reduced-3dgs 1.9.1__tar.gz → 1.9.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of reduced-3dgs might be problematic. Click here for more details.
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/PKG-INFO +1 -1
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/importance/combinations.py +4 -2
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/importance/trainer.py +22 -10
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs.egg-info/PKG-INFO +1 -1
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/setup.py +1 -1
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/LICENSE.md +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/README.md +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/combinations.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/importance/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/pruning/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/pruning/combinations.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/pruning/trainer.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/quantization/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/quantization/abc.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/quantization/exclude_zeros.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/quantization/quantizer.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/quantization/wrapper.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/quantize.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/shculling/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/shculling/gaussian_model.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/shculling/trainer.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs/train.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs.egg-info/SOURCES.txt +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs.egg-info/dependency_links.txt +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs.egg-info/requires.txt +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/reduced_3dgs.egg-info/top_level.txt +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/setup.cfg +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/cuda_rasterizer/backward.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/cuda_rasterizer/forward.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/cuda_rasterizer/rasterizer_impl.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/diff_gaussian_rasterization/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/ext.cpp +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/rasterize_points.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/reduced_3dgs/kmeans.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/reduced_3dgs/redundancy_score.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/reduced_3dgs/sh_culling.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/reduced_3dgs.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/cuda_rasterizer/backward.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/cuda_rasterizer/forward.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/cuda_rasterizer/rasterizer_impl.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/diff_gaussian_rasterization/__init__.py +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/ext.cpp +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/rasterize_points.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/simple-knn/ext.cpp +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/simple-knn/simple_knn.cu +0 -0
- {reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/simple-knn/spatial.cu +0 -0
|
@@ -16,10 +16,11 @@ def BaseImportancePrunerInDensifyTrainer(
|
|
|
16
16
|
importance_prune_type="comprehensive",
|
|
17
17
|
importance_prune_percent=0.1,
|
|
18
18
|
importance_prune_thr_important_score=None,
|
|
19
|
-
importance_prune_thr_v_important_score=
|
|
19
|
+
importance_prune_thr_v_important_score=3.0,
|
|
20
20
|
importance_prune_thr_max_v_important_score=None,
|
|
21
21
|
importance_prune_thr_count=1,
|
|
22
|
-
importance_prune_thr_T_alpha=0.
|
|
22
|
+
importance_prune_thr_T_alpha=0.1,
|
|
23
|
+
importance_prune_thr_T_alpha_avg=0.001,
|
|
23
24
|
importance_v_pow=0.1,
|
|
24
25
|
**kwargs):
|
|
25
26
|
return DensificationTrainerWrapper(
|
|
@@ -36,6 +37,7 @@ def BaseImportancePrunerInDensifyTrainer(
|
|
|
36
37
|
importance_prune_thr_max_v_important_score=importance_prune_thr_max_v_important_score,
|
|
37
38
|
importance_prune_thr_count=importance_prune_thr_count,
|
|
38
39
|
importance_prune_thr_T_alpha=importance_prune_thr_T_alpha,
|
|
40
|
+
importance_prune_thr_T_alpha_avg=importance_prune_thr_T_alpha_avg,
|
|
39
41
|
importance_v_pow=importance_v_pow,
|
|
40
42
|
),
|
|
41
43
|
model,
|
|
@@ -121,10 +121,11 @@ def prune_gaussians(
|
|
|
121
121
|
prune_type="comprehensive",
|
|
122
122
|
prune_percent=0.1,
|
|
123
123
|
prune_thr_important_score=None,
|
|
124
|
-
prune_thr_v_important_score=
|
|
124
|
+
prune_thr_v_important_score=None,
|
|
125
125
|
prune_thr_max_v_important_score=None,
|
|
126
|
-
prune_thr_count=
|
|
127
|
-
