rcsb-embedding-model 0.0.7__tar.gz → 0.0.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rcsb-embedding-model might be problematic. Click here for more details.
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/.gitignore +1 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/PKG-INFO +13 -10
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/README.md +12 -9
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/pyproject.toml +1 -1
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/cli/inference.py +271 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/dataset/esm_prot_from_chain.py +102 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/dataset/esm_prot_from_structure.py +64 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/dataset/resdiue_assembly_embedding_from_structure.py +68 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/dataset/residue_assembly_embedding_from_tensor_file.py +94 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/dataset/residue_embedding_from_tensor_file.py +43 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/inference/assembly_inferece.py +53 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/inference/chain_inference.py +12 -8
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/inference/esm_inference.py +18 -8
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/inference/structure_inference.py +61 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/rcsb_structure_embedding.py +5 -5
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/types/api_types.py +51 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/utils/data.py +30 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/utils/structure_parser.py +81 -0
- rcsb_embedding_model-0.0.9/src/rcsb_embedding_model/utils/structure_provider.py +27 -0
- rcsb_embedding_model-0.0.9/tests/resources/embeddings/1acb.A.pt +0 -0
- rcsb_embedding_model-0.0.9/tests/resources/embeddings/1acb.B.pt +0 -0
- rcsb_embedding_model-0.0.9/tests/resources/embeddings/2uzi.A.pt +0 -0
- rcsb_embedding_model-0.0.9/tests/resources/embeddings/2uzi.B.pt +0 -0
- rcsb_embedding_model-0.0.9/tests/resources/embeddings/2uzi.C.pt +0 -0
- rcsb_embedding_model-0.0.9/tests/resources/esm-from-chain-inference.csv +2 -0
- rcsb_embedding_model-0.0.9/tests/resources/pdb/2uzi.cif +6685 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/tests/test_embedding_model.py +8 -8
- rcsb_embedding_model-0.0.9/tests/test_inference.py +154 -0
- rcsb_embedding_model-0.0.7/src/rcsb_embedding_model/cli/inference.py +0 -175
- rcsb_embedding_model-0.0.7/src/rcsb_embedding_model/dataset/esm_prot_from_csv.py +0 -90
- rcsb_embedding_model-0.0.7/src/rcsb_embedding_model/dataset/residue_embedding_from_csv.py +0 -32
- rcsb_embedding_model-0.0.7/src/rcsb_embedding_model/inference/structure_inference.py +0 -51
- rcsb_embedding_model-0.0.7/src/rcsb_embedding_model/types/api_types.py +0 -29
- rcsb_embedding_model-0.0.7/src/rcsb_embedding_model/utils/structure_parser.py +0 -51
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/LICENSE.md +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/assets/embedding-model-architecture.png +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/examples/esm_embeddings.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/__init__.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/cli/args_utils.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/model/layers.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/model/residue_embedding_aggregator.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/modules/chain_module.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/modules/esm_module.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/modules/structure_module.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/utils/model.py +0 -0
- {rcsb_embedding_model-0.0.7 → rcsb_embedding_model-0.0.9}/src/rcsb_embedding_model/writer/batch_writer.py +0 -0
- {rcsb_embedding_model-0.0.7/tests/resources → rcsb_embedding_model-0.0.9/tests/resources/pdb}/1acb.cif +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: rcsb-embedding-model
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.9
|
|
4
4
|
Summary: Protein Embedding Model for Structure Search
|
|
5
5
|
Project-URL: Homepage, https://github.com/rcsb/rcsb-embedding-model
|
|
6
6
|
Project-URL: Issues, https://github.com/rcsb/rcsb-embedding-model/issues
|
|
@@ -18,7 +18,7 @@ Description-Content-Type: text/markdown
|
|
|
18
18
|
|
|
19
19
|
# RCSB Embedding Model
|
|
20
20
|
|
|
21
|
-
**Version** 0.0.
|
|
21
|
+
**Version** 0.0.9
|
|
22
22
|
|
|
23
23
|
|
|
24
24
|
## Overview
|
|
@@ -60,14 +60,17 @@ If you are interested in training the model with a new dataset, visit the [rcsb-
|
|
|
60
60
|
|
|
61
61
|
### CLI
|
|
62
62
|
|
|
63
|
-
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3.
