rcsb-embedding-model 0.0.6__tar.gz → 0.0.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rcsb-embedding-model might be problematic. Click here for more details.
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/.gitignore +1 -0
- rcsb_embedding_model-0.0.8/PKG-INFO +129 -0
- rcsb_embedding_model-0.0.8/README.md +111 -0
- rcsb_embedding_model-0.0.8/examples/esm_embeddings.py +23 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/pyproject.toml +1 -1
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/cli/args_utils.py +0 -2
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/cli/inference.py +271 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/dataset/esm_prot_from_chain.py +102 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/dataset/esm_prot_from_structure.py +63 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/dataset/resdiue_assembly_embedding_from_structure.py +68 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/dataset/residue_assembly_embedding_from_tensor_file.py +94 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/dataset/residue_embedding_from_tensor_file.py +43 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/inference/assembly_inferece.py +53 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/inference/chain_inference.py +12 -8
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/inference/esm_inference.py +18 -8
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/inference/structure_inference.py +61 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/modules/structure_module.py +27 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/rcsb_structure_embedding.py +7 -8
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/types/api_types.py +51 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/utils/data.py +30 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/utils/structure_parser.py +81 -0
- rcsb_embedding_model-0.0.8/src/rcsb_embedding_model/utils/structure_provider.py +27 -0
- rcsb_embedding_model-0.0.8/tests/resources/embeddings/1acb.A.pt +0 -0
- rcsb_embedding_model-0.0.8/tests/resources/embeddings/1acb.B.pt +0 -0
- rcsb_embedding_model-0.0.8/tests/resources/embeddings/2uzi.A.pt +0 -0
- rcsb_embedding_model-0.0.8/tests/resources/embeddings/2uzi.B.pt +0 -0
- rcsb_embedding_model-0.0.8/tests/resources/embeddings/2uzi.C.pt +0 -0
- rcsb_embedding_model-0.0.8/tests/resources/esm-from-chain-inference.csv +2 -0
- rcsb_embedding_model-0.0.8/tests/resources/pdb/2uzi.cif +6685 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/tests/test_embedding_model.py +8 -8
- rcsb_embedding_model-0.0.8/tests/test_inference.py +154 -0
- rcsb_embedding_model-0.0.6/PKG-INFO +0 -117
- rcsb_embedding_model-0.0.6/README.md +0 -99
- rcsb_embedding_model-0.0.6/examples/esm_embeddings.py +0 -77
- rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/cli/inference.py +0 -149
- rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/dataset/esm_prot_from_csv.py +0 -91
- rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/dataset/residue_embedding_from_csv.py +0 -32
- rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/types/api_types.py +0 -29
- rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/utils/structure_parser.py +0 -51
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/LICENSE.md +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/assets/embedding-model-architecture.png +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/__init__.py +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/model/layers.py +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/model/residue_embedding_aggregator.py +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/modules/chain_module.py +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/modules/esm_module.py +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/utils/model.py +0 -0
- {rcsb_embedding_model-0.0.6 → rcsb_embedding_model-0.0.8}/src/rcsb_embedding_model/writer/batch_writer.py +0 -0
- {rcsb_embedding_model-0.0.6/tests/resources → rcsb_embedding_model-0.0.8/tests/resources/pdb}/1acb.cif +0 -0
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: rcsb-embedding-model
|
|
3
|
+
Version: 0.0.8
|
|
4
|
+
Summary: Protein Embedding Model for Structure Search
|
|
5
|
+
Project-URL: Homepage, https://github.com/rcsb/rcsb-embedding-model
|
|
6
|
+
Project-URL: Issues, https://github.com/rcsb/rcsb-embedding-model/issues
|
|
7
|
+
Author-email: Joan Segura <joan.segura@rcsb.org>
|
|
8
|
+
License-Expression: BSD-3-Clause
|
|
9
|
+
License-File: LICENSE.md
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Requires-Python: >=3.10
|
|
13
|
+
Requires-Dist: esm>=3.2.0
|
|
14
|
+
Requires-Dist: lightning>=2.5.0
|
|
15
|
+
Requires-Dist: torch>=2.2.0
|
|
16
|
+
Requires-Dist: typer>=0.15.0
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
|
|
19
|
+
# RCSB Embedding Model
|
|
20
|
+
|
|
21
|
+
**Version** 0.0.8
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
## Overview
|
|
25
|
+
|
|
26
|
+
RCSB Embedding Model is a neural network architecture designed to encode macromolecular 3D structures into fixed-length vector embeddings for efficient large-scale structure similarity search.
