relib 1.3.5__tar.gz → 1.3.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- relib-1.3.6/.python-version +1 -0
- {relib-1.3.5 → relib-1.3.6}/PKG-INFO +2 -2
- {relib-1.3.5 → relib-1.3.6}/pyproject.toml +2 -2
- {relib-1.3.5 → relib-1.3.6}/relib/dict_utils.py +17 -16
- {relib-1.3.5 → relib-1.3.6}/relib/iter_utils.py +31 -29
- {relib-1.3.5 → relib-1.3.6}/relib/processing_utils.py +2 -1
- {relib-1.3.5 → relib-1.3.6}/relib/runtime_tools.py +3 -2
- {relib-1.3.5 → relib-1.3.6}/relib/type_utils.py +3 -2
- relib-1.3.6/relib/types.py +16 -0
- {relib-1.3.5 → relib-1.3.6}/uv.lock +53 -2
- relib-1.3.5/.python-version +0 -1
- {relib-1.3.5 → relib-1.3.6}/.gitignore +0 -0
- {relib-1.3.5 → relib-1.3.6}/LICENSE +0 -0
- {relib-1.3.5 → relib-1.3.6}/README.md +0 -0
- {relib-1.3.5 → relib-1.3.6}/relib/__init__.py +0 -0
- {relib-1.3.5 → relib-1.3.6}/relib/io_utils.py +0 -0
@@ -0,0 +1 @@
|
|
1
|
+
3.10
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: relib
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.6
|
4
4
|
Project-URL: Repository, https://github.com/Reddan/relib.git
|
5
5
|
Author: Hampus Hallman
|
6
6
|
License: Copyright 2018-2025 Hampus Hallman
|
@@ -11,4 +11,4 @@ License: Copyright 2018-2025 Hampus Hallman
|
|
11
11
|
|
12
12
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
13
13
|
License-File: LICENSE
|
14
|
-
Requires-Python: >=3.
|
14
|
+
Requires-Python: >=3.10
|
@@ -1,5 +1,6 @@
|
|
1
1
|
from typing import Any, Callable, Iterable, overload
|
2
2
|
from .type_utils import as_any
|
3
|
+
from .types import K1, K2, K3, K4, K5, K6, K, T, U
|
3
4
|
|
4
5
|
__all__ = [
|
5
6
|
"deep_dict_pairs", "deepen_dict", "dict_by", "dict_firsts",
|
@@ -12,7 +13,7 @@ __all__ = [
|
|
12
13
|
"tuple_by",
|
13
14
|
]
|
14
15
|
|
15
|
-
def merge_dicts
|
16
|
+
def merge_dicts(*dicts: dict[K, T]) -> dict[K, T]:
|
16
17
|
if len(dicts) == 1:
|
17
18
|
return dicts[0]
|
18
19
|
result = {}
|
@@ -20,29 +21,29 @@ def merge_dicts[T, K](*dicts: dict[K, T]) -> dict[K, T]:
|
|
20
21
|
result |= d
|
21
22
|
return result
|
22
23
|
|
23
|
-
def omit
|
24
|
+
def omit(d: dict[K, T], keys: Iterable[K]) -> dict[K, T]:
|
24
25
|
if keys:
|
25
26
|
d = dict(d)
|
26
27
|
for key in keys:
|
27
28
|
del d[key]
|
28
29
|
return d
|
29
30
|
|
30
|
-
def pick
|
31
|
+
def pick(d: dict[K, T], keys: Iterable[K]) -> dict[K, T]:
|
31
32
|
return {key: d[key] for key in keys}
|
32
33
|
|
33
|
-
def dict_by
|
34
|
+
def dict_by(keys: Iterable[K], values: Iterable[T]) -> dict[K, T]:
|
34
35
|
return dict(zip(keys, values))
|
35
36
|
|
36
|
-
def tuple_by
|
37
|
+
def tuple_by(d: dict[K, T], keys: Iterable[K]) -> tuple[T, ...]:
|
37
38
|
return tuple(d[key] for key in keys)
|
38
39
|
|
39
|
-
def map_dict
|
40
|
+
def map_dict(fn: Callable[[T], U], d: dict[K, T]) -> dict[K, U]:
|
40
41
|
return {key: fn(value) for key, value in d.items()}
|
41
42
|
|
42
|
-
def key_of
|
43
|
+
def key_of(dicts: Iterable[dict[T, U]], key: T) -> list[U]:
|
43
44
|
return [d[key] for d in dicts]
|
44
45
|
|
45
|
-
def get_at
|
46
|
+
def get_at(d: dict, keys: Iterable[Any], default: T) -> T:
|
46
47
|
try:
|
47
48
|
for key in keys:
|
48
49
|
d = d[key]
|
@@ -50,13 +51,13 @@ def get_at[T](d: dict, keys: Iterable[Any], default: T) -> T:
|
|
50
51
|
return default
|
51
52
|
return as_any(d)
|
52
53
|
|
53
|
-
def dict_firsts
|
54
|
+
def dict_firsts(pairs: Iterable[tuple[K, T]]) -> dict[K, T]:
|
54
55
|
result: dict[K, T] = {}
|
55
56
|
for key, value in pairs:
|
56
57
|
result.setdefault(key, value)
|
57
58
|
return result
|
58
59
|
|
59
|
-
def group
|
60
|
+
def group(pairs: Iterable[tuple[K, T]]) -> dict[K, list[T]]:
|
60
61
|
values_by_key = {}
|
61
62
|
for key, value in pairs:
|
62
63
|
values_by_key.setdefault(key, []).append(value)
|
@@ -73,17 +74,17 @@ def flatten_dict(deep_dict: dict, prefix=()) -> dict:
|
|
73
74
|
return dict(deep_dict_pairs(deep_dict, prefix))
|
74
75
|
|
75
76
|
@overload
|
76
|
-
def deepen_dict
|
77
|
+
def deepen_dict(d: dict[tuple[K1], U]) -> dict[K1, U]: ...
