relib 1.0.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
relib-1.0.9/.gitignore ADDED
@@ -0,0 +1,3 @@
1
+ __pycache__/
2
+ /dist
3
+ .DS_Store
relib-1.0.9/LICENSE ADDED
@@ -0,0 +1,7 @@
1
+ Copyright 2023 Hampus Hallman
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
4
+
5
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
6
+
7
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
relib-1.0.9/PKG-INFO ADDED
@@ -0,0 +1,16 @@
1
+ Metadata-Version: 2.3
2
+ Name: relib
3
+ Version: 1.0.9
4
+ Project-URL: Repository, https://github.com/Reddan/relib.git
5
+ Author: Hampus Hallman
6
+ License: Copyright 2023 Hampus Hallman
7
+
8
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
11
+
12
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
13
+ License-File: LICENSE
14
+ Requires-Python: >=3.12
15
+ Requires-Dist: numpy>=2.1.0
16
+ Requires-Dist: termcolor>=2.4.0
relib-1.0.9/README.md ADDED
File without changes
@@ -0,0 +1,24 @@
1
+ [project]
2
+ name = "relib"
3
+ version = "1.0.9"
4
+ requires-python = ">=3.12"
5
+ dependencies = [
6
+ "numpy>=2.1.0",
7
+ "termcolor>=2.4.0",
8
+ ]
9
+ authors = [
10
+ {name = "Hampus Hallman"}
11
+ ]
12
+ # description = ""
13
+ readme = "README.md"
14
+ license = {file = "LICENSE"}
15
+
16
+ [project.urls]
17
+ Repository = "https://github.com/Reddan/relib.git"
18
+
19
+ [build-system]
20
+ requires = ["hatchling"]
21
+ build-backend = "hatchling.build"
22
+
23
+ [tool.hatch.build.targets.wheel]
24
+ packages = ["relib"]
@@ -0,0 +1,31 @@
1
+ from .utils import (
2
+ non_none,
3
+ list_split,
4
+ drop_none,
5
+ distinct,
6
+ first,
7
+ move_value,
8
+ transpose_dict,
9
+ make_combinations_by_dict,
10
+ merge_dicts,
11
+ intersect,
12
+ ensure_tuple,
13
+ key_of,
14
+ omit,
15
+ pick,
16
+ dict_by,
17
+ tuple_by,
18
+ flatten,
19
+ transpose,
20
+ map_dict,
21
+ deepen_dict,
22
+ group,
23
+ sized_partitions,
24
+ num_partitions,
25
+ df_from_array,
26
+ StrFilter,
27
+ str_filterer,
28
+ )
29
+ from .raypipe import raypipe
30
+ from .hashing import hash
31
+ from .measure_duration import measure_duration
@@ -0,0 +1,255 @@
1
+ """
2
+ Fast cryptographic hash of Python objects, with a special case for fast
3
+ hashing of numpy arrays.
4
+ """
5
+
6
+ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
7
+ # Copyright (c) 2009 Gael Varoquaux
8
+ # License: BSD Style, 3 clauses.
9
+
10
+ import pickle
11
+ import hashlib
12
+ import sys
13
+ import types
14
+ import struct
15
+ import io
16
+ import decimal
17
+
18
+ Pickler = pickle._Pickler
19
+ _bytes_or_unicode = (bytes, str)
20
+
21
+
22
+ class _ConsistentSet(object):
23
+ """ Class used to ensure the hash of Sets is preserved
24
+ whatever the order of its items.
25
+ """
26
+ def __init__(self, set_sequence):
27
+ # Forces order of elements in set to ensure consistent hash.
28
+ try:
29
+ # Trying first to order the set assuming the type of elements is
30
+ # consistent and orderable.
31
+ # This fails on python 3 when elements are unorderable
32
+ # but we keep it in a try as it's faster.
33
+ self._sequence = sorted(set_sequence)
34
+ except (TypeError, decimal.InvalidOperation):
35
+ # If elements are unorderable, sorting them using their hash.
36
+ # This is slower but works in any case.