|
|
27
|
+
|
|
28
|
+
Preprint: [Multi-scale structural similarity embedding search across entire proteomes](https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1).
|
|
29
|
+
|
|
30
|
+
A web-based implementation using this model for structure similarity search is available at [rcsb-embedding-search](http://embedding-search.rcsb.org).
|
|
31
|
+
|
|
32
|
+
If you are interested in training the model with a new dataset, visit the [rcsb-embedding-search repository](https://github.com/bioinsilico/rcsb-embedding-search), which provides scripts and documentation for training.
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
## Features
|
|
36
|
+
|
|
37
|
+
- **Residue-level embeddings** computed using the ESM3 protein language model
|
|
38
|
+
- **Structure-level embeddings** aggregated via a transformer-based aggregator network
|
|
39
|
+
- **Command-line interface** implemented with Typer for high-throughput inference workflows
|
|
40
|
+
- **Python API** for interactive embedding computation and integration into analysis pipelines
|
|
41
|
+
- **High-performance inference** leveraging PyTorch Lightning, with multi-node and multi-GPU support
|
|
42
|
+
|
|
43
|
+
---
|
|
44
|
+
|
|
45
|
+
## Installation
|
|
46
|
+
|
|
47
|
+
pip install rcsb-embedding-model
|
|
48
|
+
|
|
49
|
+
**Requirements:**
|
|
50
|
+
|
|
51
|
+
- Python ≥ 3.10
|
|
52
|
+
- ESM ≥ 3.2.0
|
|
53
|
+
- PyTorch ≥ 2.2.0
|
|
54
|
+
- Lightning ≥ 2.5.0
|
|
55
|
+
- Typer ≥ 0.15.0
|
|
56
|
+
|
|
57
|
+
---
|
|
58
|
+
|
|
59
|
+
## Quick Start
|
|
60
|
+
|
|
61
|
+
### CLI
|
|
62
|
+
|
|
63
|
+
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files.
|
|
64
|
+
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --structure-format mmcif --batch-size 8 --devices auto
|
|
65
|
+
|
|
66
|
+
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file.
|
|
67
|
+
inference structure-embedding --src-file data/structures.csv --output-path results/residue_embeddings --out-df-name df-res-embeddings --batch-size 4 --devices 0 --devives 1
|
|
68
|
+
|
|
69
|
+
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions a re stored as csv files.
|
|
70
|
+
inference chain-embedding --src-file data/structures.csv --output-path results/chain_embeddings --batch-size 4
|
|
71
|
+
|
|
72
|
+
# 4. Compute assembly embeddings: Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files.
|
|
73
|
+
inference assembly-embedding --src-file data/structures.csv --res-embedding-location results/residue_embeddings --output-path results/assembly_embeddings
|
|
74
|
+
|
|
75
|
+
### Python API
|
|
76
|
+
|
|
77
|
+
from rcsb_embedding_model import RcsbStructureEmbedding
|
|
78
|
+
|
|
79
|
+
model = RcsbStructureEmbedding()
|
|
80
|
+
|
|
81
|
+
# Compute per-residue embeddings
|
|
82
|
+
res_emb = model.residue_embedding(
|
|
83
|
+
src_structure="examples/1abc.cif",
|
|
84
|
+
src_format="mmcif",
|
|
85
|
+
chain_id="A"
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# Aggregate to structure-level embedding
|
|
89
|
+
struct_emb = model.aggregator_embedding(res_emb)
|
|
90
|
+
|
|
91
|
+
See the examples and tests directories for more use cases.