|
77
78
|
@overload
|
78
|
-
def deepen_dict
|
79
|
+
def deepen_dict(d: dict[tuple[K1, K2], U]) -> dict[K1, dict[K2, U]]: ...
|
79
80
|
@overload
|
80
|
-
def deepen_dict
|
81
|
+
def deepen_dict(d: dict[tuple[K1, K2, K3], U]) -> dict[K1, dict[K2, dict[K3, U]]]: ...
|
81
82
|
@overload
|
82
|
-
def deepen_dict
|
83
|
+
def deepen_dict(d: dict[tuple[K1, K2, K3, K4], U]) -> dict[K1, dict[K2, dict[K3, dict[K4, U]]]]: ...
|
83
84
|
@overload
|
84
|
-
def deepen_dict
|
85
|
+
def deepen_dict(d: dict[tuple[K1, K2, K3, K4, K5], U]) -> dict[K1, dict[K2, dict[K3, dict[K4, dict[K5, U]]]]]: ...
|
85
86
|
@overload
|
86
|
-
def deepen_dict
|
87
|
+
def deepen_dict(d: dict[tuple[K1, K2, K3, K4, K5, K6], U]) -> dict[K1, dict[K2, dict[K3, dict[K4, dict[K5, dict[K6, U]]]]]]: ...
|
87
88
|
def deepen_dict(d: dict[tuple[Any, ...], Any]) -> dict:
|
88
89
|
output = {}
|
89
90
|
if () in d:
|
@@ -1,7 +1,9 @@
|
|
1
|
+
from __future__ import annotations
|
1
2
|
from contextlib import contextmanager
|
2
3
|
from itertools import chain, islice
|
3
|
-
from typing import Any, Iterable, Literal,
|
4
|
+
from typing import Any, Generic, Iterable, Literal, Sequence, overload
|
4
5
|
from .dict_utils import dict_firsts
|
6
|
+
from .types import T1, T2, T3, T4, T5, T, U
|
5
7
|
|
6
8
|
__all__ = [
|
7
9
|
"as_list",
|
@@ -18,52 +20,52 @@ __all__ = [
|
|
18
20
|
"transpose",
|
19
21
|
]
|
20
22
|
|
21
|
-
def as_list
|
23
|
+
def as_list(iterable: Iterable[T]) -> list[T]:
|
22
24
|
return iterable if isinstance(iterable, list) else list(iterable)
|
23
25
|
|
24
|
-
def at
|
26
|
+
def at(values: Sequence[T], index: int, default: U = None) -> T | U:
|
25
27
|
try:
|
26
28
|
return values[index]
|
27
29
|
except IndexError:
|
28
30
|
return default
|
29
31
|
|
30
|
-
def first
|
32
|
+
def first(iterable: Iterable[T]) -> T | None:
|
31
33
|
return next(iter(iterable), None)
|
32
34
|
|
33
|
-
def drop_none
|
35
|
+
def drop_none(iterable: Iterable[T | None]) -> list[T]:
|
34
36
|
return [x for x in iterable if x is not None]
|
35
37
|
|
36
|
-
def distinct
|
38
|
+
def distinct(iterable: Iterable[T]) -> list[T]:
|
37
39
|
return list(dict.fromkeys(iterable))
|
38
40
|
|
39
|
-
def distinct_by
|
41
|
+
def distinct_by(pairs: Iterable[tuple[object, T]]) -> list[T]:
|
40
42
|
return list(dict_firsts(pairs).values())
|
41
43
|
|
42
|
-
def sort_by
|
44
|
+
def sort_by(pairs: Iterable[tuple[Any, T]], reverse=False) -> list[T]:
|
43
45
|
pairs = sorted(pairs, key=lambda p: p[0], reverse=reverse)
|
44
46
|
return [v for _, v in pairs]
|
45
47
|
|
46
|
-
def move_value
|
48
|
+
def move_value(iterable: Iterable[T], from_i: int, to_i: int) -> list[T]:
|
47
49
|
values = list(iterable)
|
48
50
|
values.insert(to_i, values.pop(from_i))
|
49
51
|
return values
|
50
52
|
|
51
|
-
def reversed_enumerate
|
53
|
+
