reait 0.0.19__tar.gz → 1.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {reait-0.0.19 → reait-1.0.0}/PKG-INFO +40 -51
- {reait-0.0.19 → reait-1.0.0}/README.md +38 -49
- {reait-0.0.19 → reait-1.0.0}/pyproject.toml +2 -5
- reait-1.0.0/setup.py +31 -0
- {reait-0.0.19 → reait-1.0.0}/src/reait/__init__.py +2 -0
- reait-1.0.0/src/reait/api.py +654 -0
- reait-1.0.0/src/reait/main.py +368 -0
- {reait-0.0.19 → reait-1.0.0}/src/reait.egg-info/PKG-INFO +40 -51
- {reait-0.0.19 → reait-1.0.0}/src/reait.egg-info/SOURCES.txt +1 -0
- {reait-0.0.19 → reait-1.0.0}/src/reait.egg-info/requires.txt +0 -1
- reait-1.0.0/tests/test_apis.py +71 -0
- reait-1.0.0/tests/test_reait.py +87 -0
- reait-0.0.19/setup.py +0 -24
- reait-0.0.19/src/reait/api.py +0 -349
- reait-0.0.19/src/reait/main.py +0 -398
- reait-0.0.19/tests/test_reait.py +0 -2
- {reait-0.0.19 → reait-1.0.0}/LICENSE +0 -0
- {reait-0.0.19 → reait-1.0.0}/setup.cfg +0 -0
- {reait-0.0.19 → reait-1.0.0}/src/reait.egg-info/dependency_links.txt +0 -0
- {reait-0.0.19 → reait-1.0.0}/src/reait.egg-info/entry_points.txt +0 -0
- {reait-0.0.19 → reait-1.0.0}/src/reait.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: reait
|
3
|
-
Version: 0.0
|
3
|
+
Version: 1.0.0
|
4
4
|
Home-page: https://github.com/RevEng-AI/reait
|
5
5
|
Author: James Patrick-Evans
|
6
6
|
Author-email: James Patrick-Evans <james@reveng.ai>
|
@@ -685,13 +685,13 @@ Project-URL: Bug Tracker, https://github.com/RevEng-AI/reait/issues
|
|
685
685
|
Project-URL: Organisation Homepage, https://reveng.ai
|
686
686
|
Project-URL: Documentation, https://docs.reveng.ai
|
687
687
|
Keywords: reverse,engineering,reveng.ai,reveng,machine,learning,binary,analysis,ml,ai,vector,embedding
|
688
|
+
Platform: Cross Platform
|
688
689
|
Classifier: Programming Language :: Python :: 3
|
689
690
|
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
690
691
|
Classifier: Operating System :: OS Independent
|
691
692
|
Requires-Python: >=3.7
|
692
693
|
Description-Content-Type: text/markdown
|
693
694
|
License-File: LICENSE
|
694
|
-
Requires-Dist: tqdm
|
695
695
|
Requires-Dist: requests
|
696
696
|
Requires-Dist: rich
|
697
697
|
Requires-Dist: argparse
|
@@ -713,20 +713,22 @@ Analyse compiled executable binaries using the RevEng.AI API. This tool allows y
|
|
713
713
|
NB: We are in Alpha. We support GNU/Linux ELF and Windows PE executables for x86_64, and focus our support for x86_64 Linux ELF executables.
|
714
714
|
|
715
715
|
## Installation
|
716
|
+
Install the latest stable version using `pip3`.
|
716
717
|
|
717
|
-
|
718
|
-
|
719
|
-
|
718
|
+
```shell
|
719
|
+
pip3 install reait
|
720
|
+
```
|
720
721
|
|
721
722
|
### Latest development version
|
722
|
-
|
723
|
-
|
723
|
+
```shell
|
724
|
+
pip3 install -e .
|
725
|
+
```
|
724
726
|
|
725
727
|
or
|
726
728
|
|
727
|
-
```
|
729
|
+
```shell
|
728
730
|
python3 -m build .
