ {"role": "user", "content": "I like to drink coffee while working in the morning"},
477
+ {"role": "assistant", "content": "I understand, you prefer to start your workday with coffee to stay energized"}
478
+ ]}
479
+ ]
480
+ }'
399
481
 
400
- 详见:[quickstart.md](cookbook/appworld/quickstart.md)
482
+ # Memory Retrieval: Get personal memory fragments
483
+ curl -X POST http://localhost:8002/retrieve_personal_memory \
484
+ -H "Content-Type: application/json" \
485
+ -d '{
486
+ "workspace_id": "task_workspace",
487
+ "query": "What are the user's work habits?",
488
+ "top_k": 5
489
+ }'
490
+ ```
401
491
 
402
- ### FrozenLake实验
403
- 使用qwen3-8b在100个随机FrozenLake地图上测试:
492
+ </details>
493
+
494
+ <details>
495
+ <summary>Node.js version</summary>
496
+
497
+ ```javascript
498
+ // Memory Integration: Learn from user interactions
499
+ fetch("http://localhost:8002/summary_personal_memory", {
500
+ method: "POST",
501
+ headers: {
502
+ "Content-Type": "application/json",
503
+ },
504
+ body: JSON.stringify({
505
+ workspace_id: "task_workspace",
506
+ trajectories: [
507
+ {messages: [
508
+ {role: "user", content: "I like to drink coffee while working in the morning"},
509
+ {role: "assistant", content: "I understand, you prefer to start your workday with coffee to stay energized"}
510
+ ]}
511
+ ]
512
+ })
513
+ })
514
+ .then(response => response.json())
515
+ .then(data => console.log(data));
516
+
517
+ // Memory Retrieval: Get personal memory fragments
518
+ fetch("http://localhost:8002/retrieve_personal_memory", {
519
+ method: "POST",
520
+ headers: {
521
+ "Content-Type": "application/json",
522
+ },
523
+ body: JSON.stringify({
524
+ workspace_id: "task_workspace",
525
+ query: "What are the user's work habits?",
526
+ top_k: 5
527
+ })
528
+ })
529
+ .then(response => response.json())
530
+ .then(data => console.log(data));
531
+ ```
404
532
 
405
- | 方法 | 通过率 |
406
- |---------------------------|-----------------|
407
- | 无记忆(基线) | 0.66 |
408
- | **使用任务经验** | 0.72 **(+9.1%)** |
533
+ </details>
409
534
 
410
- | 无经验 | 有经验 |
411
- |:----------------------------------------------------------:|:---------------------------------------:|
412
- | <p align="center"><img src="doc/figure/frozenlake_failure.gif" alt="失败案例" width="30%"></p> | <p align="center"><img src="doc/figure/frozenlake_success.gif" alt="成功案例" width="30%"></p>
535
+ ---
413
536
 
414
- 详见:[quickstart.md](cookbook/frozenlake/quickstart.md)
537
+ ## 📦 Ready-to-Use Libraries
415
538
 
416
- ---
539
+ ReMe provides pre-built memory libraries that agents can immediately use with verified best practices:
417
540
 
418
- ## 📦 即用型经验库
541
+ ### Available Libraries
419
542
 
420
- ReMe.ai提供预构建的经验库,智能体可以立即使用经过验证的最佳实践:
543
+ - **`appworld.jsonl`**: Memory library for Appworld agent interactions, covering complex task planning and execution
544
+ patterns
545
+ - **`bfcl_v3.jsonl`**: Working memory library for BFCL tool calls
421
546
 
422
- ### 可用经验库
423
- - **`appworld_v1.jsonl`**:Appworld智能体交互的记忆库,涵盖复杂任务规划和执行模式
424
- - **`bfcl_v1.jsonl`**:BFCL工具调用的工作记忆库
547
+ ### Quick Usage
425
548
 
426
- ### 快速使用
427
549
  ```python
428
- # 加载预构建经验
550
+ # Load pre-built memories
429
551
  response = requests.post("http://localhost:8002/vector_store", json={
430
- "workspace_id": "appworld_v1",
552
+ "workspace_id": "appworld",
431
553
  "action": "load",
432
- "path": "./library/"
554
+ "path": "./docs/library/"
433
555
  })
434
556
 
435
- # 查询相关经验
557
+ # Query relevant memories
436
558
  response = requests.post("http://localhost:8002/retrieve_task_memory", json={
437
- "workspace_id": "appworld_v1",
438
- "query": "如何导航到设置并更新用户资料?",
559
+ "workspace_id": "appworld",
560
+ "query": "How to navigate to settings and update user profile?",
439
561
  "top_k": 1
440
562
  })
441
563
  ```
442
564
 
443
- ## 📚 相关资源
565
+ ## 🧪 Experiments
444
566
 
445
- - **[快速开始](./cookbook/simple_demo/quick_start.md)**:通过实际示例快速上手
446
- - **[向量存储设置](./doc/vector_store_setup.md)**:生产部署指南
447
- - **[配置指南](./doc/configuration_guide.md)**:详细配置参考
448
- - **[操作文档](./doc/operations_documentation.md)**:操作配置说明
449
- - **[示例集合](./cookbook)**:实际用例和最佳实践
567
+ ### 🌍 [Appworld Experiment](./cookbook/appworld/quickstart.md)
568
+
569
+ We tested ReMe on Appworld using qwen3-8b:
570
+
571
+ | Method | pass@1 | pass@2 | pass@4 |
572
+ |--------------|-------------------|-------------------|-------------------|
573
+ | without ReMe | 0.083 | 0.140 | 0.228 |
574
+ | with ReMe | 0.109 **(+2.6%)** | 0.175 **(+3.5%)** | 0.281 **(+5.3%)** |
575
+
576
+ Pass@K measures the probability that at least one of the K generated samples successfully completes the task (
577
+ score=1).