def reversed_enumerate(values: Sequence[T] | tuple[T, ...]) -> Iterable[tuple[int, T]]:
|
52
54
|
return zip(range(len(values))[::-1], reversed(values))
|
53
55
|
|
54
|
-
def intersect
|
56
|
+
def intersect(*iterables: Iterable[T]) -> list[T]:
|
55
57
|
return list(set.intersection(*map(set, iterables)))
|
56
58
|
|
57
|
-
def interleave
|
59
|
+
def interleave(*iterables: Iterable[T]) -> list[T]:
|
58
60
|
return flatten(zip(*iterables))
|
59
61
|
|
60
|
-
def list_split
|
62
|
+
def list_split(iterable: Iterable[T], sep: T) -> list[list[T]]:
|
61
63
|
values = [sep, *iterable, sep]
|
62
64
|
split_at = [i for i, x in enumerate(values) if x is sep]
|
63
65
|
ranges = list(zip(split_at[0:-1], split_at[1:]))
|
64
66
|
return [values[start + 1:end] for start, end in ranges]
|
65
67
|
|
66
|
-
def partition
|
68
|
+
def partition(iterable: Iterable[tuple[bool, T]]) -> tuple[list[T], list[T]]:
|
67
69
|
true_values, false_values = [], []
|
68
70
|
for predicate, value in iterable:
|
69
71
|
if predicate:
|
@@ -72,7 +74,7 @@ def partition[T](iterable: Iterable[tuple[bool, T]]) -> tuple[list[T], list[T]]:
|
|
72
74
|
false_values.append(value)
|
73
75
|
return true_values, false_values
|
74
76
|
|
75
|
-
class seekable[T]:
|
77
|
+
class seekable(Generic[T]):
|
76
78
|
def __init__(self, iterable: Iterable[T]):
|
77
79
|
self.index = 0
|
78
80
|
self.source = iter(iterable)
|
@@ -97,14 +99,14 @@ class seekable[T]:
|
|
97
99
|
self.sink[:self.index] = []
|
98
100
|
self.index = 0
|
99
101
|
|
100
|
-
def seek(self, index: int) ->
|
102
|
+
def seek(self, index: int) -> seekable[T]:
|
101
103
|
remainder = index - len(self.sink)
|
102
104
|
if remainder > 0:
|
103
105
|
next(islice(self, remainder, remainder), None)
|
104
106
|
self.index = max(0, min(index, len(self.sink)))
|
105
107
|
return self
|
106
108
|
|
107
|
-
def step(self, count: int) ->
|
109
|
+
def step(self, count: int) -> seekable[T]:
|
108
110
|
return self.seek(self.index + count)
|
109
111
|
|
110
112
|
@contextmanager
|
@@ -123,9 +125,9 @@ class seekable[T]:
|
|
123
125
|
return list(islice(self, count))
|
124
126
|
|
125
127
|
@overload
|
126
|
-
def chunked
|
128
|
+
def chunked(values: Iterable[T], *, num_chunks: int, chunk_size=None) -> list[list[T]]: ...
|
127
129
|
@overload
|
128
|
-
def chunked
|
130
|
+
def chunked(values: Iterable[T], *, num_chunks=None, chunk_size: int) -> list[list[T]]: ...
|
129
131
|
def chunked(values, *, num_chunks=None, chunk_size=None):
|
130
132
|
values = as_list(values)
|
131
133
|
if isinstance(num_chunks, int):
|
@@ -136,15 +138,15 @@ def chunked(values, *, num_chunks=None, chunk_size=None):
|
|
136
138
|
return [values[i * chunk_size:(i + 1) * chunk_size] for i in range(num_chunks)]
|
137
139
|
|
138
140
|
@overload
|
139
|
-
def flatten
|
141
|
+
def flatten(iterable: Iterable[T], depth: Literal[0]) -> list[T]: ...