37
+ self._sequence = sorted((hash(e) for e in set_sequence))
38
+
39
+
40
+ class _MyHash(object):
41
+ """ Class used to hash objects that won't normally pickle """
42
+
43
+ def __init__(self, *args):
44
+ self.args = args
45
+
46
+
47
+ class Hasher(Pickler):
48
+ """ A subclass of pickler, to do cryptographic hashing, rather than
49
+ pickling.
50
+ """
51
+
52
+ def __init__(self, hash_name='md5'):
53
+ self.stream = io.BytesIO()
54
+ # By default we want a pickle protocol that only changes with
55
+ # the major python version and not the minor one
56
+ protocol = pickle.HIGHEST_PROTOCOL
57
+ Pickler.__init__(self, self.stream, protocol=protocol)
58
+ # Initialise the hash obj
59
+ self._hash = hashlib.new(hash_name)
60
+
61
+ def hash(self, obj, return_digest=True):
62
+ try:
63
+ self.dump(obj)
64
+ except pickle.PicklingError as e:
65
+ e.args += ('PicklingError while hashing %r: %r' % (obj, e),)
66
+ raise
67
+ dumps = self.stream.getvalue()
68
+ self._hash.update(dumps)
69
+ if return_digest:
70
+ return self._hash.hexdigest()
71
+
72
+ def save(self, obj):
73
+ if isinstance(obj, (types.MethodType, type({}.pop))):
74
+ # the Pickler cannot pickle instance methods; here we decompose
75
+ # them into components that make them uniquely identifiable
76
+ if hasattr(obj, '__func__'):
77
+ func_name = obj.__func__.__name__
78
+ else:
79
+ func_name = obj.__name__
80
+ inst = obj.__self__
81
+ if type(inst) == type(pickle):
82
+ obj = _MyHash(func_name, inst.__name__)
83
+ elif inst is None:
84
+ # type(None) or type(module) do not pickle
85
+ obj = _MyHash(func_name, inst)
86
+ else:
87
+ cls = obj.__self__.__class__
88
+ obj = _MyHash(func_name, inst, cls)
89
+ Pickler.save(self, obj)
90
+
91
+ def memoize(self, obj):
92
+ # We want hashing to be sensitive to value instead of reference.
93
+ # For example we want ['aa', 'aa'] and ['aa', 'aaZ'[:2]]
94
+ # to hash to the same value and that's why we disable memoization
95
+ # for strings
96
+ if isinstance(obj, _bytes_or_unicode):
97
+ return
98
+ Pickler.memoize(self, obj)
99
+
100
+ # The dispatch table of the pickler is not accessible in Python
101
+ # 3, as these lines are only bugware for IPython, we skip them.
102
+ def save_global(self, obj, name=None, pack=struct.pack):
103
+ # We have to override this method in order to deal with objects
104
+ # defined interactively in IPython that are not injected in
105
+ # __main__
106
+ kwargs = dict(name=name, pack=pack)
107
+ if sys.version_info >= (3, 4):
108
+ del kwargs['pack']
109
+ try:
110
+ Pickler.save_global(self, obj, **kwargs)
111
+ except pickle.PicklingError:
112
+ Pickler.save_global(self, obj, **kwargs)
113
+ module = getattr(obj, "__module__", None)
114
+ if module == '__main__':
115
+ my_name = name
116
+ if my_name is None:
117
+ my_name = obj.__name__
118
+ mod = sys.modules[module]
119
+ if not hasattr(mod, my_name):
120
+ # IPython doesn't inject the variables define
121
+ # interactively in __main__
122
+ setattr(mod, my_name, obj)
123
+
124
+ dispatch = Pickler.dispatch.copy()
125
+ # builtin
126
+ dispatch[type(len)] = save_global
127
+ # type
128
+ dispatch[type(object)] = save_global
129
+ # classobj
130
+ dispatch[type(Pickler)] = save_global
131
+ # function
132
+ dispatch[type(pickle.dump)] = save_global
133
+
134
+ def _batch_setitems(self, items):
135
+ # forces order of keys in dict to ensure consistent hash.
136
+ try:
137
+ # Trying first to compare dict assuming the type of keys is
138
+ # consistent and orderable.
139
+ # This fails on python 3 when keys are unorderable
140
+ # but we keep it in a try as it's faster.
141
+ Pickler._batch_setitems(self, iter(sorted(items)))
142
+ except TypeError:
143
+ # If keys are unorderable, sorting them using their hash. This is
144
+ # slower but works in any case.