prune_thr_T_alpha=
|
|
126
|
+
prune_thr_count=None,
|
|
127
|
+
prune_thr_T_alpha=None,
|
|
128
|
+
prune_thr_T_alpha_avg=None,
|
|
128
129
|
v_pow=0.1):
|
|
129
130
|
gaussian_list, opacity_imp_list, T_alpha_imp_list = prune_list(gaussians, dataset)
|
|
130
131
|
match prune_type:
|
|
@@ -141,6 +142,10 @@ def prune_gaussians(
|
|
|
141
142
|
case "T_alpha":
|
|
142
143
|
# new importance score defined by doji
|
|
143
144
|
mask = score2mask(prune_percent, T_alpha_imp_list, prune_thr_T_alpha)
|
|
145
|
+
case "T_alpha_avg":
|
|
146
|
+
v_list = T_alpha_imp_list / gaussian_list
|
|
147
|
+
v_list[gaussian_list <= 0] = 0
|
|
148
|
+
mask = score2mask(prune_percent, v_list, prune_thr_T_alpha_avg)
|
|
144
149
|
case "comprehensive":
|
|
145
150
|
mask = torch.zeros_like(gaussian_list, dtype=torch.bool)
|
|
146
151
|
if prune_thr_important_score is not None:
|
|
@@ -155,6 +160,10 @@ def prune_gaussians(
|
|
|
155
160
|
mask |= score2mask(prune_percent, gaussian_list, prune_thr_count)
|
|
156
161
|
if prune_thr_T_alpha is not None:
|
|
157
162
|
mask |= score2mask(prune_percent, T_alpha_imp_list, prune_thr_T_alpha)
|
|
163
|
+
if prune_thr_T_alpha_avg is not None:
|
|
164
|
+
v_list = T_alpha_imp_list / gaussian_list
|
|
165
|
+
v_list[gaussian_list <= 0] = 0
|
|
166
|
+
mask |= score2mask(prune_percent, v_list, prune_thr_T_alpha_avg)
|
|
158
167
|
case _:
|
|
159
168
|
raise Exception("Unsupportive prunning method")
|
|
160
169
|
return mask
|
|
@@ -170,12 +179,12 @@ class ImportancePruner(DensifierWrapper):
|
|
|
170
179
|
importance_prune_type="comprehensive",
|
|
171
180
|
importance_prune_percent=0.1,
|
|
172
181
|
importance_prune_thr_important_score=None,
|
|
173
|
-
importance_prune_thr_v_important_score=
|
|
182
|
+
importance_prune_thr_v_important_score=3.0,
|
|
174
183
|
importance_prune_thr_max_v_important_score=None,
|
|
175
184
|
importance_prune_thr_count=1,
|
|
176
|
-
importance_prune_thr_T_alpha=
|
|
177
|
-
|
|
178
|
-
|
|
185
|
+
importance_prune_thr_T_alpha=1,
|
|
186
|
+
importance_prune_thr_T_alpha_avg=0.001,
|
|
187
|
+
importance_v_pow=0.1):
|
|
179
188
|
super().__init__(base_densifier)
|
|
180
189
|
self.dataset = dataset
|
|
181
190
|
self.importance_prune_from_iter = importance_prune_from_iter
|
|
@@ -187,6 +196,7 @@ class ImportancePruner(DensifierWrapper):
|
|
|
187
196
|
self.prune_thr_max_v_important_score = importance_prune_thr_max_v_important_score
|
|
188
197
|
self.prune_thr_count = importance_prune_thr_count
|
|
189
198
|
self.prune_thr_T_alpha = importance_prune_thr_T_alpha
|
|
199
|
+
self.prune_thr_T_alpha_avg = importance_prune_thr_T_alpha_avg
|
|
190
200
|
self.v_pow = importance_v_pow
|
|
191
201
|
self.prune_type = importance_prune_type
|
|
192
202
|
|
|
@@ -198,7 +208,7 @@ class ImportancePruner(DensifierWrapper):
|
|
|
198
208
|
self.prune_type, self.prune_percent,
|
|
199
209
|
self.prune_thr_important_score, self.prune_thr_v_important_score,
|
|
200
210
|
self.prune_thr_max_v_important_score, self.prune_thr_count,
|
|
201
|
-
self.prune_thr_T_alpha, self.v_pow,
|
|
211
|
+
self.prune_thr_T_alpha, self.prune_thr_T_alpha_avg, self.v_pow,
|
|
202
212
|
)
|
|
203
213
|
ret = ret._replace(remove_mask=remove_mask if ret.remove_mask is None else torch.logical_or(ret.remove_mask, remove_mask))
|
|
204
214
|
return ret
|
|
@@ -215,10 +225,11 @@ def BaseImportancePruningTrainer(
|
|
|
215
225
|
importance_prune_type="comprehensive",
|
|
216
226
|
importance_prune_percent=0.1,
|
|
217
227
|
importance_prune_thr_important_score=None,
|
|
218
|
-
importance_prune_thr_v_important_score=
|
|
228
|
+
importance_prune_thr_v_important_score=3.0,
|
|
219
229
|
importance_prune_thr_max_v_important_score=None,
|
|
220
230
|
importance_prune_thr_count=1,
|
|
221
|
-
importance_prune_thr_T_alpha=0.
|
|
231
|
+
importance_prune_thr_T_alpha=0.1,
|
|
232
|
+
importance_prune_thr_T_alpha_avg=0.001,
|
|
222
233
|
importance_v_pow=0.1,
|
|
223
234
|
**kwargs):
|
|
224
235
|
return DensificationTrainer(
|
|
@@ -236,6 +247,7 @@ def BaseImportancePruningTrainer(
|
|
|
236
247
|
importance_prune_thr_max_v_important_score=importance_prune_thr_max_v_important_score,
|
|
237
248
|
importance_prune_thr_count=importance_prune_thr_count,
|
|
238
249
|
importance_prune_thr_T_alpha=importance_prune_thr_T_alpha,
|
|
250
|
+
importance_prune_thr_T_alpha_avg=importance_prune_thr_T_alpha_avg,
|
|
239
251
|
importance_v_pow=importance_v_pow,
|
|
240
252
|
), *args, **kwargs
|
|
241
253
|
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/rasterize_points.cu
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/diff-gaussian-rasterization/reduced_3dgs.cu
RENAMED
|
File without changes
|
{reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/cuda_rasterizer/backward.cu
RENAMED
|
File without changes
|
{reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/cuda_rasterizer/forward.cu
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{reduced_3dgs-1.9.1 → reduced_3dgs-1.9.3}/submodules/gaussian-importance/rasterize_points.cu
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|