|
140
142
|
@overload
|
141
|
-
def flatten
|
143
|
+
def flatten(iterable: Iterable[Iterable[T]], depth: Literal[1] = 1) -> list[T]: ...
|
142
144
|
@overload
|
143
|
-
def flatten
|
145
|
+
def flatten(iterable: Iterable[Iterable[Iterable[T]]], depth: Literal[2]) -> list[T]: ...
|
144
146
|
@overload
|
145
|
-
def flatten
|
147
|
+
def flatten(iterable: Iterable[Iterable[Iterable[Iterable[T]]]], depth: Literal[3]) -> list[T]: ...
|
146
148
|
@overload
|
147
|
-
def flatten
|
149
|
+
def flatten(iterable: Iterable[Iterable[Iterable[Iterable[Iterable[T]]]]], depth: Literal[4]) -> list[T]: ...
|
148
150
|
@overload
|
149
151
|
def flatten(iterable: Iterable, depth: int) -> list: ...
|
150
152
|
def flatten(iterable: Iterable, depth: int = 1) -> list:
|
@@ -153,15 +155,15 @@ def flatten(iterable: Iterable, depth: int = 1) -> list:
|
|
153
155
|
return list(iterable)
|
154
156
|
|
155
157
|
@overload
|
156
|
-
def transpose
|
158
|
+
def transpose(tuples: Iterable[tuple[T1, T2]], default_num_returns=0) -> tuple[list[T1], list[T2]]: ...
|
157
159
|
@overload
|
158
|
-
def transpose
|
160
|
+
def transpose(tuples: Iterable[tuple[T1, T2, T3]], default_num_returns=0) -> tuple[list[T1], list[T2], list[T3]]: ...
|
159
161
|
@overload
|
160
|
-
def transpose
|
162
|
+
def transpose(tuples: Iterable[tuple[T1, T2, T3, T4]], default_num_returns=0) -> tuple[list[T1], list[T2], list[T3], list[T4]]: ...
|
161
163
|
@overload
|
162
|
-
def transpose
|
164
|
+
def transpose(tuples: Iterable[tuple[T1, T2, T3, T4, T5]], default_num_returns=0) -> tuple[list[T1], list[T2], list[T3], list[T4], list[T5]]: ...
|
163
165
|
@overload
|
164
|
-
def transpose
|
166
|
+
def transpose(tuples: Iterable[tuple[T, ...]], default_num_returns=0) -> tuple[list[T], ...]: ...
|
165
167
|
def transpose(tuples: Iterable[tuple], default_num_returns=0) -> tuple[list, ...]:
|
166
168
|
output = tuple(zip(*tuples))
|
167
169
|
if not output:
|
@@ -1,5 +1,6 @@
|
|
1
1
|
import re
|
2
2
|
from typing import Any, Callable, Iterable, overload
|
3
|
+
from .types import T
|
3
4
|
|
4
5
|
__all__ = [
|
5
6
|
"clamp",
|
@@ -12,7 +13,7 @@ __all__ = [
|
|
12
13
|
def noop() -> None:
|
13
14
|
pass
|
14
15
|
|
15
|
-
def for_each
|
16
|
+
def for_each(func: Callable[[T], Any], iterable: Iterable[T]) -> None:
|
16
17
|
for item in iterable:
|
17
18
|
func(item)
|
18
19
|
|
@@ -8,6 +8,7 @@ from time import time
|
|
8
8
|
from typing import Callable, Coroutine, Iterable, ParamSpec, TypeVar
|
9
9
|
from .iter_utils import as_list
|
10
10
|
from .processing_utils import noop
|
11
|
+
from .types import T
|
11
12
|
|
12
13
|
__all__ = [
|
13
14
|
"as_async", "async_limit",
|
@@ -34,13 +35,13 @@ def clear_console() -> None:
|
|
34
35
|
def console_link(text: str, url: str) -> str:
|
35
36
|
return f"\033]8;;{url}\033\\{text}\033]8;;\033\\"
|
36
37
|
|
37
|
-
async def worker
|
38
|
+
async def worker(task: Coro[T], semaphore: asyncio.Semaphore, update=noop) -> T:
|
38
39
|
async with semaphore:
|
39
40
|
result = await task
|
40
41
|
update()
|
41
42
|
return result
|
42
43
|
|
43
|
-
async def roll_tasks
|
44
|
+
async def roll_tasks(tasks: Iterable[Coro[T]], workers=default_workers, progress=False) -> list[T]:
|
44
45
|
semaphore = asyncio.Semaphore(workers)
|
45
46
|
if not progress:
|
46
47
|
return await asyncio.gather(*[worker(task, semaphore) for task in tasks])
|
@@ -1,4 +1,5 @@
|
|
1
1
|
from typing import Any
|
2
|
+
from .types import T
|
2
3
|
|
3
4
|
__all__ = [
|
4
5
|
"as_any",
|
@@ -9,9 +10,9 @@ __all__ = [
|
|
9
10
|
def as_any(obj: Any) -> Any:
|
10
11
|
return obj
|
11
12
|
|
12
|
-
def non_none
|
13
|
+
def non_none(obj: T | None) -> T:
|
13
14
|
assert obj is not None
|
14
15
|
return obj
|
15
16
|
|
16
|
-
def ensure_tuple
|
17
|
+
def ensure_tuple(value: T | tuple[T, ...]) -> tuple[T, ...]:
|
