reduced-3dgs 1.10.8__tar.gz → 1.10.13__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/PKG-INFO +1 -1
  2. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/train.py +26 -6
  3. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs.egg-info/PKG-INFO +1 -1
  4. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/setup.py +1 -1
  5. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/LICENSE.md +0 -0
  6. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/README.md +0 -0
  7. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/__init__.py +0 -0
  8. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/combinations.py +0 -0
  9. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/importance/__init__.py +0 -0
  10. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/importance/combinations.py +0 -0
  11. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/importance/trainer.py +0 -0
  12. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/prepare.py +0 -0
  13. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/pruning/__init__.py +0 -0
  14. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/pruning/combinations.py +0 -0
  15. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/pruning/trainer.py +0 -0
  16. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/quantization/__init__.py +0 -0
  17. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/quantization/abc.py +0 -0
  18. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/quantization/exclude_zeros.py +0 -0
  19. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/quantization/quantizer.py +0 -0
  20. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/quantization/wrapper.py +0 -0
  21. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/quantize.py +0 -0
  22. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/shculling/__init__.py +0 -0
  23. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/shculling/gaussian_model.py +0 -0
  24. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs/shculling/trainer.py +0 -0
  25. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs.egg-info/SOURCES.txt +0 -0
  26. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs.egg-info/dependency_links.txt +0 -0
  27. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs.egg-info/requires.txt +0 -0
  28. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/reduced_3dgs.egg-info/top_level.txt +0 -0
  29. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/setup.cfg +0 -0
  30. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/cuda_rasterizer/backward.cu +0 -0
  31. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/cuda_rasterizer/forward.cu +0 -0
  32. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/cuda_rasterizer/rasterizer_impl.cu +0 -0
  33. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/diff_gaussian_rasterization/__init__.py +0 -0
  34. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/ext.cpp +0 -0
  35. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/rasterize_points.cu +0 -0
  36. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/reduced_3dgs/kmeans.cu +0 -0
  37. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/reduced_3dgs/redundancy_score.cu +0 -0
  38. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/reduced_3dgs/sh_culling.cu +0 -0
  39. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/diff-gaussian-rasterization/reduced_3dgs.cu +0 -0
  40. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/gaussian-importance/cuda_rasterizer/backward.cu +0 -0
  41. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/gaussian-importance/cuda_rasterizer/forward.cu +0 -0
  42. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/gaussian-importance/cuda_rasterizer/rasterizer_impl.cu +0 -0
  43. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/gaussian-importance/diff_gaussian_rasterization/__init__.py +0 -0
  44. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/gaussian-importance/ext.cpp +0 -0
  45. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/gaussian-importance/rasterize_points.cu +0 -0
  46. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/simple-knn/ext.cpp +0 -0
  47. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/simple-knn/simple_knn.cu +0 -0
  48. {reduced_3dgs-1.10.8 → reduced_3dgs-1.10.13}/submodules/simple-knn/spatial.cu +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: reduced_3dgs
3
- Version: 1.10.8
3
+ Version: 1.10.13
4
4
  Summary: Refactored code for the paper "Reducing the Memory Footprint of 3D Gaussian Splatting"
5
5
  Home-page: https://github.com/yindaheng98/reduced-3dgs
6
6
  Author: yindaheng98
@@ -14,8 +14,12 @@ from reduced_3dgs.quantization import AbstractQuantizer
14
14
  from reduced_3dgs.prepare import modes, prepare_gaussians, prepare_trainer
15
15
 
16
16
 
17
- def prepare_training(sh_degree: int, source: str, device: str, mode: str, trainable_camera: bool = False, load_ply: str = None, load_camera: str = None, load_depth=False, with_scale_reg=False, quantize: bool = False, load_quantized: str = None, configs={}):
18
- dataset = prepare_dataset(source=source, device=device, trainable_camera=trainable_camera, load_camera=load_camera, load_depth=load_depth)
17
+ def prepare_training(
18
+ sh_degree: int, source: str, device: str, mode: str,
19
+ trainable_camera: bool = False, load_ply: str = None, load_camera: str = None,
20
+ load_mask=True, load_depth=True,
21
+ with_scale_reg=False, quantize: bool = False, load_quantized: str = None, configs={}):
22
+ dataset = prepare_dataset(source=source, device=device, trainable_camera=trainable_camera, load_camera=load_camera, load_mask=load_mask, load_depth=load_depth)
19
23
  gaussians = prepare_gaussians(sh_degree=sh_degree, source=source, device=device, trainable_camera=trainable_camera, load_ply=load_ply)
20
24
  trainer, quantizer = prepare_trainer(gaussians=gaussians, dataset=dataset, mode=mode, with_scale_reg=with_scale_reg, quantize=quantize, load_quantized=load_quantized, configs=configs)
21
25
  return dataset, gaussians, trainer, quantizer
@@ -23,26 +27,39 @@ def prepare_training(sh_degree: int, source: str, device: str, mode: str, traina
23
27
 