145
+ Pickler._batch_setitems(self, iter(sorted((hash(k), v)
146
+ for k, v in items)))
147
+
148
+ def save_set(self, set_items):
149
+ # forces order of items in Set to ensure consistent hash
150
+ Pickler.save(self, _ConsistentSet(set_items))
151
+
152
+ dispatch[type(set())] = save_set
153
+
154
+
155
+ class NumpyHasher(Hasher):
156
+ """ Special case the hasher for when numpy is loaded.
157
+ """
158
+
159
+ def __init__(self, hash_name='md5', coerce_mmap=False):
160
+ """
161
+ Parameters
162
+ ----------
163
+ hash_name: string
164
+ The hash algorithm to be used
165
+ coerce_mmap: boolean
166
+ Make no difference between np.memmap and np.ndarray
167
+ objects.
168
+ """
169
+ self.coerce_mmap = coerce_mmap
170
+ Hasher.__init__(self, hash_name=hash_name)
171
+ # delayed import of numpy, to avoid tight coupling
172
+ import numpy as np
173
+ self.np = np
174
+ if hasattr(np, 'getbuffer'):
175
+ self._getbuffer = np.getbuffer
176
+ else:
177
+ self._getbuffer = memoryview
178
+
179
+ def save(self, obj):
180
+ """ Subclass the save method, to hash ndarray subclass, rather
181
+ than pickling them. Off course, this is a total abuse of
182
+ the Pickler class.
183
+ """
184
+ if isinstance(obj, self.np.ndarray) and not obj.dtype.hasobject:
185
+ # Compute a hash of the object
186
+ # The update function of the hash requires a c_contiguous buffer.
187
+ if obj.shape == ():
188
+ # 0d arrays need to be flattened because viewing them as bytes
189
+ # raises a ValueError exception.
190
+ obj_c_contiguous = obj.flatten()
191
+ elif obj.flags.c_contiguous:
192
+ obj_c_contiguous = obj
193
+ elif obj.flags.f_contiguous:
194
+ obj_c_contiguous = obj.T
195
+ else:
196
+ # Cater for non-single-segment arrays: this creates a
197
+ # copy, and thus aleviates this issue.
198
+ # XXX: There might be a more efficient way of doing this
199
+ obj_c_contiguous = obj.flatten()
200
+
201
+ # memoryview is not supported for some dtypes, e.g. datetime64, see
202
+ # https://github.com/numpy/numpy/issues/4983. The
203
+ # workaround is to view the array as bytes before
204
+ # taking the memoryview.
205
+ self._hash.update(
206
+ self._getbuffer(obj_c_contiguous.view(self.np.uint8)))
207
+
208
+ # We store the class, to be able to distinguish between
209
+ # Objects with the same binary content, but different
210
+ # classes.
211
+ if self.coerce_mmap and isinstance(obj, self.np.memmap):
212
+ # We don't make the difference between memmap and
213
+ # normal ndarrays, to be able to reload previously
214
+ # computed results with memmap.
215
+ klass = self.np.ndarray
216
+ else:
217
+ klass = obj.__class__
218
+ # We also return the dtype and the shape, to distinguish
219
+ # different views on the same data with different dtypes.
220
+
221
+ # The object will be pickled by the pickler hashed at the end.
222
+ obj = (klass, ('HASHED', obj.dtype, obj.shape, obj.strides))
223
+ elif isinstance(obj, self.np.dtype):
224
+ # Atomic dtype objects are interned by their default constructor:
225
+ # np.dtype('f8') is np.dtype('f8')
226
+ # This interning is not maintained by a
227
+ # pickle.loads + pickle.dumps cycle, because __reduce__
228
+ # uses copy=True in the dtype constructor. This
229
+ # non-deterministic behavior causes the internal memoizer
230
+ # of the hasher to generate different hash values
231
+ # depending on the history of the dtype object.
232
+ # To prevent the hash from being sensitive to this, we use
233
+ # .descr which is a full (and never interned) description of
234
+ # the array dtype according to the numpy doc.