|
|
64
|
-
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --
|
|
63
|
+
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files.
|
|
64
|
+
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --structure-format mmcif --batch-size 8 --devices auto
|
|
65
65
|
|
|
66
|
-
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas
|
|
67
|
-
inference structure-embedding --src-file
|
|
66
|
+
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file.
|
|
67
|
+
inference structure-embedding --src-file data/structures.csv --output-path results/residue_embeddings --out-df-name df-res-embeddings --batch-size 4 --devices 0 --devives 1
|
|
68
68
|
|
|
69
|
-
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files.
|
|
70
|
-
inference chain-embedding --src-file
|
|
69
|
+
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions a re stored as csv files.
|
|
70
|
+
inference chain-embedding --src-file data/structures.csv --output-path results/chain_embeddings --batch-size 4
|
|
71
|
+
|
|
72
|
+
# 4. Compute assembly embeddings: Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files.
|
|
73
|
+
inference assembly-embedding --src-file data/structures.csv --res-embedding-location results/residue_embeddings --output-path results/assembly_embeddings
|
|
71
74
|
|
|
72
75
|
### Python API
|
|
73
76
|
|
|
@@ -85,7 +88,7 @@ If you are interested in training the model with a new dataset, visit the [rcsb-
|
|
|
85
88
|
# Aggregate to structure-level embedding
|
|
86
89
|
struct_emb = model.aggregator_embedding(res_emb)
|
|
87
90
|
|
|
88
|
-
See the examples
|
|
91
|
+
See the examples and tests directories for more use cases.
|
|
89
92
|
|
|
90
93
|
---
|
|
91
94
|
|
|
@@ -117,7 +120,7 @@ The aggregation component consists of six transformer encoder layers, each with
|
|
|
117
120
|
|
|
118
121
|
## Citation
|
|
119
122
|
|
|
120
|
-
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/
|
|
123
|
+
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1)
|
|
121
124
|
|
|
122
125
|
---
|
|
123
126
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# RCSB Embedding Model
|
|
2
2
|
|
|
3
|
-
**Version** 0.0.
|
|
3
|
+
**Version** 0.0.9
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
## Overview
|
|
@@ -42,14 +42,17 @@ If you are interested in training the model with a new dataset, visit the [rcsb-
|
|
|
42
42
|
|
|
43
43
|
### CLI
|
|
44
44
|
|
|
45
|
-
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3.
|
|
46
|
-
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --
|
|
45
|
+
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files.
|
|
46
|
+
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --structure-format mmcif --batch-size 8 --devices auto
|
|
47
47
|
|
|
48
|
-
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas
|
|
49
|
-
inference structure-embedding --src-file
|
|
48
|
+
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file.
|
|
49
|
+
inference structure-embedding --src-file data/structures.csv --output-path results/residue_embeddings --out-df-name df-res-embeddings --batch-size 4 --devices 0 --devives 1
|
|
50
50
|
|
|
51
|
-
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files.
|
|
52
|
-
inference chain-embedding --src-file
|
|
51
|
+
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions a re stored as csv files.
|
|
52
|
+
inference chain-embedding --src-file data/structures.csv --output-path results/chain_embeddings --batch-size 4
|
|
53
|
+
|
|
54
|
+
# 4. Compute assembly embeddings: Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files.
|
|
55
|
+
inference assembly-embedding --src-file data/structures.csv --res-embedding-location results/residue_embeddings --output-path results/assembly_embeddings
|
|
53
56
|
|
|
54
57
|
### Python API
|
|
55
58
|
|
|
@@ -67,7 +70,7 @@ If you are interested in training the model with a new dataset, visit the [rcsb-
|
|
|
67
70
|
# Aggregate to structure-level embedding
|
|
68
71
|
struct_emb = model.aggregator_embedding(res_emb)
|
|
69
72
|
|
|
70
|
-
See the examples
|
|
73
|
+
See the examples and tests directories for more use cases.