24
28
  def training(dataset: CameraDataset, gaussians: GaussianModel, trainer: AbstractTrainer, quantizer: AbstractQuantizer, destination: str, iteration: int, save_iterations: List[int], device: str, empty_cache_every_step=False):
25
29
  shutil.rmtree(os.path.join(destination, "point_cloud"), ignore_errors=True) # remove the previous point cloud
26
- pbar = tqdm(range(1, iteration+1))
30
+ pbar = tqdm(range(1, iteration+1), dynamic_ncols=True, desc="Training")
27
31
  epoch = list(range(len(dataset)))
28
32
  epoch_psnr = torch.empty(3, 0, device=device)
33
+ epoch_maskpsnr = torch.empty(3, 0, device=device)
29
34
  ema_loss_for_log = 0.0
30
35
  avg_psnr_for_log = 0.0
36
+ avg_maskpsnr_for_log = 0.0
31
37
  for step in pbar:
32
38
  epoch_idx = step % len(dataset)
33
39
  if epoch_idx == 0:
34
40
  avg_psnr_for_log = epoch_psnr.mean().item()
41
+ avg_maskpsnr_for_log = epoch_maskpsnr.mean().item()
35
42
  epoch_psnr = torch.empty(3, 0, device=device)
43
+ epoch_maskpsnr = torch.empty(3, 0, device=device)
36
44
  random.shuffle(epoch)
37
45
  idx = epoch[epoch_idx]
38
46
  loss, out = trainer.step(dataset[idx])
39
47
  if empty_cache_every_step:
40
48
  torch.cuda.empty_cache()
41
49
  with torch.no_grad():
50
+ ground_truth_image = dataset[idx].ground_truth_image
51
+ rendered_image = out["render"]
52
+ epoch_psnr = torch.concat([epoch_psnr, psnr(rendered_image, ground_truth_image)], dim=1)
53
+ if dataset[idx].ground_truth_image_mask is not None:
54
+ ground_truth_maskimage = ground_truth_image * dataset[idx].ground_truth_image_mask
55
+ rendered_maskimage = rendered_image * dataset[idx].ground_truth_image_mask
56
+ epoch_maskpsnr = torch.concat([epoch_maskpsnr, psnr(rendered_maskimage, ground_truth_maskimage)], dim=1)
42
57
  ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
43
- epoch_psnr = torch.concat([epoch_psnr, psnr(out["render"], dataset[idx].ground_truth_image)], dim=1)
44
58
  if step % 10 == 0:
45
- pbar.set_postfix({'epoch': step // len(dataset), 'loss': ema_loss_for_log, 'psnr': avg_psnr_for_log, 'n': gaussians._xyz.shape[0]})
59
+ postfix = {'epoch': step // len(dataset), 'loss': ema_loss_for_log, 'psnr': avg_psnr_for_log, 'masked psnr': avg_maskpsnr_for_log, 'n': gaussians._xyz.shape[0]}
60
+ if avg_maskpsnr_for_log <= 0:
61
+ del postfix['masked psnr']
62
+ pbar.set_postfix(postfix)
46
63
  if step in save_iterations:
47
64
  save_path = os.path.join(destination, "point_cloud", "iteration_" + str(step))
48
65
  os.makedirs(save_path, exist_ok=True)
@@ -68,6 +85,7 @@ if __name__ == "__main__":
68
85
  parser.add_argument("-l", "--load_ply", default=None, type=str)
69
86
  parser.add_argument("--load_camera", default=None, type=str)
70
87
  parser.add_argument("--quantize", action='store_true')
88
+ parser.add_argument("--no_image_mask", action="store_true")
71
89
  parser.add_argument("--no_depth_data", action='store_true')
72
90
  parser.add_argument("--with_scale_reg", action="store_true")
73
91
  parser.add_argument("--load_quantized", default=None, type=str)
@@ -83,7 +101,9 @@ if __name__ == "__main__":
83
101
  configs = {o.split("=", 1)[0]: eval(o.split("=", 1)[1]) for o in args.option}
84
102
  dataset, gaussians, trainer, quantizer = prepare_training(
85
103
  sh_degree=args.sh_degree, source=args.source, device=args.device, mode=args.mode, trainable_camera="camera" in args.mode,
86
- load_ply=args.load_ply, load_camera=args.load_camera, load_depth=not args.no_depth_data, with_scale_reg=args.with_scale_reg,
104
+ load_ply=args.load_ply, load_camera=args.load_camera,
105
+ load_mask=not args.no_image_mask, load_depth=not args.no_depth_data,
106
+ with_scale_reg=args.with_scale_reg,
87
107
  quantize=args.quantize, load_quantized=args.load_quantized, configs=configs)
88
108
  dataset.save_cameras(os.path.join(args.destination, "cameras.json"))
89
109
  torch.cuda.empty_cache()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: reduced_3dgs
3
- Version: 1.10.8
3
+ Version: 1.10.13
4
4
  Summary: Refactored code for the paper "Reducing the Memory Footprint of 3D Gaussian Splatting"
5
5
  Home-page: https://github.com/yindaheng98/reduced-3dgs
6
6
  Author: yindaheng98
@@ -60,7 +60,7 @@ if os.name == 'nt':
60
60
 
61
61
  setup(
62
62
  name="reduced_3dgs",
63
- version='1.10.8',
63
+ version='1.10.13',
64
64
  author='yindaheng98',
65
65
  author_email='yindaheng98@gmail.com',
66
66
  url='https://github.com/yindaheng98/reduced-3dgs',
File without changes
File without changes
File without changes