|
729
|
-
|
731
|
+
pip3 install -U dist/reait-*.whl
|
730
732
|
```
|
731
733
|
|
732
734
|
## Using reait
|
@@ -734,7 +736,9 @@ pip install -U dist/reait-*.whl
|
|
734
736
|
### Analysing binaries
|
735
737
|
To submit a binary for analysis, run `reait` with the `-a` flag:
|
736
738
|
|
737
|
-
|
739
|
+
```shell
|
740
|
+
reait -b /usr/bin/true -a
|
741
|
+
```
|
738
742
|
|
739
743
|
This uploads the binary specified by `-b` to RevEng.AI servers for analysis. Depending on the size of the binary, it may take several hours. You may check an analysis jobs progress with the `-l` flag e.g. `reait -b /usr/bin/true -l`.
|
740
744
|
|
@@ -742,30 +746,36 @@ This uploads the binary specified by `-b` to RevEng.AI servers for analysis. Dep
|
|
742
746
|
Symbol embeddings are numerical vector representations of each component that capture their semantic understanding. Similar functions should be similar to each other in our embedded vector space. They can be thought of as *advanced* AI-based IDA FLIRT signatures or Radare2 Zignatures.
|
743
747
|
Once an analysis is complete, you may access RevEng.AI's BinNet embeddings for all symbols extracted with the `-x` flag.
|
744
748
|
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
`reait -b /usr/bin/true -x | jq ".[] | select(.vaddr==$((0x19f0))).embedding" > embedding.json`
|
749
|
-
|
749
|
+
```shell
|
750
|
+
reait -b /usr/bin/true -x > embeddings.json
|
751
|
+
```
|
750
752
|
|
751
753
|
### Search for similar symbols using an embedding
|
752
754
|
To query our database of similar symbols based on an embedding, use `-n` to search using Approximate Nearest Neighbours. The `--nns` allows you to specify the number of results returned. A list of symbols with their names, distance (similarity), RevEng.AI collection set, source code filename, source code line number, and file creation timestamp is returned.
|
753
755
|
|
754
|
-
|
756
|
+
```shell
|
757
|
+
reait --embedding embedding.json -n
|
758
|
+
```
|
755
759
|
|
756
|
-
The following command searches for the top 10 most similar symbols found in md5sum.gcc.og.dynamic to the symbol starting at
|
760
|
+
The following command searches for the top 10 most similar symbols found in md5sum.gcc.og.dynamic to the symbol starting at _0x33E6_ in md5sum.clang.og.dynamic. You may need to pass `--image-base` to ensure virtual addresses are mapped correctly.
|
757
761
|
|
758
|
-
|
762
|
+
```shell
|
763
|
+
reait -b md5sum.gcc.og.dynamic -n --start-vaddr 0x33E6 --found-in md5sum.gcc.o2.dynamic --nns 10 --base-address 0x100000
|
764
|
+
```
|
759
765
|
|
760
766
|
Search NN by symbol name.
|
761
|
-
|
767
|
+
```shell
|
768
|
+
reait -b md5sum.gcc.og.dynamic -n --symbol md5_buffer --found-in md5sum.gcc.o2.dynamic --nns 5
|
769
|
+
```
|
762
770
|
|
763
771
|
NB: A smaller distance indicates a higher degree of similarity.
|
764
772
|
|
765
773
|
#### Specific Search
|
766
774
|
To search for the most similar symbols found in a specific binary, use the `--found-in` option with a path to the executable to search from.
|
767
775
|
|
768
|
-
|
776
|
+
```shell
|
777
|
+
reait -n --embedding /tmp/sha256_init.json --found-in ~/malware.exe --nns 5
|
778
|
+
```
|
769
779
|
|
770
780
|
This downloads embeddings from `malware.exe` and computes the cosine similarity between all symbols and `sha256_init.json`. The returned results lists the most similar symbol locations by cosine similarity score (1.0 most similar, -1.0 dissimilar).
|
771
781
|
|
@@ -775,7 +785,9 @@ The `--from-file` option may also be used to limit the search to a custom file c
|
|
775
785
|
#### Limited Search
|
776
786
|
To search for most similar symbols from a set of RevEng.AI collections, use the `--collections` options with a RegEx to match collection names. For example:
|
777
787
|
|
778
|
-
|
788
|
+
```shell
|
789
|
+
reait -n --embedding my_func.json --collections "(libc.*|lib.*crypt.*)"
|
790
|
+
```
|
779
791
|
|
780
792
|
RevEng.AI collections are sets of pre-analysed executable objects. To create custom collection sets e.g., malware collections, please create a RevEng.AI account.