|
|
92
|
+
|
|
93
|
+
---
|
|
94
|
+
|
|
95
|
+
## Model Architecture
|
|
96
|
+
|
|
97
|
+
The embedding model is trained to predict structural similarity by approximating TM-scores using cosine distances between embeddings. It consists of two main components:
|
|
98
|
+
|
|
99
|
+
- **Protein Language Model (PLM)**: Computes residue-level embeddings from a given 3D structure.
|
|
100
|
+
- **Residue Embedding Aggregator**: A transformer-based neural network that aggregates these residue-level embeddings into a single vector.
|
|
101
|
+
|
|
102
|
+

|
|
103
|
+
|
|
104
|
+
### **Protein Language Model (PLM)**
|
|
105
|
+
Residue-wise embeddings of protein structures are computed using the [ESM3](https://www.evolutionaryscale.ai/) generative protein language model.
|
|
106
|
+
|
|
107
|
+
### **Residue Embedding Aggregator**
|
|
108
|
+
The aggregation component consists of six transformer encoder layers, each with a 3,072-neuron feedforward layer and ReLU activations. After processing through these layers, a summation pooling operation is applied, followed by 12 fully connected residual layers that refine the embeddings into a single 1,536-dimensional vector.
|
|
109
|
+
|
|
110
|
+
---
|
|
111
|
+
|
|
112
|
+
## Development
|
|
113
|
+
|
|
114
|
+
git clone https://github.com/rcsb/rcsb-embedding-model.git
|
|
115
|
+
cd rcsb-embedding-model
|
|
116
|
+
pip install -e .
|
|
117
|
+
pytest
|
|
118
|
+
|
|
119
|
+
---
|
|
120
|
+
|
|
121
|
+
## Citation
|
|
122
|
+
|
|
123
|
+
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1)
|
|
124
|
+
|
|
125
|
+
---
|
|
126
|
+
|
|
127
|
+
## License
|
|
128
|
+
|
|
129
|
+
This project is licensed under the BSD 3-Clause License. See [LICENSE.md](LICENSE.md) for details.
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
# RCSB Embedding Model
|
|
2
|
+
|
|
3
|
+
**Version** 0.0.8
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
## Overview
|
|
7
|
+
|
|
8
|
+
RCSB Embedding Model is a neural network architecture designed to encode macromolecular 3D structures into fixed-length vector embeddings for efficient large-scale structure similarity search.
|
|
9
|
+
|
|
10
|
+
Preprint: [Multi-scale structural similarity embedding search across entire proteomes](https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1).
|
|
11
|
+
|
|
12
|
+
A web-based implementation using this model for structure similarity search is available at [rcsb-embedding-search](http://embedding-search.rcsb.org).
|
|
13
|
+
|
|
14
|
+
If you are interested in training the model with a new dataset, visit the [rcsb-embedding-search repository](https://github.com/bioinsilico/rcsb-embedding-search), which provides scripts and documentation for training.
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
## Features
|
|
18
|
+
|
|
19
|
+
- **Residue-level embeddings** computed using the ESM3 protein language model
|
|
20
|
+
- **Structure-level embeddings** aggregated via a transformer-based aggregator network
|
|
21
|
+
- **Command-line interface** implemented with Typer for high-throughput inference workflows
|
|
22
|
+
- **Python API** for interactive embedding computation and integration into analysis pipelines
|
|
23
|
+
- **High-performance inference** leveraging PyTorch Lightning, with multi-node and multi-GPU support