235
+ klass = obj.__class__
236
+ obj = (klass, ('HASHED', obj.descr))
237
+ Hasher.save(self, obj)
238
+
239
+
240
+ def hash(obj, hash_name='md5', coerce_mmap=False):
241
+ """ Quick calculation of a hash to identify uniquely Python objects
242
+ containing numpy arrays.
243
+ Parameters
244
+ -----------
245
+ hash_name: 'md5' or 'sha1'
246
+ Hashing algorithm used. sha1 is supposedly safer, but md5 is
247
+ faster.
248
+ coerce_mmap: boolean
249
+ Make no difference between np.memmap and np.ndarray
250
+ """
251
+ if 'numpy' in sys.modules:
252
+ hasher = NumpyHasher(hash_name=hash_name, coerce_mmap=coerce_mmap)
253
+ else:
254
+ hasher = Hasher(hash_name=hash_name)
255
+ return hasher.hash(obj)
@@ -0,0 +1,20 @@
1
+ from time import time
2
+ from termcolor import colored
3
+
4
+ active_mds = []
5
+
6
+ class measure_duration:
7
+ def __init__(self, name):
8
+ self.name = name
9
+ active_mds.append(self)
10
+
11
+ def __enter__(self):
12
+ self.start = time()
13
+
14
+ def __exit__(self, *_):
15
+ duration = round(time() - self.start, 4)
16
+ depth = len(active_mds) - 1
17
+ indent = ('──' * depth) + (' ' * (depth > 0))
18
+ text = '{}: {} seconds'.format(self.name, duration)
19
+ print(colored(indent + text, attrs=['dark']))
20
+ active_mds.remove(self)
@@ -0,0 +1,60 @@
1
+ import numpy as np
2
+
3
+ class Raypipe():
4
+ def __init__(self, handlers=[]):
5
+ self.handlers = handlers
6
+
7
+ def __add_to_pipeline(self, handler_type, fn, kwargs={}):
8
+ handler = (handler_type, fn, kwargs)
9
+ return Raypipe(self.handlers + [handler])
10
+
11
+ def map(self, fn):
12
+ return self.__add_to_pipeline('map', fn)
13
+
14
+ def flatten(self):
15
+ return self.__add_to_pipeline('flatten', None)
16
+
17
+ def flat_map(self, fn):
18
+ return self.map(fn).flatten()
19
+
20
+ def filter(self, fn):
21
+ return self.__add_to_pipeline('filter', fn)
22
+
23
+ def sort(self, fn=None, reverse=False):
24
+ return self.__add_to_pipeline('sort', fn, dict(reverse=reverse))
25
+
26
+ def distinct(self):
27
+ return self.__add_to_pipeline('distinct', None)
28
+
29
+ def sort_distinct(self, fn=None, reverse=False):
30
+ return self.distinct().sort(fn, reverse=reverse)
31
+
32
+ def do(self, fn):
33
+ return self.__add_to_pipeline('do', fn)
34
+
35
+ def shuffle(self, random_state=42):
36
+ return self.__add_to_pipeline('shuffle', None, dict(random_state=random_state))
37
+
38
+ def to_numpy(self):
39
+ return self.__add_to_pipeline('do', np.array)
40
+
41
+ def compute(self, values):
42
+ for handler_type, handler_fn, handler_kwargs in self.handlers:
43
+ if handler_type == 'map':
44
+ values = [handler_fn(val) for val in values]
45
+ elif handler_type == 'flatten':
46
+ values = [item for sublist in values for item in sublist]
47
+ elif handler_type == 'filter':
48
+ values = [val for val in values if handler_fn(val)]
49
+ elif handler_type == 'sort':
50
+ values.sort(key=handler_fn, reverse=handler_kwargs['reverse'])
51
+ elif handler_type == 'distinct':
52
+ values = list(set(values))
53
+ elif handler_type == 'do':
54
+ values = handler_fn(values)
55
+ elif handler_type == 'shuffle':
56
+ from sklearn.utils import shuffle
57
+ values = shuffle(values, random_state=handler_kwargs['random_state'])
58
+ return values
59
+
60
+ raypipe = Raypipe()
@@ -0,0 +1,208 @@
1
+ from typing import TypeVar, Iterable, Callable, Any, cast, overload
2
+ from itertools import chain
3
+ import numpy as np