17
18
|
return value if isinstance(value, tuple) else (value,)
|
@@ -0,0 +1,16 @@
|
|
1
|
+
from typing import TypeVar
|
2
|
+
|
3
|
+
T = TypeVar("T")
|
4
|
+
U = TypeVar("U")
|
5
|
+
K = TypeVar("K")
|
6
|
+
T1 = TypeVar("T1")
|
7
|
+
T2 = TypeVar("T2")
|
8
|
+
T3 = TypeVar("T3")
|
9
|
+
T4 = TypeVar("T4")
|
10
|
+
T5 = TypeVar("T5")
|
11
|
+
K1 = TypeVar("K1")
|
12
|
+
K2 = TypeVar("K2")
|
13
|
+
K3 = TypeVar("K3")
|
14
|
+
K4 = TypeVar("K4")
|
15
|
+
K5 = TypeVar("K5")
|
16
|
+
K6 = TypeVar("K6")
|
@@ -1,6 +1,11 @@
|
|
1
1
|
version = 1
|
2
2
|
revision = 1
|
3
|
-
requires-python = ">=3.
|
3
|
+
requires-python = ">=3.10"
|
4
|
+
resolution-markers = [
|
5
|
+
"python_full_version >= '3.12'",
|
6
|
+
"python_full_version == '3.11.*'",
|
7
|
+
"python_full_version < '3.11'",
|
8
|
+
]
|
4
9
|
|
5
10
|
[[package]]
|
6
11
|
name = "colorama"
|
@@ -17,6 +22,26 @@ version = "2.1.3"
|
|
17
22
|
source = { registry = "https://pypi.org/simple" }
|
18
23
|
sdist = { url = "https://files.pythonhosted.org/packages/25/ca/1166b75c21abd1da445b97bf1fa2f14f423c6cfb4fc7c4ef31dccf9f6a94/numpy-2.1.3.tar.gz", hash = "sha256:aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761", size = 20166090 }
|
19
24
|
wheels = [
|
25
|
+
{ url = "https://files.pythonhosted.org/packages/f1/80/d572a4737626372915bca41c3afbfec9d173561a39a0a61bacbbfd1dafd4/numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff", size = 21152472 },
|
26
|
+
{ url = "https://files.pythonhosted.org/packages/6f/bb/7bfba10c791ae3bb6716da77ad85a82d5fac07fc96fb0023ef0571df9d20/numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5", size = 13747967 },
|
27
|
+
{ url = "https://files.pythonhosted.org/packages/da/d6/2df7bde35f0478455f0be5934877b3e5a505f587b00230f54a519a6b55a5/numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1", size = 5354921 },
|
28
|
+
{ url = "https://files.pythonhosted.org/packages/d1/bb/75b945874f931494891eac6ca06a1764d0e8208791f3addadb2963b83527/numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd", size = 6888603 },
|
29
|
+
{ url = "https://files.pythonhosted.org/packages/68/a7/fde73636f6498dbfa6d82fc336164635fe592f1ad0d13285fcb6267fdc1c/numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3", size = 13889862 },
|
30
|
+
{ url = "https://files.pythonhosted.org/packages/05/db/5d9c91b2e1e2e72be1369278f696356d44975befcae830daf2e667dcb54f/numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098", size = 16328151 },
|
31
|
+
{ url = "https://files.pythonhosted.org/packages/3e/6a/7eb732109b53ae64a29e25d7e68eb9d6611037f6354875497008a49e74d3/numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c", size = 16704107 },
|
32
|
+
{ url = "https://files.pythonhosted.org/packages/88/cc/278113b66a1141053cbda6f80e4200c6da06b3079c2d27bda1fde41f2c1f/numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4", size = 14385789 },
|
33
|
+
{ url = "https://files.pythonhosted.org/packages/f5/69/eb20f5e1bfa07449bc67574d2f0f7c1e6b335fb41672e43861a7727d85f2/numpy-2.1.3-cp310-cp310-win32.whl", hash = "sha256:72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23", size = 6536706 },
|
34
|
+
{ url = "https://files.pythonhosted.org/packages/8e/8b/1c131ab5a94c1086c289c6e1da1d843de9dbd95fe5f5ee6e61904c9518e2/numpy-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0", size = 12864165 },
|
35
|
+
{ url = "https://files.pythonhosted.org/packages/ad/81/c8167192eba5247593cd9d305ac236847c2912ff39e11402e72ae28a4985/numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d", size = 21156252 },
|
36
|
+
{ url = "https://files.pythonhosted.org/packages/da/74/5a60003fc3d8a718d830b08b654d0eea2d2db0806bab8f3c2aca7e18e010/numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41", size = 13784119 },
|
37
|
+