|
|
71
74
|
|
|
72
75
|
---
|
|
73
76
|
|
|
@@ -99,7 +102,7 @@ The aggregation component consists of six transformer encoder layers, each with
|
|
|
99
102
|
|
|
100
103
|
## Citation
|
|
101
104
|
|
|
102
|
-
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/
|
|
105
|
+
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1)
|
|
103
106
|
|
|
104
107
|
---
|
|
105
108
|
|
|
@@ -0,0 +1,271 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
from typing import Annotated, List
|
|
3
|
+
|
|
4
|
+
import typer
|
|
5
|
+
|
|
6
|
+
from rcsb_embedding_model.cli.args_utils import arg_devices
|
|
7
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, Accelerator, SrcLocation, SrcProteinFrom, \
|
|
8
|
+
StructureLocation, SrcAssemblyFrom
|
|
9
|
+
|
|
10
|
+
app = typer.Typer(
|
|
11
|
+
add_completion=False
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@app.command(
|
|
16
|
+
name="residue-embedding",
|
|
17
|
+
help="Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files."
|
|
18
|
+
)
|
|
19
|
+
def residue_embedding(
|
|
20
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
21
|
+
exists=True,
|
|
22
|
+
file_okay=True,
|
|
23
|
+
dir_okay=False,
|
|
24
|
+
resolve_path=True,
|
|
25
|
+
help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
|
|
26
|
+
)],
|
|
27
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
28
|
+
exists=True,
|
|
29
|
+
file_okay=False,
|
|
30
|
+
dir_okay=True,
|
|
31
|
+
resolve_path=True,
|
|
32
|
+
help='Output path to store predictions. Embeddings are stored as torch tensor files.'
|
|
33
|
+
)],
|
|
34
|
+
src_from: Annotated[SrcProteinFrom, typer.Option(
|
|
35
|
+
help='Use specific chains or all chains in a structure.'
|
|
36
|
+
)] = SrcProteinFrom.chain,
|
|
37
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
38
|
+
help='Structure file location.'
|
|
39
|
+
)] = StructureLocation.local,
|
|
40
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
41
|
+
help='Structure file format.'
|
|
42
|
+
)] = StructureFormat.mmcif,
|
|
43
|
+
min_res_n: Annotated[int, typer.Option(
|
|
44
|
+
help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
|
|
45
|
+
)] = 0,
|
|
46
|
+
batch_size: Annotated[int, typer.Option(
|
|
47
|
+
help='Number of samples processed together in one iteration.'
|
|
48
|
+
)] = 1,
|
|
49
|
+
num_workers: Annotated[int, typer.Option(
|
|
50
|
+
help='Number of subprocesses to use for data loading.'
|
|
51
|
+
)] = 0,
|
|
52
|
+
num_nodes: Annotated[int, typer.Option(
|
|
53
|
+
help='Number of nodes to use for inference.'
|
|
54
|
+
)] = 1,
|
|
55
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
56
|
+
help='Device used for inference.'
|
|
57
|
+
)] = Accelerator.auto,
|
|
58
|
+
devices: Annotated[List[str], typer.Option(
|
|
59
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
60
|
+
)] = tuple(['auto'])
|
|
61
|
+
):
|
|
62
|
+
from rcsb_embedding_model.inference.esm_inference import predict
|
|
63
|
+
predict(
|
|
64
|
+
src_stream=src_file,
|
|
65
|
+
src_location=SrcLocation.local,
|
|
66
|
+
src_from=src_from,
|
|
67
|
+
structure_location=structure_location,
|
|
68
|
+
structure_format=structure_format,
|
|
69
|
+
min_res_n=min_res_n,
|
|
70
|
+
batch_size=batch_size,
|
|
71
|
+
num_workers=num_workers,
|
|
72
|
+
num_nodes=num_nodes,
|
|
73
|
+
accelerator=accelerator,
|
|
74
|
+
devices=arg_devices(devices),
|
|
75
|
+
out_path=output_path
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
@app.command(
|
|
80
|
+
name="structure-embedding",
|
|
81
|
+
help="Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file."