4
+ import re
5
+
6
+ T = TypeVar('T')
7
+ U = TypeVar('U')
8
+ K = TypeVar('K')
9
+ K1, K2, K3, K4, K5, K6 = TypeVar('K1'), TypeVar('K2'), TypeVar('K3'), TypeVar('K4'), TypeVar('K5'), TypeVar('K6')
10
+
11
+ def non_none(obj: T | None) -> T:
12
+ assert obj is not None
13
+ return obj
14
+
15
+ def list_split(l: list[T], sep: T) -> list[list[T]]:
16
+ l = [sep, *l, sep]
17
+ split_at = [i for i, x in enumerate(l) if x is sep]
18
+ ranges = list(zip(split_at[0:-1], split_at[1:]))
19
+ return [
20
+ l[start + 1:end]
21
+ for start, end in ranges
22
+ ]
23
+
24
+ def drop_none(l: Iterable[T | None]) -> list[T]:
25
+ return [x for x in l if x is not None]
26
+
27
+ def distinct(items: Iterable[T]) -> list[T]:
28
+ return list(set(items))
29
+
30
+ def first(iterable: Iterable[T]) -> T | None:
31
+ return next(iter(iterable), None)
32
+
33
+ def move_value(l: Iterable[T], from_i: int, to_i: int) -> list[T]:
34
+ l = list(l)
35
+ l.insert(to_i, l.pop(from_i))
36
+ return l
37
+
38
+ def transpose_dict(des):
39
+ if isinstance(des, list):
40
+ keys = list(des[0].keys()) if des else []
41
+ length = len(des)
42
+ return {
43
+ key: [des[i][key] for i in range(length)]
44
+ for key in keys
45
+ }
46
+ elif isinstance(des, dict):
47
+ keys = list(des.keys())
48
+ length = len(des[keys[0]]) if keys else 0
49
+ return [
50
+ {key: des[key][i] for key in keys}
51
+ for i in range(length)
52
+ ]
53
+ raise ValueError('transpose_dict only accepts dict or list')
54
+
55
+ def make_combinations_by_dict(des, keys=None, pairs=[]):
56
+ keys = sorted(des.keys()) if keys == None else keys
57
+ if len(keys) == 0:
58
+ return [dict(pairs)]
59
+ key = keys[0]
60
+ remaining_keys = keys[1:]
61
+ new_pairs = [(key, val) for val in des[key]]
62
+ return flatten([
63
+ make_combinations_by_dict(des, remaining_keys, [pair] + pairs)
64
+ for pair in new_pairs
65
+ ])
66
+
67
+ def merge_dicts(*dicts: dict[K, T]) -> dict[K, T]:
68
+ if len(dicts) == 1:
69
+ return dicts[0]
70
+ result = {}
71
+ for d in dicts:
72
+ result.update(d)
73
+ return result
74
+
75
+ def intersect(*lists: Iterable[T]) -> list[T]:
76
+ return list(set.intersection(*map(set, lists)))
77
+
78
+ def ensure_tuple(value: T | tuple[T, ...]) -> tuple[T, ...]:
79
+ return value if isinstance(value, tuple) else (value,)
80
+
81
+ def key_of(dicts: Iterable[dict[T, U]], key: T) -> list[U]:
82
+ return [d[key] for d in dicts]
83
+
84
+ def omit(d: dict[K, T], keys: Iterable[K]) -> dict[K, T]:
85
+ if keys:
86
+ d = dict(d)
87
+ for key in keys:
88
+ del d[key]
89
+ return d
90
+
91
+ def pick(d: dict[K, T], keys: Iterable[K]) -> dict[K, T]:
92
+ return {key: d[key] for key in keys}
93
+
94
+ def dict_by(keys: Iterable[K], values: Iterable[T]) -> dict[K, T]:
95
+ return dict(zip(keys, values))
96
+
97
+ def tuple_by(d: dict[K, T], keys: Iterable[K]) -> tuple[T, ...]:
98
+ return tuple(d[key] for key in keys)
99
+
100
+ def flatten(l: Iterable[Iterable[T]]) -> list[T]:
101
+ return list(chain.from_iterable(l))
102
+
103
+ def transpose(tuples, default_num_returns=0):
104
+ output = tuple(zip(*tuples))
105
+ if not output:
106
+ return ([],) * default_num_returns
107
+ return tuple(map(list, output))
108
+
109
+ def map_dict(fn: Callable[[T], U], d: dict[K, T]) -> dict[K, U]:
110
+ return {key: fn(value) for key, value in d.items()}
111
+
112
+ @overload
113
+ def deepen_dict(d: dict[tuple[K1], U]) -> dict[K1, U]: ...