|
|
24
|
+
|
|
25
|
+
---
|
|
26
|
+
|
|
27
|
+
## Installation
|
|
28
|
+
|
|
29
|
+
pip install rcsb-embedding-model
|
|
30
|
+
|
|
31
|
+
**Requirements:**
|
|
32
|
+
|
|
33
|
+
- Python ≥ 3.10
|
|
34
|
+
- ESM ≥ 3.2.0
|
|
35
|
+
- PyTorch ≥ 2.2.0
|
|
36
|
+
- Lightning ≥ 2.5.0
|
|
37
|
+
- Typer ≥ 0.15.0
|
|
38
|
+
|
|
39
|
+
---
|
|
40
|
+
|
|
41
|
+
## Quick Start
|
|
42
|
+
|
|
43
|
+
### CLI
|
|
44
|
+
|
|
45
|
+
# 1. Compute residue embeddings: Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files.
|
|
46
|
+
inference residue-embedding --src-file data/structures.csv --output-path results/residue_embeddings --structure-format mmcif --batch-size 8 --devices auto
|
|
47
|
+
|
|
48
|
+
# 2. Compute structure embeddings: Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file.
|
|
49
|
+
inference structure-embedding --src-file data/structures.csv --output-path results/residue_embeddings --out-df-name df-res-embeddings --batch-size 4 --devices 0 --devives 1
|
|
50
|
+
|
|
51
|
+
# 3. Compute chain embeddings: Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions a re stored as csv files.
|
|
52
|
+
inference chain-embedding --src-file data/structures.csv --output-path results/chain_embeddings --batch-size 4
|
|
53
|
+
|
|
54
|
+
# 4. Compute assembly embeddings: Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files.
|
|
55
|
+
inference assembly-embedding --src-file data/structures.csv --res-embedding-location results/residue_embeddings --output-path results/assembly_embeddings
|
|
56
|
+
|
|
57
|
+
### Python API
|
|
58
|
+
|
|
59
|
+
from rcsb_embedding_model import RcsbStructureEmbedding
|
|
60
|
+
|
|
61
|
+
model = RcsbStructureEmbedding()
|
|
62
|
+
|
|
63
|
+
# Compute per-residue embeddings
|
|
64
|
+
res_emb = model.residue_embedding(
|
|
65
|
+
src_structure="examples/1abc.cif",
|
|
66
|
+
src_format="mmcif",
|
|
67
|
+
chain_id="A"
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Aggregate to structure-level embedding
|
|
71
|
+
struct_emb = model.aggregator_embedding(res_emb)
|
|
72
|
+
|
|
73
|
+
See the examples and tests directories for more use cases.
|
|
74
|
+
|
|
75
|
+
---
|
|
76
|
+
|
|
77
|
+
## Model Architecture
|
|
78
|
+
|
|
79
|
+
The embedding model is trained to predict structural similarity by approximating TM-scores using cosine distances between embeddings. It consists of two main components:
|
|
80
|
+
|
|
81
|
+
- **Protein Language Model (PLM)**: Computes residue-level embeddings from a given 3D structure.
|
|
82
|
+
- **Residue Embedding Aggregator**: A transformer-based neural network that aggregates these residue-level embeddings into a single vector.
|
|
83
|
+
|
|
84
|
+

|
|
85
|
+
|
|
86
|
+
### **Protein Language Model (PLM)**
|
|
87
|
+
Residue-wise embeddings of protein structures are computed using the [ESM3](https://www.evolutionaryscale.ai/) generative protein language model.
|
|
88
|
+
|
|
89
|
+
### **Residue Embedding Aggregator**
|
|
90
|
+
The aggregation component consists of six transformer encoder layers, each with a 3,072-neuron feedforward layer and ReLU activations. After processing through these layers, a summation pooling operation is applied, followed by 12 fully connected residual layers that refine the embeddings into a single 1,536-dimensional vector.
|
|
91
|
+
|
|
92
|
+
---
|
|
93
|
+
|
|
94
|
+
## Development
|
|
95
|
+
|
|
96
|
+
git clone https://github.com/rcsb/rcsb-embedding-model.git
|
|
97
|
+
cd rcsb-embedding-model
|
|
98
|
+
pip install -e .