|
781
793
|
|
@@ -786,47 +798,25 @@ Find common components between binaries, RevEng.AI collections, or global search
|
|
786
798
|
|
787
799
|
Example usage:
|
788
800
|
|
789
|
-
```
|
801
|
+
```shell
|
790
802
|
reait -M -b 05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2.exe --from-file 755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63.embeddings.json --confidence high
|
791
803
|
```
|
792
804
|
|
793
805
|
### RevEng.AI embedding models
|
794
806
|
To use specific RevEng.AI AI models, or for training custom models, use `-m` to specify the model. The default option is to use the latest development model. Available models are `binnet-0.1` and `dexter`.
|
795
807
|
|
796
|
-
|
808
|
+
```shell
|
809
|
+
reait -b /usr/bin/true -m dexter -a
|
810
|
+
```
|
797
811
|
|
798
812
|
### Software Composition Analysis
|
799
813
|
To identify known open source software components embedded inside a binary, use the `-C` flag.
|
800
814
|
|
801
|
-
#### Stripped Binary CVE Checker
|
802
|
-
To check for known vulnerabilities found with embedded software components, use `-c` or `--cves`.
|
803
|
-
|
804
|
-
|
805
|
-
### REAI Signatures
|
806
|
-
To generate an AI functional description of an entire binary file, use the `-s` flag. This will return the REAI signature of the file.
|
807
|
-
|
808
|
-
REAI signatures can be used to compute the binary similarity between entire executables with the `-S` flag. For example:
|
809
|
-
|
810
|
-
```
|
811
|
-
reait -b d24ccf73aabca4192d33a07b4a238c8d40ac97a550c2e65b8074f03455a981ca.exe -S -t 00062cb01088cea245cd5f3eb03f65a0e6b11a8126ce00034d87935a451cf99c.exe,438d64bb831555caadaa92a32c9d62e255001bc8d524721c885f37d750ec3476.exe,755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63.exe,05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2.exe
|
812
|
-
Computing Binary Similarity... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:01
|
813
|
-
Binary Similarity to RedlineInfoStealer/d24ccf73aabca4192d33a07b4a238c8d40ac97a550c2e65b8074f03455a981ca.exe
|
814
|
-
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
|
815
|
-
┃ Binary ┃ SHA3-256 ┃ Similarity ┃
|
816
|
-
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
|
817
|
-
│ 00062cb01088cea245cd5f3eb03f65a0e6b11a8126ce00034d87935a451cf99c.exe │ 00062cb01088cea245cd5f3eb03f65a0e6b11a8126ce00034d87935a451cf99c │ 0.99907 │
|
818
|
-
│ 438d64bb831555caadaa92a32c9d62e255001bc8d524721c885f37d750ec3476.exe │ 438d64bb831555caadaa92a32c9d62e255001bc8d524721c885f37d750ec3476 │ 1.00000 │
|
819
|
-
│ 755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63.exe │ 755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63 │ 0.80522 │
|
820
|
-
│ 05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2.exe │ 05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2 │ 0.94701 │
|
821
|
-
└──────────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────────────────────────┴────────────┘
|
822
|
-
```
|
823
|
-
|
824
815
|
|
825
816
|
### Binary ANN Search
|
826
|
-
|
827
817
|
To perform binary ANN search, pass in `-n` and `-s` flag at the same time. For example:
|
828
818
|
|
829
|
-
```
|
819
|
+
```shell
|
830
820
|
reait -b /usr/bin/true -s -n
|
831
821
|
Found /usr/bin/true:elf-x86_64
|
832
822
|
[
|
@@ -855,13 +845,12 @@ Found /usr/bin/true:elf-x86_64
|
|
855
845
|
|
856
846
|
|
857
847
|
## Configuration
|
858
|
-
|
859
848
|
`reait` reads the config file stored at `~/.reait.toml`. An example config file looks like:
|
860
849
|
|
861
|
-
```
|
850
|
+
```shell
|
862
851
|
apikey = "l1br3"
|
863
852
|
host = "https://api.reveng.ai"
|
864
|
-
model = "binnet-0.