|
|
82
|
+
)
|
|
83
|
+
def structure_embedding(
|
|
84
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
85
|
+
exists=True,
|
|
86
|
+
file_okay=True,
|
|
87
|
+
dir_okay=False,
|
|
88
|
+
resolve_path=True,
|
|
89
|
+
help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
|
|
90
|
+
)],
|
|
91
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
92
|
+
exists=True,
|
|
93
|
+
file_okay=False,
|
|
94
|
+
dir_okay=True,
|
|
95
|
+
resolve_path=True,
|
|
96
|
+
help='Output path to store predictions. Embeddings are stored as a single DataFrame file (see out-df-name).'
|
|
97
|
+
)],
|
|
98
|
+
out_df_name: Annotated[str, typer.Option(
|
|
99
|
+
help='File name (without extension) for storing embeddings as a pandas DataFrame pickle (.pkl). The DataFrame contains 2 columns: Id | Embedding'
|
|
100
|
+
)],
|
|
101
|
+
src_from: Annotated[SrcProteinFrom, typer.Option(
|
|
102
|
+
help='Use specific chains or all chains in a structure.'
|
|
103
|
+
)] = SrcProteinFrom.chain,
|
|
104
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
105
|
+
help='Source input location.'
|
|
106
|
+
)] = StructureLocation.local,
|
|
107
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
108
|
+
help='Structure file format.'
|
|
109
|
+
)] = StructureFormat.mmcif,
|
|
110
|
+
min_res_n: Annotated[int, typer.Option(
|
|
111
|
+
help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
|
|
112
|
+
)] = 0,
|
|
113
|
+
batch_size: Annotated[int, typer.Option(
|
|
114
|
+
help='Number of samples processed together in one iteration.'
|
|
115
|
+
)] = 1,
|
|
116
|
+
num_workers: Annotated[int, typer.Option(
|
|
117
|
+
help='Number of subprocesses to use for data loading.'
|
|
118
|
+
)] = 0,
|
|
119
|
+
num_nodes: Annotated[int, typer.Option(
|
|
120
|
+
help='Number of nodes to use for inference.'
|
|
121
|
+
)] = 1,
|
|
122
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
123
|
+
help='Device used for inference.'
|
|
124
|
+
)] = Accelerator.auto,
|
|
125
|
+
devices: Annotated[List[str], typer.Option(
|
|
126
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
127
|
+
)] = tuple(['auto'])
|
|
128
|
+
):
|
|
129
|
+
from rcsb_embedding_model.inference.structure_inference import predict
|
|
130
|
+
predict(
|
|
131
|
+
src_stream=src_file,
|
|
132
|
+
src_location=SrcLocation.local,
|
|
133
|
+
src_from=src_from,
|
|
134
|
+
structure_location=structure_location,
|
|
135
|
+
structure_format=structure_format,
|
|
136
|
+
min_res_n=min_res_n,
|
|
137
|
+
batch_size=batch_size,
|
|
138
|
+
num_workers=num_workers,
|
|
139
|
+
num_nodes=num_nodes,
|
|
140
|
+
accelerator=accelerator,
|
|
141
|
+
devices=arg_devices(devices),
|
|
142
|
+
out_path=output_path,
|
|
143
|
+
out_df_name=out_df_name
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@app.command(
|
|
148
|
+
name="chain-embedding",
|
|
149
|
+
help="Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
|
|
150
|
+
)
|
|
151
|
+
def chain_embedding(
|
|
152
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
153
|
+
exists=True,
|
|
154
|
+
file_okay=True,
|
|
155
|
+
dir_okay=False,
|
|
156
|
+
resolve_path=True,
|
|
157
|
+
help='CSV file 2 columns: Residue embedding torch tensor file | Output embedding name.'
|
|
158
|
+
)],
|
|
159
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
160
|
+
exists=True,
|
|
161
|
+
file_okay=False,
|
|
162
|
+
dir_okay=True,
|
|
163
|
+
resolve_path=True,
|
|
164
|
+
help='Output path to store predictions. Embeddings are stored as csv files.'
|
|
165
|
+
)],
|
|
166
|
+
batch_size: Annotated[int, typer.Option(
|
|
167
|
+
help='Number of samples processed together in one iteration.'