114
+
115
+ @overload
116
+ def deepen_dict(d: dict[tuple[K1, K2], U]) -> dict[K1, dict[K2, U]]: ...
117
+
118
+ @overload
119
+ def deepen_dict(d: dict[tuple[K1, K2, K3], U]) -> dict[K1, dict[K2, dict[K3, U]]]: ...
120
+
121
+ @overload
122
+ def deepen_dict(d: dict[tuple[K1, K2, K3, K4], U]) -> dict[K1, dict[K2, dict[K3, dict[K4, U]]]]: ...
123
+
124
+ @overload
125
+ def deepen_dict(d: dict[tuple[K1, K2, K3, K4, K5], U]) -> dict[K1, dict[K2, dict[K3, dict[K4, dict[K5, U]]]]]: ...
126
+
127
+ @overload
128
+ def deepen_dict(d: dict[tuple[K1, K2, K3, K4, K5, K6], U]) -> dict[K1, dict[K2, dict[K3, dict[K4, dict[K5, dict[K6, U]]]]]]: ...
129
+
130
+ def deepen_dict(d: dict[tuple[Any, ...], Any]) -> dict:
131
+ output = {}
132
+ for (*tail, head), value in d.items():
133
+ curr = output
134
+ for key in tail:
135
+ if key not in curr:
136
+ curr[key] = {}
137
+ curr = curr[key]
138
+ curr[head] = value
139
+ return output
140
+
141
+ def group(pairs: Iterable[tuple[K, T]]) -> dict[K, list[T]]:
142
+ values_by_key = {}
143
+ for key, value in pairs:
144
+ if key not in values_by_key:
145
+ values_by_key[key] = []
146
+ values_by_key[key].append(value)
147
+ return values_by_key
148
+
149
+ def get_at(d: dict, keys: Iterable[Any], default: T) -> T:
150
+ try:
151
+ for key in keys:
152
+ d = d[key]
153
+ except KeyError:
154
+ return default
155
+ return cast(Any, d)
156
+
157
+ def sized_partitions(values: Iterable[T], part_size: int) -> list[list[T]]:
158
+ # "chunk"
159
+ if not isinstance(values, list):
160
+ values = list(values)
161
+ num_parts = (len(values) / part_size).__ceil__()
162
+ return [values[i * part_size:(i + 1) * part_size] for i in range(num_parts)]
163
+
164
+ def num_partitions(values: Iterable[T], num_parts: int) -> list[list[T]]:
165
+ if not isinstance(values, list):
166
+ values = list(values)
167
+ part_size = (len(values) / num_parts).__ceil__()
168
+ return [values[i * part_size:(i + 1) * part_size] for i in range(num_parts)]
169
+
170
+ def _cat_tile(cats, n_tile):
171
+ return cats[np.tile(np.arange(len(cats)), n_tile)]
172
+
173
+ def df_from_array(
174
+ value_cols: dict[str, np.ndarray],
175
+ dim_labels: list[tuple[str, list[str | int | float]]],
176
+ indexed=False,
177
+ ):
178
+ import pandas as pd
179
+ dim_sizes = np.array([len(labels) for _, labels in dim_labels])
180
+ assert all(array.shape == tuple(dim_sizes) for array in value_cols.values())
181
+ array_offsets = [
182
+ (dim_sizes[i + 1:].prod(), dim_sizes[:i].prod())
183
+ for i in range(len(dim_sizes))
184
+ ]
185
+ category_cols = {
186
+ dim: _cat_tile(pd.Categorical(labels).repeat(repeats), tiles)
187
+ for (dim, labels), (repeats, tiles) in zip(dim_labels, array_offsets)
188
+ }
189
+ value_cols = {name: array.reshape(-1) for name, array in value_cols.items()}
190
+ df = pd.DataFrame({**category_cols, **value_cols}, copy=False)
191
+ if indexed:
192
+ df = df.set_index([name for name, _ in dim_labels])
193
+ return df
194
+
195
+ StrFilter = Callable[[str], bool]
196
+
197
+ def str_filterer(
198
+ include_patterns: list[re.Pattern[str]] = [],
199
+ exclude_patterns: list[re.Pattern[str]] = [],
200
+ ) -> StrFilter:
201
+ def str_filter(string: str) -> bool:
202
+ if any(pattern.search(string) for pattern in exclude_patterns):
203
+ return False
204
+ if not include_patterns:
205
+ return True
206
+ return any(pattern.search(string) for pattern in include_patterns)
207
+
208
+ return str_filter
relib-1.0.9/uv.lock ADDED
@@ -0,0 +1,62 @@