|
853
|
+
model = "binnet-0.3-x86"
|
865
854
|
```
|
866
855
|
|
867
856
|
## Contact
|
@@ -9,20 +9,22 @@ Analyse compiled executable binaries using the RevEng.AI API. This tool allows y
|
|
9
9
|
NB: We are in Alpha. We support GNU/Linux ELF and Windows PE executables for x86_64, and focus our support for x86_64 Linux ELF executables.
|
10
10
|
|
11
11
|
## Installation
|
12
|
+
Install the latest stable version using `pip3`.
|
12
13
|
|
13
|
-
|
14
|
-
|
15
|
-
|
14
|
+
```shell
|
15
|
+
pip3 install reait
|
16
|
+
```
|
16
17
|
|
17
18
|
### Latest development version
|
18
|
-
|
19
|
-
|
19
|
+
```shell
|
20
|
+
pip3 install -e .
|
21
|
+
```
|
20
22
|
|
21
23
|
or
|
22
24
|
|
23
|
-
```
|
25
|
+
```shell
|
24
26
|
python3 -m build .
|
25
|
-
|
27
|
+
pip3 install -U dist/reait-*.whl
|
26
28
|
```
|
27
29
|
|
28
30
|
## Using reait
|
@@ -30,7 +32,9 @@ pip install -U dist/reait-*.whl
|
|
30
32
|
### Analysing binaries
|
31
33
|
To submit a binary for analysis, run `reait` with the `-a` flag:
|
32
34
|
|
33
|
-
|
35
|
+
```shell
|
36
|
+
reait -b /usr/bin/true -a
|
37
|
+
```
|
34
38
|
|
35
39
|
This uploads the binary specified by `-b` to RevEng.AI servers for analysis. Depending on the size of the binary, it may take several hours. You may check an analysis jobs progress with the `-l` flag e.g. `reait -b /usr/bin/true -l`.
|
36
40
|
|
@@ -38,30 +42,36 @@ This uploads the binary specified by `-b` to RevEng.AI servers for analysis. Dep
|
|
38
42
|
Symbol embeddings are numerical vector representations of each component that capture their semantic understanding. Similar functions should be similar to each other in our embedded vector space. They can be thought of as *advanced* AI-based IDA FLIRT signatures or Radare2 Zignatures.
|
39
43
|
Once an analysis is complete, you may access RevEng.AI's BinNet embeddings for all symbols extracted with the `-x` flag.
|
40
44
|
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
`reait -b /usr/bin/true -x | jq ".[] | select(.vaddr==$((0x19f0))).embedding" > embedding.json`
|
45
|
-
|
45
|
+
```shell
|
46
|
+
reait -b /usr/bin/true -x > embeddings.json
|
47
|
+
```
|
46
48
|
|
47
49
|
### Search for similar symbols using an embedding
|
48
50
|
To query our database of similar symbols based on an embedding, use `-n` to search using Approximate Nearest Neighbours. The `--nns` allows you to specify the number of results returned. A list of symbols with their names, distance (similarity), RevEng.AI collection set, source code filename, source code line number, and file creation timestamp is returned.
|
49
51
|
|
50
|
-
|
52
|
+
```shell
|
53
|
+
reait --embedding embedding.json -n
|
54
|
+
```
|
51
55
|
|
52
|
-
The following command searches for the top 10 most similar symbols found in md5sum.gcc.og.dynamic to the symbol starting at
|
56
|
+
The following command searches for the top 10 most similar symbols found in md5sum.gcc.og.dynamic to the symbol starting at _0x33E6_ in md5sum.clang.og.dynamic. You may need to pass `--image-base` to ensure virtual addresses are mapped correctly.
|
53
57
|
|
54
|
-
|
58
|
+
```shell
|
59
|
+
reait -b md5sum.gcc.og.dynamic -n --start-vaddr 0x33E6 --found-in md5sum.gcc.o2.dynamic --nns 10 --base-address 0x100000
|
60
|
+
```
|
55
61
|
|
56
62
|
Search NN by symbol name.
|
57
|
-
|
63
|
+
```shell
|
64
|
+
reait -b md5sum.gcc.og.dynamic -n --symbol md5_buffer --found-in md5sum.gcc.o2.dynamic --nns 5
|
65
|
+
```
|
58
66
|
|
59
67
|
NB: A smaller distance indicates a higher degree of similarity.