|
|
168
|
+
)] = 1,
|
|
169
|
+
num_workers: Annotated[int, typer.Option(
|
|
170
|
+
help='Number of subprocesses to use for data loading.'
|
|
171
|
+
)] = 0,
|
|
172
|
+
num_nodes: Annotated[int, typer.Option(
|
|
173
|
+
help='Number of nodes to use for inference.'
|
|
174
|
+
)] = 1,
|
|
175
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
176
|
+
help='Device used for inference.'
|
|
177
|
+
)] = Accelerator.auto,
|
|
178
|
+
devices: Annotated[List[str], typer.Option(
|
|
179
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
180
|
+
)] = tuple(['auto'])
|
|
181
|
+
):
|
|
182
|
+
from rcsb_embedding_model.inference.chain_inference import predict
|
|
183
|
+
predict(
|
|
184
|
+
src_stream=src_file,
|
|
185
|
+
src_location=SrcLocation.local,
|
|
186
|
+
batch_size=batch_size,
|
|
187
|
+
num_workers=num_workers,
|
|
188
|
+
num_nodes=num_nodes,
|
|
189
|
+
accelerator=accelerator,
|
|
190
|
+
devices=arg_devices(devices),
|
|
191
|
+
out_path=output_path
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
@app.command(
|
|
195
|
+
name="assembly-embedding",
|
|
196
|
+
help="Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
|
|
197
|
+
)
|
|
198
|
+
def assembly_embedding(
|
|
199
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
200
|
+
exists=True,
|
|
201
|
+
file_okay=True,
|
|
202
|
+
dir_okay=False,
|
|
203
|
+
resolve_path=True,
|
|
204
|
+
help='CSV file 4 columns: Structure Name | Structure File Path | Assembly Id | Output embedding name.'
|
|
205
|
+
)],
|
|
206
|
+
res_embedding_location: Annotated[typer.FileText, typer.Option(
|
|
207
|
+
exists=True,
|
|
208
|
+
file_okay=False,
|
|
209
|
+
dir_okay=True,
|
|
210
|
+
resolve_path=True,
|
|
211
|
+
help='Path where residue level embeddings for single chains are located.'
|
|
212
|
+
)],
|
|
213
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
214
|
+
exists=True,
|
|
215
|
+
file_okay=False,
|
|
216
|
+
dir_okay=True,
|
|
217
|
+
resolve_path=True,
|
|
218
|
+
help='Output path to store predictions. Embeddings are stored as csv files.'
|
|
219
|
+
)],
|
|
220
|
+
src_from: Annotated[SrcAssemblyFrom, typer.Option(
|
|
221
|
+
help='Use specific assembly or all assemblies in a structure.'
|
|
222
|
+
)] = SrcAssemblyFrom.assembly,
|
|
223
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
224
|
+
help='Source input location.'
|
|
225
|
+
)] = StructureLocation.local,
|
|
226
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
227
|
+
help='Structure file format.'
|
|
228
|
+
)] = StructureFormat.mmcif,
|
|
229
|
+
min_res_n: Annotated[int, typer.Option(
|
|
230
|
+
help='Consider only assembly chains with more than <min_res_n> residues.'
|
|
231
|
+
)] = 0,
|
|
232
|
+
max_res_n: Annotated[int, typer.Option(
|
|
233
|
+
help='Stop adding assembly chains when number of residues is greater than <max_res_n> residues.'
|
|
234
|
+
)] = sys.maxsize,
|
|
235
|
+
batch_size: Annotated[int, typer.Option(
|
|
236
|
+
help='Number of samples processed together in one iteration.'
|
|
237
|
+
)] = 1,
|
|
238
|
+
num_workers: Annotated[int, typer.Option(
|
|
239
|
+
help='Number of subprocesses to use for data loading.'
|
|
240
|
+
)] = 0,
|
|
241
|
+
num_nodes: Annotated[int, typer.Option(
|
|
242
|
+
help='Number of nodes to use for inference.'
|
|
243
|
+
)] = 1,
|
|
244
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
245
|
+
help='Device used for inference.'