1
+ version = 1
2
+ requires-python = ">=3.12"
3
+
4
+ [[package]]
5
+ name = "numpy"
6
+ version = "2.1.0"
7
+ source = { registry = "https://pypi.org/simple" }
8
+ sdist = { url = "https://files.pythonhosted.org/packages/54/a4/f8188c4f3e07f7737683588210c073478abcb542048cf4ab6fedad0b458a/numpy-2.1.0.tar.gz", hash = "sha256:7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2", size = 18868922 }
9
+ wheels = [
10
+ { url = "https://files.pythonhosted.org/packages/eb/f5/a06a231cbeea4aff841ff744a12e4bf4d4407f2c753d13ce4563aa126c90/numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736", size = 20882951 },
11
+ { url = "https://files.pythonhosted.org/packages/70/1d/4ad38e3a1840f72c29595c06b103ecd9119f260e897ff7e88a74adb0ca14/numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529", size = 13491878 },
12
+ { url = "https://files.pythonhosted.org/packages/b4/3b/569055d01ed80634d6be6ceef8fb28eb0866e4f98c2d97667dcf9fae3e22/numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1", size = 5087346 },
13
+ { url = "https://files.pythonhosted.org/packages/24/37/212dd6fbd298c467b80d4d6217b2bc902b520e96a967b59f72603bf1142f/numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8", size = 6618269 },
14
+ { url = "https://files.pythonhosted.org/packages/33/4d/435c143c06e16c8bfccbfd9af252b0a8ac7897e0c0e36e539d75a75e91b4/numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745", size = 13695244 },
15
+ { url = "https://files.pythonhosted.org/packages/48/3e/bf807eb050abc23adc556f34fcf931ca2d67ad8dfc9c17fcd9332c01347f/numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111", size = 16040181 },
16
+ { url = "https://files.pythonhosted.org/packages/cd/a9/40dc96b5d43076836d82d1e84a3a4a6a4c2925a53ec0b7f31271434ff02c/numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0", size = 16407920 },
17
+ { url = "https://files.pythonhosted.org/packages/cc/77/39e44cf0a6eb0f93b18ffb00f1964b2c471b1df5605aee486c221b06a8e4/numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574", size = 14170943 },
18
+ { url = "https://files.pythonhosted.org/packages/54/02/f0a3c2ec1622dc4346bd126e2578948c7192b3838c893a3d215738fb367b/numpy-2.1.0-cp312-cp312-win32.whl", hash = "sha256:c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02", size = 6235947 },
19
+ { url = "https://files.pythonhosted.org/packages/8c/bf/d9d214a9dff020ad1663f1536f45d34e052e4c7f630c46cd363e785e3231/numpy-2.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc", size = 12566546 },
20
+ { url = "https://files.pythonhosted.org/packages/c3/16/6b536e1b67624178e3631a3fa60c9c1b5ee7cda2fa9492c4f2de01bfcb06/numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667", size = 20833354 },
21
+ { url = "https://files.pythonhosted.org/packages/52/87/130e95aa8a6383fc3de4fdaf7adc629289b79b88548fb6e35e9d924697d7/numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e", size = 13506169 },
22
+ { url = "https://files.pythonhosted.org/packages/d9/c2/0fcf68c67681f9ad9d76156b4606f60b48748ead76d4ba19b90aecd4b626/numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33", size = 5072908 },
23
+ { url = "https://files.pythonhosted.org/packages/72/40/e21bbbfae665ef5fa1dfd7eae1c5dc93ba9d3b36e39d2d38789dd8c22d56/numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b", size = 6604906 },
24
+ { url = "https://files.pythonhosted.org/packages/0e/ce/848967516bf8dd4f769886a883a4852dbc62e9b63b1137d2b9900f595222/numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195", size = 13690864 },
25