|
|
99
|
+
pytest
|
|
100
|
+
|
|
101
|
+
---
|
|
102
|
+
|
|
103
|
+
## Citation
|
|
104
|
+
|
|
105
|
+
Segura, J., Bittrich, S., et al. (2024). *Multi-scale structural similarity embedding search across entire proteomes*. bioRxiv. (Preprint: https://www.biorxiv.org/content/10.1101/2025.02.28.640875v1)
|
|
106
|
+
|
|
107
|
+
---
|
|
108
|
+
|
|
109
|
+
## License
|
|
110
|
+
|
|
111
|
+
This project is licensed under the BSD 3-Clause License. See [LICENSE.md](LICENSE.md) for details.
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
|
|
3
|
+
from rcsb_embedding_model import RcsbStructureEmbedding
|
|
4
|
+
|
|
5
|
+
if __name__ == "__main__":
|
|
6
|
+
|
|
7
|
+
parser = argparse.ArgumentParser()
|
|
8
|
+
parser.add_argument('--file', type=str, required=True)
|
|
9
|
+
parser.add_argument('--file_format', type=str)
|
|
10
|
+
parser.add_argument('--chain', type=str)
|
|
11
|
+
args = parser.parse_args()
|
|
12
|
+
|
|
13
|
+
model = RcsbStructureEmbedding()
|
|
14
|
+
res_embedding = model.residue_embedding(
|
|
15
|
+
src_structure=args.file,
|
|
16
|
+
src_format=args.file_format,
|
|
17
|
+
chain_id=args.chain
|
|
18
|
+
)
|
|
19
|
+
structure_embedding = model.aggregator_embedding(
|
|
20
|
+
res_embedding
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
print(res_embedding.shape, structure_embedding.shape)
|
|
@@ -0,0 +1,271 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
from typing import Annotated, List
|
|
3
|
+
|
|
4
|
+
import typer
|
|
5
|
+
|
|
6
|
+
from rcsb_embedding_model.cli.args_utils import arg_devices
|
|
7
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, Accelerator, SrcLocation, SrcProteinFrom, \
|
|
8
|
+
StructureLocation, SrcAssemblyFrom
|
|
9
|
+
|
|
10
|
+
app = typer.Typer(
|
|
11
|
+
add_completion=False
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@app.command(
|
|
16
|
+
name="residue-embedding",
|
|
17
|
+
help="Calculate residue level embeddings of protein structures using ESM3. Predictions are stored as torch tensor files."
|
|
18
|
+
)
|
|
19
|
+
def residue_embedding(
|
|
20
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
21
|
+
exists=True,
|
|
22
|
+
file_okay=True,
|
|
23
|
+
dir_okay=False,
|
|
24
|
+
resolve_path=True,
|
|
25
|
+
help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
|
|
26
|
+
)],
|
|
27
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
28
|
+
exists=True,
|
|
29
|
+
file_okay=False,
|
|
30
|
+
dir_okay=True,
|
|
31
|
+
resolve_path=True,
|
|
32
|
+
help='Output path to store predictions. Embeddings are stored as torch tensor files.'
|
|
33
|
+
)],
|
|
34
|
+
src_from: Annotated[SrcProteinFrom, typer.Option(
|
|
35
|
+
help='Use specific chains or all chains in a structure.'
|
|
36
|
+
)] = SrcProteinFrom.chain,
|
|
37
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
38
|
+
help='Structure file location.'
|
|
39
|
+
)] = StructureLocation.local,
|
|
40
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
41
|
+
help='Structure file format.'
|
|
42
|
+
)] = StructureFormat.mmcif,
|
|
43
|
+
min_res_n: Annotated[int, typer.Option(
|
|
44
|
+
help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
|
|
45
|
+
)] = 0,
|
|
46
|
+
batch_size: Annotated[int, typer.Option(
|
|
47
|
+
help='Number of samples processed together in one iteration.'
|
|
48
|
+
)] = 1,
|
|
49
|
+
num_workers: Annotated[int, typer.Option(
|
|
50
|
+
help='Number of subprocesses to use for data loading.'