|
|
246
|
+
)] = Accelerator.auto,
|
|
247
|
+
devices: Annotated[List[str], typer.Option(
|
|
248
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
249
|
+
)] = tuple(['auto'])
|
|
250
|
+
):
|
|
251
|
+
from rcsb_embedding_model.inference.assembly_inferece import predict
|
|
252
|
+
predict(
|
|
253
|
+
src_stream=src_file,
|
|
254
|
+
res_embedding_location=res_embedding_location,
|
|
255
|
+
src_location=SrcLocation.local,
|
|
256
|
+
src_from=src_from,
|
|
257
|
+
structure_location=structure_location,
|
|
258
|
+
structure_format=structure_format,
|
|
259
|
+
min_res_n=min_res_n,
|
|
260
|
+
max_res_n=max_res_n,
|
|
261
|
+
batch_size=batch_size,
|
|
262
|
+
num_workers=num_workers,
|
|
263
|
+
num_nodes=num_nodes,
|
|
264
|
+
accelerator=accelerator,
|
|
265
|
+
devices=arg_devices(devices),
|
|
266
|
+
out_path=output_path
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
if __name__ == "__main__":
|
|
271
|
+
app()
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from biotite.structure import chain_iter
|
|
5
|
+
from esm.models.esm3 import ESM3
|
|
6
|
+
from esm.sdk.api import ESMProtein, SamplingConfig
|
|
7
|
+
from esm.utils.constants.models import ESM3_OPEN_SMALL
|
|
8
|
+
from esm.utils.structure.protein_chain import ProteinChain
|
|
9
|
+
from torch.utils.data import Dataset, DataLoader
|
|
10
|
+
import pandas as pd
|
|
11
|
+
|
|
12
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, StructureLocation, SrcLocation
|
|
13
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
14
|
+
from rcsb_embedding_model.utils.structure_parser import rename_atom_ch
|
|
15
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EsmProtFromChain(Dataset):
|
|
19
|
+
|
|
20
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
21
|
+
STREAM_ATTR = 'stream'
|
|
22
|
+
CH_ATTR = 'chain_id'
|
|
23
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
24
|
+
|
|
25
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, CH_ATTR, ITEM_NAME_ATTR]
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
src_stream,
|
|
30
|
+
src_location=SrcLocation.local,
|
|
31
|
+
structure_location=StructureLocation.local,
|
|
32
|
+
structure_format=StructureFormat.mmcif,
|
|
33
|
+
structure_provider=StructureProvider()
|
|
34
|
+
):
|
|
35
|
+
super().__init__()
|
|
36
|
+
self.__structure_provider = structure_provider
|
|
37
|
+
self.src_location = src_location
|
|
38
|
+
self.structure_location = structure_location
|
|
39
|
+
self.structure_format = structure_format
|
|
40
|
+
self.data = pd.DataFrame()
|
|
41
|
+
self.__load_stream(src_stream)
|
|
42
|
+
|
|
43
|
+
def __load_stream(self, src_stream):
|
|
44
|
+
self.data = pd.DataFrame(
|
|
45
|
+
src_stream,
|
|
46
|
+
dtype=str,
|
|
47
|
+
columns=EsmProtFromChain.COLUMNS
|
|
48
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
49
|
+
src_stream,
|
|
50
|
+
header=None,
|
|
51
|
+
index_col=None,
|
|
52
|
+
dtype=str,
|
|
53
|
+
names=EsmProtFromChain.COLUMNS
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def __len__(self):
|
|
57
|
+
return len(self.data)
|
|
58
|
+
|
|
59
|
+
def __getitem__(self, idx):
|
|
60
|
+
src_name = self.data.loc[idx, EsmProtFromChain.STREAM_NAME_ATTR]
|
|
61
|
+
src_structure = self.data.loc[idx, EsmProtFromChain.STREAM_ATTR]
|
|
62
|
+
chain_id = self.data.loc[idx, EsmProtFromChain.CH_ATTR]
|
|
63
|
+
item_name = self.data.loc[idx, EsmProtFromChain.ITEM_NAME_ATTR]
|
|
64
|
+
structure = self.__structure_provider.get_structure(
|
|
65
|
+
src_name=src_name,