{ url = "https://files.pythonhosted.org/packages/47/7c/864cb966b96fce5e63fcf25e1e4d957fe5725a635e5f11fe03f39dd9d6b5/numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9", size = 5352978 },
|
38
|
+
{ url = "https://files.pythonhosted.org/packages/09/ac/61d07930a4993dd9691a6432de16d93bbe6aa4b1c12a5e573d468eefc1ca/numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09", size = 6892570 },
|
39
|
+
{ url = "https://files.pythonhosted.org/packages/27/2f/21b94664f23af2bb52030653697c685022119e0dc93d6097c3cb45bce5f9/numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a", size = 13896715 },
|
40
|
+
{ url = "https://files.pythonhosted.org/packages/7a/f0/80811e836484262b236c684a75dfc4ba0424bc670e765afaa911468d9f39/numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b", size = 16339644 },
|
41
|
+
{ url = "https://files.pythonhosted.org/packages/fa/81/ce213159a1ed8eb7d88a2a6ef4fbdb9e4ffd0c76b866c350eb4e3c37e640/numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee", size = 16712217 },
|
42
|
+
{ url = "https://files.pythonhosted.org/packages/7d/84/4de0b87d5a72f45556b2a8ee9fc8801e8518ec867fc68260c1f5dcb3903f/numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0", size = 14399053 },
|
43
|
+
{ url = "https://files.pythonhosted.org/packages/7e/1c/e5fabb9ad849f9d798b44458fd12a318d27592d4bc1448e269dec070ff04/numpy-2.1.3-cp311-cp311-win32.whl", hash = "sha256:d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9", size = 6534741 },
|
44
|
+
{ url = "https://files.pythonhosted.org/packages/1e/48/a9a4b538e28f854bfb62e1dea3c8fea12e90216a276c7777ae5345ff29a7/numpy-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2", size = 12869487 },
|
20
45
|
{ url = "https://files.pythonhosted.org/packages/8a/f0/385eb9970309643cbca4fc6eebc8bb16e560de129c91258dfaa18498da8b/numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e", size = 20849658 },
|
21
46
|
{ url = "https://files.pythonhosted.org/packages/54/4a/765b4607f0fecbb239638d610d04ec0a0ded9b4951c56dc68cef79026abf/numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958", size = 13492258 },
|
22
47
|
{ url = "https://files.pythonhosted.org/packages/bd/a7/2332679479c70b68dccbf4a8eb9c9b5ee383164b161bee9284ac141fbd33/numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8", size = 5090249 },
|
@@ -47,6 +72,10 @@ wheels = [
|
|
47
72
|
{ url = "https://files.pythonhosted.org/packages/ef/62/1d3204313357591c913c32132a28f09a26357e33ea3c4e2fe81269e0dca1/numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17", size = 14067180 },
|
48
73
|
{ url = "https://files.pythonhosted.org/packages/24/d7/78a40ed1d80e23a774cb8a34ae8a9493ba1b4271dde96e56ccdbab1620ef/numpy-2.1.3-cp313-cp313t-win32.whl", hash = "sha256:08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48", size = 6291907 },
|
49
74
|
{ url = "https://files.pythonhosted.org/packages/86/09/a5ab407bd7f5f5599e6a9261f964ace03a73e7c6928de906981c31c38082/numpy-2.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4", size = 12644098 },
|
75
|
+
{ url = "https://files.pythonhosted.org/packages/00/e7/8d8bb791b62586cc432ecbb70632b4f23b7b7c88df41878de7528264f6d7/numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f", size = 20983893 },
|
76
|
+
{ url = "https://files.pythonhosted.org/packages/5e/f3/cb8118a044b5007586245a650360c9f5915b2f4232dd7658bb7a63dd1d02/numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4", size = 6752501 },
|
77
|
+
{ url = "https://files.pythonhosted.org/packages/53/f5/365b46439b518d2ec6ebb880cc0edf90f225145dfd4db7958334f7164530/numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d", size = 16142601 },
|
78
|
+
{ url = "https://files.pythonhosted.org/packages/03/c2/d1fee6ba999aa7cd41ca6856937f2baaf604c3eec1565eae63451ec31e5e/numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb", size = 12771397 },
|
50
79
|
]
|
51
80
|
|
52
81
|
[[package]]
|
@@ -73,6 +102,20 @@ dependencies = [
|
|
73
102
|
]