|
|
51
|
+
)] = 0,
|
|
52
|
+
num_nodes: Annotated[int, typer.Option(
|
|
53
|
+
help='Number of nodes to use for inference.'
|
|
54
|
+
)] = 1,
|
|
55
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
56
|
+
help='Device used for inference.'
|
|
57
|
+
)] = Accelerator.auto,
|
|
58
|
+
devices: Annotated[List[str], typer.Option(
|
|
59
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
60
|
+
)] = tuple(['auto'])
|
|
61
|
+
):
|
|
62
|
+
from rcsb_embedding_model.inference.esm_inference import predict
|
|
63
|
+
predict(
|
|
64
|
+
src_stream=src_file,
|
|
65
|
+
src_location=SrcLocation.local,
|
|
66
|
+
src_from=src_from,
|
|
67
|
+
structure_location=structure_location,
|
|
68
|
+
structure_format=structure_format,
|
|
69
|
+
min_res_n=min_res_n,
|
|
70
|
+
batch_size=batch_size,
|
|
71
|
+
num_workers=num_workers,
|
|
72
|
+
num_nodes=num_nodes,
|
|
73
|
+
accelerator=accelerator,
|
|
74
|
+
devices=arg_devices(devices),
|
|
75
|
+
out_path=output_path
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
@app.command(
|
|
80
|
+
name="structure-embedding",
|
|
81
|
+
help="Calculate single-chain protein embeddings from structural files. Predictions are stored in a single pandas DataFrame file."
|
|
82
|
+
)
|
|
83
|
+
def structure_embedding(
|
|
84
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
85
|
+
exists=True,
|
|
86
|
+
file_okay=True,
|
|
87
|
+
dir_okay=False,
|
|
88
|
+
resolve_path=True,
|
|
89
|
+
help='CSV file 4 (or 3) columns: Structure Name | Structure File Path | Chain Id (asym_i for cif files. This field is required if src-from=chain) | Output Embedding Name.'
|
|
90
|
+
)],
|
|
91
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
92
|
+
exists=True,
|
|
93
|
+
file_okay=False,
|
|
94
|
+
dir_okay=True,
|
|
95
|
+
resolve_path=True,
|
|
96
|
+
help='Output path to store predictions. Embeddings are stored as a single DataFrame file (see out-df-name).'
|
|
97
|
+
)],
|
|
98
|
+
out_df_name: Annotated[str, typer.Option(
|
|
99
|
+
help='File name (without extension) for storing embeddings as a pandas DataFrame pickle (.pkl). The DataFrame contains 2 columns: Id | Embedding'
|
|
100
|
+
)],
|
|
101
|
+
src_from: Annotated[SrcProteinFrom, typer.Option(
|
|
102
|
+
help='Use specific chains or all chains in a structure.'
|
|
103
|
+
)] = SrcProteinFrom.chain,
|
|
104
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
105
|
+
help='Source input location.'
|
|
106
|
+
)] = StructureLocation.local,
|
|
107
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
108
|
+
help='Structure file format.'
|
|
109
|
+
)] = StructureFormat.mmcif,
|
|
110
|
+
min_res_n: Annotated[int, typer.Option(
|
|
111
|
+
help='When using all chains in a structure, consider only chains with more than <min_res_n> residues.'
|
|
112
|
+
)] = 0,
|
|
113
|
+
batch_size: Annotated[int, typer.Option(
|
|
114
|
+
help='Number of samples processed together in one iteration.'
|
|
115
|
+
)] = 1,
|
|
116
|
+
num_workers: Annotated[int, typer.Option(
|
|
117
|
+
help='Number of subprocesses to use for data loading.'
|
|
118
|
+
)] = 0,
|
|
119
|
+
num_nodes: Annotated[int, typer.Option(
|
|
120
|
+
help='Number of nodes to use for inference.'