+ { url = "https://files.pythonhosted.org/packages/15/72/2cebe04758e1123f625ed3221cb3c48602175ad619dd9b47de69689b4656/numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977", size = 16036272 },
26
+ { url = "https://files.pythonhosted.org/packages/a7/b7/ae34ced7864b551e0ea01ce4e7acbe7ddf5946afb623dea39760b19bc8b0/numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1", size = 16408978 },
27
+ { url = "https://files.pythonhosted.org/packages/4d/22/c9d696b87c5ce25e857d7745fe4f090373a2daf8c26f5e15b32b5db7bff7/numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62", size = 14168398 },
28
+ { url = "https://files.pythonhosted.org/packages/9e/8b/63f74dccf86d4832d593bdbe06544f4a0a1b7e18e86e0db1e8231bf47c49/numpy-2.1.0-cp313-cp313-win32.whl", hash = "sha256:ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324", size = 6232743 },
29
+ { url = "https://files.pythonhosted.org/packages/23/4b/e30a3132478c69df3e3e587fa87dcbf2660455daec92d8d52e7028a92554/numpy-2.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5", size = 12560212 },
30
+ { url = "https://files.pythonhosted.org/packages/5a/1b/40e881a3a272c4861de1e43a3e7ee1559988dd12187463726d3b395a8874/numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06", size = 20840821 },
31
+ { url = "https://files.pythonhosted.org/packages/d0/8e/5b7c08f9238f6cc18037f6fd92f83feaa8c19e9decb6bd075cad81f71fae/numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883", size = 13500478 },
32
+ { url = "https://files.pythonhosted.org/packages/65/32/bf9df25ef50761fcb3e089c745d2e195b35cc6506d032f12bb5cc28f6c43/numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300", size = 5095825 },
33
+ { url = "https://files.pythonhosted.org/packages/50/34/d18c95bc5981ea3bb8e6f896aad12159a37dcc67b22cd9464fe3899612f7/numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d", size = 6611470 },
34
+ { url = "https://files.pythonhosted.org/packages/b4/4f/27d56e9f6222419951bfeef54bc0a71dc40c0ebeb248e1aa85655da6fa11/numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd", size = 13647061 },
35
+ { url = "https://files.pythonhosted.org/packages/f9/e0/ae6e12a157c4ab415b380d0f3596cb9090a0c4acf48cd8cd7bc6d6b93d24/numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6", size = 16006479 },
36
+ { url = "https://files.pythonhosted.org/packages/ab/da/b746668c7303bd73af262208abbfa8b1c86be12e9eccb0d3021ed8a58873/numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a", size = 16383064 },
37
+ { url = "https://files.pythonhosted.org/packages/f4/51/c0dcadea0c281be5db32b29f7b977b17bdb53b7dbfcbc3b4f49288de8696/numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb", size = 14135556 },
38
+ ]
39
+
40
+ [[package]]
41
+ name = "relib"
42
+ version = "1.0.9"
43
+ source = { editable = "." }
44
+ dependencies = [
45
+ { name = "numpy" },
46
+ { name = "termcolor" },
47
+ ]
48
+
49
+ [package.metadata]
50
+ requires-dist = [
51
+ { name = "numpy" },
52
+ { name = "termcolor" },
53
+ ]
54
+
55
+ [[package]]
56
+ name = "termcolor"
57
+ version = "2.4.0"
58
+ source = { registry = "https://pypi.org/simple" }
59
+ sdist = { url = "https://files.pythonhosted.org/packages/10/56/d7d66a84f96d804155f6ff2873d065368b25a07222a6fd51c4f24ef6d764/termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a", size = 12664 }
60
+ wheels = [
61
+ { url = "https://files.pythonhosted.org/packages/d9/5f/8c716e47b3a50cbd7c146f45881e11d9414def768b7cd9c5e6650ec2a80a/termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63", size = 7719 },
62
+ ]