|
74
103
|
sdist = { url = "https://files.pythonhosted.org/packages/9c/d6/9f8431bacc2e19dca897724cd097b1bb224a6ad5433784a44b587c7c13af/pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667", size = 4399213 }
|
75
104
|
wheels = [
|
105
|
+
{ url = "https://files.pythonhosted.org/packages/aa/70/c853aec59839bceed032d52010ff5f1b8d87dc3114b762e4ba2727661a3b/pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5", size = 12580827 },
|
106
|
+
{ url = "https://files.pythonhosted.org/packages/99/f2/c4527768739ffa4469b2b4fff05aa3768a478aed89a2f271a79a40eee984/pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348", size = 11303897 },
|
107
|
+
{ url = "https://files.pythonhosted.org/packages/ed/12/86c1747ea27989d7a4064f806ce2bae2c6d575b950be087837bdfcabacc9/pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed", size = 66480908 },
|
108
|
+
{ url = "https://files.pythonhosted.org/packages/44/50/7db2cd5e6373ae796f0ddad3675268c8d59fb6076e66f0c339d61cea886b/pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57", size = 13064210 },
|
109
|
+
{ url = "https://files.pythonhosted.org/packages/61/61/a89015a6d5536cb0d6c3ba02cebed51a95538cf83472975275e28ebf7d0c/pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42", size = 16754292 },
|
110
|
+
{ url = "https://files.pythonhosted.org/packages/ce/0d/4cc7b69ce37fac07645a94e1d4b0880b15999494372c1523508511b09e40/pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f", size = 14416379 },
|
111
|
+
{ url = "https://files.pythonhosted.org/packages/31/9e/6ebb433de864a6cd45716af52a4d7a8c3c9aaf3a98368e61db9e69e69a9c/pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645", size = 11598471 },
|
112
|
+
{ url = "https://files.pythonhosted.org/packages/a8/44/d9502bf0ed197ba9bf1103c9867d5904ddcaf869e52329787fc54ed70cc8/pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039", size = 12602222 },
|
113
|
+
{ url = "https://files.pythonhosted.org/packages/52/11/9eac327a38834f162b8250aab32a6781339c69afe7574368fffe46387edf/pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd", size = 11321274 },
|
114
|
+
{ url = "https://files.pythonhosted.org/packages/45/fb/c4beeb084718598ba19aa9f5abbc8aed8b42f90930da861fcb1acdb54c3a/pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698", size = 15579836 },
|
115
|
+
{ url = "https://files.pythonhosted.org/packages/cd/5f/4dba1d39bb9c38d574a9a22548c540177f78ea47b32f99c0ff2ec499fac5/pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc", size = 13058505 },
|
116
|
+
{ url = "https://files.pythonhosted.org/packages/b9/57/708135b90391995361636634df1f1130d03ba456e95bcf576fada459115a/pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3", size = 16744420 },
|
117
|
+
{ url = "https://files.pythonhosted.org/packages/86/4a/03ed6b7ee323cf30404265c284cee9c65c56a212e0a08d9ee06984ba2240/pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32", size = 14440457 },
|
118
|
+
{ url = "https://files.pythonhosted.org/packages/ed/8c/87ddf1fcb55d11f9f847e3c69bb1c6f8e46e2f40ab1a2d2abadb2401b007/pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5", size = 11617166 },
|
76
119
|
{ url = "https://files.pythonhosted.org/packages/17/a3/fb2734118db0af37ea7433f57f722c0a56687e14b14690edff0cdb4b7e58/pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9", size = 12529893 },
|
77
120
|
{ url = "https://files.pythonhosted.org/packages/e1/0c/ad295fd74bfac85358fd579e271cded3ac969de81f62dd0142c426b9da91/pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4", size = 11363475 },
|
78
121
|
{ url = "https://files.pythonhosted.org/packages/c6/2a/4bba3f03f7d07207481fed47f5b35f556c7441acddc368ec43d6643c5777/pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3", size = 15188645 },
|
@@ -118,7 +161,7 @@ wheels = [
|
|
118
161
|
|
119
162
|
[[package]]
|
120
163
|
name = "relib"
|
121
|
-
version = "1.3.