|
|
66
|
+
src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
|
|
67
|
+
structure_format=self.structure_format,
|
|
68
|
+
chain_id=chain_id
|
|
69
|
+
)
|
|
70
|
+
for atom_ch in chain_iter(structure):
|
|
71
|
+
protein_chain = ProteinChain.from_atomarray(rename_atom_ch(atom_ch))
|
|
72
|
+
return ESMProtein.from_protein_chain(protein_chain), item_name
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
if __name__ == '__main__':
|
|
76
|
+
|
|
77
|
+
parser = argparse.ArgumentParser()
|
|
78
|
+
parser.add_argument('--file_list', type=argparse.FileType('r'), required=True)
|
|
79
|
+
args = parser.parse_args()
|
|
80
|
+
|
|
81
|
+
dataset = EsmProtFromChain(
|
|
82
|
+
args.file_list
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
esm3 = ESM3.from_pretrained(
|
|
86
|
+
ESM3_OPEN_SMALL,
|
|
87
|
+
torch.device("cpu")
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
dataloader = DataLoader(
|
|
91
|
+
dataset,
|
|
92
|
+
batch_size=2,
|
|
93
|
+
collate_fn=lambda _: _
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
for _batch in dataloader:
|
|
97
|
+
for esm_prot, prot_name in _batch:
|
|
98
|
+
protein_tensor = esm3.encode(esm_prot)
|
|
99
|
+
embeddings = esm3.forward_and_sample(
|
|
100
|
+
protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
|
|
101
|
+
).per_residue_embedding
|
|
102
|
+
print(prot_name, embeddings.shape)
|
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
from rcsb_embedding_model.dataset.esm_prot_from_chain import EsmProtFromChain
|
|
5
|
+
from rcsb_embedding_model.types.api_types import StructureLocation, StructureFormat, SrcLocation
|
|
6
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
7
|
+
from rcsb_embedding_model.utils.structure_parser import get_protein_chains
|
|
8
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class EsmProtFromStructure(EsmProtFromChain):
|
|
12
|
+
|
|
13
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
14
|
+
STREAM_ATTR = 'stream'
|
|
15
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
16
|
+
|
|
17
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ITEM_NAME_ATTR]
|
|
18
|
+
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
src_stream,
|
|
22
|
+
src_location=SrcLocation.local,
|
|
23
|
+
structure_location=StructureLocation.local,
|
|
24
|
+
structure_format=StructureFormat.mmcif,
|
|
25
|
+
min_res_n=0,
|
|
26
|
+
structure_provider=StructureProvider()
|
|
27
|
+
):
|
|
28
|
+
self.min_res_n = min_res_n
|
|
29
|
+
self.src_location = src_location
|
|
30
|
+
self.structure_location = structure_location
|
|
31
|
+
self.structure_format = structure_format
|
|
32
|
+
self.__structure_provider = structure_provider
|
|
33
|
+
super().__init__(
|
|
34
|
+
src_stream=self.__get_chains(src_stream),
|
|
35
|
+
src_location=SrcLocation.stream,
|
|
36
|
+
structure_location=structure_location,
|
|
37
|
+
structure_format=structure_format,
|
|
38
|
+
structure_provider=structure_provider
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
def __get_chains(self, src_stream):
|
|
42
|
+
chains = []
|
|
43
|
+
for idx, row in (pd.DataFrame(
|
|
44
|
+
src_stream,
|
|
45
|
+
dtype=str,
|
|
46
|
+
columns=self.COLUMNS
|
|
47
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
48
|
+
src_stream,
|
|
49
|
+
header=None,
|
|
50
|
+
index_col=None,
|
|
51
|
+
dtype=str,
|
|
52
|
+
names=EsmProtFromStructure.COLUMNS
|
|
53
|
+
)).iterrows():
|
|
54
|
+
src_name = row[EsmProtFromStructure.STREAM_NAME_ATTR]
|
|
55
|
+