|
60
68
|
|
61
69
|
#### Specific Search
|
62
70
|
To search for the most similar symbols found in a specific binary, use the `--found-in` option with a path to the executable to search from.
|
63
71
|
|
64
|
-
|
72
|
+
```shell
|
73
|
+
reait -n --embedding /tmp/sha256_init.json --found-in ~/malware.exe --nns 5
|
74
|
+
```
|
65
75
|
|
66
76
|
This downloads embeddings from `malware.exe` and computes the cosine similarity between all symbols and `sha256_init.json`. The returned results lists the most similar symbol locations by cosine similarity score (1.0 most similar, -1.0 dissimilar).
|
67
77
|
|
@@ -71,7 +81,9 @@ The `--from-file` option may also be used to limit the search to a custom file c
|
|
71
81
|
#### Limited Search
|
72
82
|
To search for most similar symbols from a set of RevEng.AI collections, use the `--collections` options with a RegEx to match collection names. For example:
|
73
83
|
|
74
|
-
|
84
|
+
```shell
|
85
|
+
reait -n --embedding my_func.json --collections "(libc.*|lib.*crypt.*)"
|
86
|
+
```
|
75
87
|
|
76
88
|
RevEng.AI collections are sets of pre-analysed executable objects. To create custom collection sets e.g., malware collections, please create a RevEng.AI account.
|
77
89
|
|
@@ -82,47 +94,25 @@ Find common components between binaries, RevEng.AI collections, or global search
|
|
82
94
|
|
83
95
|
Example usage:
|
84
96
|
|
85
|
-
```
|
97
|
+
```shell
|
86
98
|
reait -M -b 05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2.exe --from-file 755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63.embeddings.json --confidence high
|
87
99
|
```
|
88
100
|
|
89
101
|
### RevEng.AI embedding models
|
90
102
|
To use specific RevEng.AI AI models, or for training custom models, use `-m` to specify the model. The default option is to use the latest development model. Available models are `binnet-0.1` and `dexter`.
|
91
103
|
|
92
|
-
|
104
|
+
```shell
|
105
|
+
reait -b /usr/bin/true -m dexter -a
|
106
|
+
```
|
93
107
|
|
94
108
|
### Software Composition Analysis
|
95
109
|
To identify known open source software components embedded inside a binary, use the `-C` flag.
|
96
110
|
|
97
|
-
#### Stripped Binary CVE Checker
|
98
|
-
To check for known vulnerabilities found with embedded software components, use `-c` or `--cves`.
|
99
|
-
|
100
|
-
|
101
|
-
### REAI Signatures
|
102
|
-
To generate an AI functional description of an entire binary file, use the `-s` flag. This will return the REAI signature of the file.
|
103
|
-
|
104
|
-
REAI signatures can be used to compute the binary similarity between entire executables with the `-S` flag. For example:
|
105
|
-
|
106
|
-
```
|
107
|
-
reait -b d24ccf73aabca4192d33a07b4a238c8d40ac97a550c2e65b8074f03455a981ca.exe -S -t 00062cb01088cea245cd5f3eb03f65a0e6b11a8126ce00034d87935a451cf99c.exe,438d64bb831555caadaa92a32c9d62e255001bc8d524721c885f37d750ec3476.exe,755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63.exe,05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2.exe
|
108
|
-
Computing Binary Similarity... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:01
|
109
|
-
Binary Similarity to RedlineInfoStealer/d24ccf73aabca4192d33a07b4a238c8d40ac97a550c2e65b8074f03455a981ca.exe
|
110
|
-
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
|
111
|
-
┃ Binary ┃ SHA3-256 ┃ Similarity ┃
|
112
|
-
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
|
113
|
-