|
164
|
+
version = "1.3.6"
|
122
165
|
source = { editable = "." }
|
123
166
|
|
124
167
|
[package.dev-dependencies]
|
@@ -175,12 +218,20 @@ version = "6.0.0"
|
|
175
218
|
source = { registry = "https://pypi.org/simple" }
|
176
219
|
sdist = { url = "https://files.pythonhosted.org/packages/db/7d/7f3d619e951c88ed75c6037b246ddcf2d322812ee8ea189be89511721d54/watchdog-6.0.0.tar.gz", hash = "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282", size = 131220 }
|
177
220
|
wheels = [
|
221
|
+
{ url = "https://files.pythonhosted.org/packages/0c/56/90994d789c61df619bfc5ce2ecdabd5eeff564e1eb47512bd01b5e019569/watchdog-6.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26", size = 96390 },
|
222
|
+
{ url = "https://files.pythonhosted.org/packages/55/46/9a67ee697342ddf3c6daa97e3a587a56d6c4052f881ed926a849fcf7371c/watchdog-6.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112", size = 88389 },
|
223
|
+
{ url = "https://files.pythonhosted.org/packages/44/65/91b0985747c52064d8701e1075eb96f8c40a79df889e59a399453adfb882/watchdog-6.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3", size = 89020 },
|
224
|
+
{ url = "https://files.pythonhosted.org/packages/e0/24/d9be5cd6642a6aa68352ded4b4b10fb0d7889cb7f45814fb92cecd35f101/watchdog-6.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c", size = 96393 },
|
225
|
+
{ url = "https://files.pythonhosted.org/packages/63/7a/6013b0d8dbc56adca7fdd4f0beed381c59f6752341b12fa0886fa7afc78b/watchdog-6.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2", size = 88392 },
|
226
|
+
{ url = "https://files.pythonhosted.org/packages/d1/40/b75381494851556de56281e053700e46bff5b37bf4c7267e858640af5a7f/watchdog-6.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c", size = 89019 },
|
178
227
|
{ url = "https://files.pythonhosted.org/packages/39/ea/3930d07dafc9e286ed356a679aa02d777c06e9bfd1164fa7c19c288a5483/watchdog-6.0.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948", size = 96471 },
|
179
228
|
{ url = "https://files.pythonhosted.org/packages/12/87/48361531f70b1f87928b045df868a9fd4e253d9ae087fa4cf3f7113be363/watchdog-6.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860", size = 88449 },
|
180
229
|
{ url = "https://files.pythonhosted.org/packages/5b/7e/8f322f5e600812e6f9a31b75d242631068ca8f4ef0582dd3ae6e72daecc8/watchdog-6.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0", size = 89054 },
|
181
230
|
{ url = "https://files.pythonhosted.org/packages/68/98/b0345cabdce2041a01293ba483333582891a3bd5769b08eceb0d406056ef/watchdog-6.0.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:490ab2ef84f11129844c23fb14ecf30ef3d8a6abafd3754a6f75ca1e6654136c", size = 96480 },
|
182
231
|
{ url = "https://files.pythonhosted.org/packages/85/83/cdf13902c626b28eedef7ec4f10745c52aad8a8fe7eb04ed7b1f111ca20e/watchdog-6.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:76aae96b00ae814b181bb25b1b98076d5fc84e8a53cd8885a318b42b6d3a5134", size = 88451 },
|
183
232
|
{ url = "https://files.pythonhosted.org/packages/fe/c4/225c87bae08c8b9ec99030cd48ae9c4eca050a59bf5c2255853e18c87b50/watchdog-6.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a175f755fc2279e0b7312c0035d52e27211a5bc39719dd529625b1930917345b", size = 89057 },
|
233
|
+
{ url = "https://files.pythonhosted.org/packages/30/ad/d17b5d42e28a8b91f8ed01cb949da092827afb9995d4559fd448d0472763/watchdog-6.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881", size = 87902 },
|
234
|
+
{ url = "https://files.pythonhosted.org/packages/5c/ca/c3649991d140ff6ab67bfc85ab42b165ead119c9e12211e08089d763ece5/watchdog-6.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11", size = 88380 },
|
184
235
|
{ url = "https://files.pythonhosted.org/packages/a9/c7/ca4bf3e518cb57a686b2feb4f55a1892fd9a3dd13f470fca14e00f80ea36/watchdog-6.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13", size = 79079 },
|
185
236
|
{ url = "https://files.pythonhosted.org/packages/5c/51/d46dc9332f9a647593c947b4b88e2381c8dfc0942d15b8edc0310fa4abb1/watchdog-6.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379", size = 79078 },
|
186
237
|
{ url = "https://files.pythonhosted.org/packages/d4/57/04edbf5e169cd318d5f07b4766fee38e825d64b6913ca157ca32d1a42267/watchdog-6.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e", size = 79076 },
|
relib-1.3.5/.python-version
DELETED
@@ -1 +0,0 @@
|
|
1
|
-
3.12
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|