src_structure = row[EsmProtFromStructure.STREAM_ATTR]
|
|
56
|
+
item_name = row[EsmProtFromStructure.ITEM_NAME_ATTR]
|
|
57
|
+
structure = self.__structure_provider.get_structure(
|
|
58
|
+
src_name=src_name,
|
|
59
|
+
src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
|
|
60
|
+
structure_format=self.structure_format
|
|
61
|
+
)
|
|
62
|
+
for ch in get_protein_chains(structure, self.min_res_n):
|
|
63
|
+
chains.append((src_name, src_structure, ch, f"{item_name}.{ch}"))
|
|
64
|
+
return tuple(chains)
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
|
|
3
|
+
import pandas as pd
|
|
4
|
+
|
|
5
|
+
from rcsb_embedding_model.dataset.residue_assembly_embedding_from_tensor_file import ResidueAssemblyEmbeddingFromTensorFile
|
|
6
|
+
from rcsb_embedding_model.types.api_types import SrcLocation, StructureLocation, StructureFormat
|
|
7
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
8
|
+
from rcsb_embedding_model.utils.structure_parser import get_assemblies
|
|
9
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class ResidueAssemblyDatasetFromStructure(ResidueAssemblyEmbeddingFromTensorFile):
|
|
13
|
+
|
|
14
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
15
|
+
STREAM_ATTR = 'stream'
|
|
16
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
17
|
+
|
|
18
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, ITEM_NAME_ATTR]
|
|
19
|
+
|
|
20
|
+
def __init__(
|
|
21
|
+
self,
|
|
22
|
+
src_stream,
|
|
23
|
+
res_embedding_location,
|
|
24
|
+
src_location=SrcLocation.local,
|
|
25
|
+
structure_location=StructureLocation.local,
|
|
26
|
+
structure_format=StructureFormat.mmcif,
|
|
27
|
+
min_res_n=0,
|
|
28
|
+
max_res_n=sys.maxsize,
|
|
29
|
+
structure_provider=StructureProvider()
|
|
30
|
+
):
|
|
31
|
+
self.src_location = src_location
|
|
32
|
+
self.structure_location = structure_location
|
|
33
|
+
self.structure_format = structure_format
|
|
34
|
+
self.min_res_n = min_res_n
|
|
35
|
+
self.max_res_n = max_res_n
|
|
36
|
+
self.__structure_provider = structure_provider
|
|
37
|
+
super().__init__(
|
|
38
|
+
src_stream=self.__get_assemblies(src_stream),
|
|
39
|
+
res_embedding_location=res_embedding_location,
|
|
40
|
+
src_location=src_location,
|
|
41
|
+
structure_location=structure_location,
|
|
42
|
+
structure_format=structure_format,
|
|
43
|
+
min_res_n=min_res_n,
|
|
44
|
+
max_res_n=max_res_n,
|
|
45
|
+
structure_provider=structure_provider
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
def __get_assemblies(self, src_stream):
|
|
49
|
+
assemblies = []
|
|
50
|
+
for idx, row in (pd.DataFrame(
|
|
51
|
+
src_stream,
|
|
52
|
+
dtype=str,
|
|
53
|
+
columns=self.COLUMNS
|
|
54
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
55
|
+
src_stream,
|
|
56
|
+
header=None,
|
|
57
|
+
index_col=None,
|
|
58
|
+
dtype=str,
|
|
59
|
+
names=ResidueAssemblyDatasetFromStructure.COLUMNS
|
|
60
|
+
)).iterrows():
|
|
61
|
+
src_name = row[ResidueAssemblyDatasetFromStructure.STREAM_NAME_ATTR]
|
|
62
|
+
src_structure = row[ResidueAssemblyDatasetFromStructure.STREAM_ATTR]
|
|
63
|
+
src_structure = stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure
|
|
64
|
+
item_name = row[ResidueAssemblyDatasetFromStructure.ITEM_NAME_ATTR]
|
|
65
|
+
for assembly_id in get_assemblies(src_structure=src_structure, structure_format=self.structure_format):
|
|
66
|
+
assemblies.append((src_name, src_structure, str(assembly_id), f"{item_name}.{assembly_id}"))
|
|
67
|
+
|
|
68
|
+
return tuple(assemblies)
|