578
+ The current experiment uses an internal AppWorld environment, which may have slight differences.
579
+
580
+ You can find more details on reproducing the experiment in [quickstart.md](cookbook/appworld/quickstart.md).
581
+
582
+ ### 🧊 [Frozenlake Experiment](./cookbook/frozenlake/quickstart.md)
583
+
584
+ | without ReMe | with ReMe |
585
+ |:--------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|
586
+ | <p align="center"><img src="docs/figure/frozenlake_failure.gif" alt="GIF 1" width="30%"></p> | <p align="center"><img src="docs/figure/frozenlake_success.gif" alt="GIF 2" width="30%"></p> |
587
+
588
+ We tested on 100 random frozenlake maps using qwen3-8b:
589
+
590
+ | Method | pass rate |
591
+ |--------------|------------------|
592
+ | without ReMe | 0.66 |
593
+ | with ReMe | 0.72 **(+6.0%)** |
594
+
595
+ You can find more details on reproducing the experiment in [quickstart.md](cookbook/frozenlake/quickstart.md).
596
+
597
+ ### 🔧 [BFCL-V3 Experiment](./cookbook/bfcl/quickstart.md)
598
+
599
+ We tested ReMe on BFCL-V3 multi-turn-base (randomly split 50train/150val) using qwen3-8b:
600
+
601
+ | Method | pass@1 | pass@2 | pass@4 |
602
+ |--------------|---------------------|---------------------|---------------------|
603
+ | without ReMe | 0.2472 | 0.2733 | 0.2922 |
604
+ | with ReMe | 0.3061 **(+5.89%)** | 0.3500 **(+7.67%)** | 0.3888 **(+9.66%)** |
605
+
606
+ ## 📚 Resources
607
+
608
+ - **[Quick Start](./cookbook/simple_demo)**: Get started quickly with practical examples
609
+ - **[Vector Storage Setup](docs/vector_store_api_guide.md)**: Configure local/vector databases and usage
610
+ - **[MCP Guide](docs/mcp_quick_start.md)**: Create MCP services
611
+ - **[personal memory](docs/personal_memory)** & **[task memory](docs/task_memory)** : Operators used in personal memory and task memory, You can modify the config to customize the pipelines.
612
+ - **[Example Collection](./cookbook)**: Real use cases and best practices
450
613
 
451
614
  ---
452
615
 
453
- ## 🤝 贡献
616
+ ## 🤝 Contribution
617
+
618
+ We believe the best memory systems come from collective wisdom. Contributions welcome 👉[Guide](docs/contribution.md):
619
+
620
+ ### Code Contributions
621
+
622
+ - New operation and tool development
623
+ - Backend implementation and optimization
624
+ - API enhancements and new endpoints
454
625
 
455
- 我们相信最好的记忆系统来自集体智慧。欢迎贡献:
626
+ ### Documentation Improvements
456
627
 
457
- ### 代码贡献
458
- - 新操作和工具开发
459
- - 后端实现和优化
460
- - API增强和新端点
628
+ - Usage examples and tutorials
629
+ - Best practice guides
461
630
 
462
- ### 文档改进
463
- - 使用示例和教程
464
- - 最佳实践指南
465
- - 翻译和本地化
466
631
 
467
632
  ---
468
633
 
469
- ## 📄 引用
634
+ ## 📄 Citation
470
635
 
471
636
  ```bibtex
472
637
  @software{ReMe2025,
473
- title = {ReMe.ai: Memory-Driven AI Agent Framework},
474
- author = {The ReMe.ai Team},
475
- url = {https://github.com/modelscope/ReMe.ai},
638
+ title = {ReMe: Memory Management Framework for Agents},
639
+ author = {Li Yu, Jiaji Deng, Zouying Cao},
640
+ url = {https://github.com/modelscope/ReMe},
476
641
  year = {2025}
477
642
  }
478
643
  ```
479
644
 
480
645
  ---
481
646
 
482
- ## ⚖️ 许可证
647
+ ## ⚖️ License
483
648
 
484
- 本项目采用Apache License 2.0许可证 - 详情请参阅[LICENSE](./LICENSE)文件。
649
+ This project is licensed under the Apache License 2.0 - see the [LICENSE](./LICENSE) file for details.
485
650
 
486
651
  ---