│ 00062cb01088cea245cd5f3eb03f65a0e6b11a8126ce00034d87935a451cf99c.exe │ 00062cb01088cea245cd5f3eb03f65a0e6b11a8126ce00034d87935a451cf99c │ 0.99907 │
|
114
|
-
│ 438d64bb831555caadaa92a32c9d62e255001bc8d524721c885f37d750ec3476.exe │ 438d64bb831555caadaa92a32c9d62e255001bc8d524721c885f37d750ec3476 │ 1.00000 │
|
115
|
-
│ 755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63.exe │ 755a4b2ec15da6bb01248b2dfbad206c340ba937eae9c35f04f6cedfe5e99d63 │ 0.80522 │
|
116
|
-
│ 05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2.exe │ 05ff897f430fec0ac17f14c89181c76961993506e5875f2987e9ead13bec58c2 │ 0.94701 │
|
117
|
-
└──────────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────────────────────────┴────────────┘
|
118
|
-
```
|
119
|
-
|
120
111
|
|
121
112
|
### Binary ANN Search
|
122
|
-
|
123
113
|
To perform binary ANN search, pass in `-n` and `-s` flag at the same time. For example:
|
124
114
|
|
125
|
-
```
|
115
|
+
```shell
|
126
116
|
reait -b /usr/bin/true -s -n
|
127
117
|
Found /usr/bin/true:elf-x86_64
|
128
118
|
[
|
@@ -151,13 +141,12 @@ Found /usr/bin/true:elf-x86_64
|
|
151
141
|
|
152
142
|
|
153
143
|
## Configuration
|
154
|
-
|
155
144
|
`reait` reads the config file stored at `~/.reait.toml`. An example config file looks like:
|
156
145
|
|
157
|
-
```
|
146
|
+
```shell
|
158
147
|
apikey = "l1br3"
|
159
148
|
host = "https://api.reveng.ai"
|
160
|
-
model = "binnet-0.
|
149
|
+
model = "binnet-0.3-x86"
|
161
150
|
```
|
162
151
|
|
163
152
|
## Contact
|
@@ -1,10 +1,10 @@
|
|
1
1
|
[build-system]
|
2
|
-
requires = ["setuptools >= 40.9.0", "
|
2
|
+
requires = ["setuptools >= 40.9.0", "argparse", "requests", "rich", "tomli", "pandas", "numpy", "scipy", "lief", "scikit-learn"]
|
3
3
|
build-backend = "setuptools.build_meta"
|
4
4
|
|
5
5
|
[project]
|
6
6
|
name = "reait"
|
7
|
-
version = "0.0
|
7
|
+
version = "1.0.0"
|
8
8
|
readme = "README.md"
|
9
9
|
classifiers=[
|
10
10
|
"Programming Language :: Python :: 3",
|
@@ -12,7 +12,6 @@ classifiers=[
|
|
12
12
|
"Operating System :: OS Independent"
|
13
13
|
]
|
14
14
|
dependencies = [
|
15
|
-
"tqdm",
|
16
15
|
"requests",
|
17
16
|
"rich",
|
18
17
|
"argparse",
|
@@ -39,7 +38,5 @@ maintainers = [
|
|
39
38
|
"Organisation Homepage" = "https://reveng.ai"
|
40
39
|
"Documentation" = "https://docs.reveng.ai"
|
41
40
|
|
42
|
-
|
43
|
-
|
44
41
|
[project.scripts]
|
45
42
|
reait = "reait.main:main"
|
reait-1.0.0/setup.py
ADDED
@@ -0,0 +1,31 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
from setuptools import setup, find_packages
|
4
|
+
|
5
|
+
|
6
|
+
with open("requirements.txt") as fd:
|
7
|
+
required = fd.read().splitlines()
|
8
|
+
|
9
|
+
with open("README.md", encoding="utf-8") as fd:
|
10
|
+
long_description = fd.read()
|
11
|
+
|
12
|
+
|
13
|
+
setup(
|
14
|
+
name="reait",
|
15
|
+
long_description=long_description,
|
16
|
+
long_description_content_type="text/markdown",
|
17
|
+
url="https://github.com/RevEng-AI/reait",
|
18
|
+
author="James Patrick-Evans",
|
19
|
+
author_email="james@reveng.ai",
|
20
|
+
platforms="Cross Platform",
|
21
|
+
packages=find_packages(where="src", exclude=["tests",]),
|
22
|
+
package_dir={
|
23
|
+
"": "src",
|
24
|
+
},
|
25
|
+
classifiers=[
|
26
|
+
"Operating System :: OS Independent",
|
27
|
+
"Programming Language :: Python :: 3",
|
28
|
+
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
|
29
|
+
],
|
30
|
+
install_requires=required,
|
31
|
+
)
|