|
|
121
|
+
)] = 1,
|
|
122
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
123
|
+
help='Device used for inference.'
|
|
124
|
+
)] = Accelerator.auto,
|
|
125
|
+
devices: Annotated[List[str], typer.Option(
|
|
126
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
127
|
+
)] = tuple(['auto'])
|
|
128
|
+
):
|
|
129
|
+
from rcsb_embedding_model.inference.structure_inference import predict
|
|
130
|
+
predict(
|
|
131
|
+
src_stream=src_file,
|
|
132
|
+
src_location=SrcLocation.local,
|
|
133
|
+
src_from=src_from,
|
|
134
|
+
structure_location=structure_location,
|
|
135
|
+
structure_format=structure_format,
|
|
136
|
+
min_res_n=min_res_n,
|
|
137
|
+
batch_size=batch_size,
|
|
138
|
+
num_workers=num_workers,
|
|
139
|
+
num_nodes=num_nodes,
|
|
140
|
+
accelerator=accelerator,
|
|
141
|
+
devices=arg_devices(devices),
|
|
142
|
+
out_path=output_path,
|
|
143
|
+
out_df_name=out_df_name
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@app.command(
|
|
148
|
+
name="chain-embedding",
|
|
149
|
+
help="Calculate single-chain protein embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
|
|
150
|
+
)
|
|
151
|
+
def chain_embedding(
|
|
152
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
153
|
+
exists=True,
|
|
154
|
+
file_okay=True,
|
|
155
|
+
dir_okay=False,
|
|
156
|
+
resolve_path=True,
|
|
157
|
+
help='CSV file 2 columns: Residue embedding torch tensor file | Output embedding name.'
|
|
158
|
+
)],
|
|
159
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
160
|
+
exists=True,
|
|
161
|
+
file_okay=False,
|
|
162
|
+
dir_okay=True,
|
|
163
|
+
resolve_path=True,
|
|
164
|
+
help='Output path to store predictions. Embeddings are stored as csv files.'
|
|
165
|
+
)],
|
|
166
|
+
batch_size: Annotated[int, typer.Option(
|
|
167
|
+
help='Number of samples processed together in one iteration.'
|
|
168
|
+
)] = 1,
|
|
169
|
+
num_workers: Annotated[int, typer.Option(
|
|
170
|
+
help='Number of subprocesses to use for data loading.'
|
|
171
|
+
)] = 0,
|
|
172
|
+
num_nodes: Annotated[int, typer.Option(
|
|
173
|
+
help='Number of nodes to use for inference.'
|
|
174
|
+
)] = 1,
|
|
175
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
176
|
+
help='Device used for inference.'
|
|
177
|
+
)] = Accelerator.auto,
|
|
178
|
+
devices: Annotated[List[str], typer.Option(
|
|
179
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
180
|
+
)] = tuple(['auto'])
|
|
181
|
+
):
|
|
182
|
+
from rcsb_embedding_model.inference.chain_inference import predict
|
|
183
|
+
predict(
|
|
184
|
+
src_stream=src_file,
|
|
185
|
+
src_location=SrcLocation.local,
|
|
186
|
+
batch_size=batch_size,
|
|
187
|
+
num_workers=num_workers,
|
|
188
|
+
num_nodes=num_nodes,
|
|
189
|
+
accelerator=accelerator,
|
|
190
|
+
devices=arg_devices(devices),
|
|
191
|
+
out_path=output_path
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
@app.command(
|
|
195
|
+
name="assembly-embedding",
|
|
196
|
+
help="Calculate assembly embeddings from residue level embeddings stored as torch tensor files. Predictions are stored as csv files."
|
|
197
|
+
)
|
|
198
|
+
def assembly_embedding(
|
|
199
|
+
src_file: Annotated[typer.FileText, typer.Option(
|
|
200
|
+
exists=True,
|
|
201
|
+
file_okay=True,
|
|
202
|
+
dir_okay=False,
|
|
203
|
+
resolve_path=True,
|
|
204
|
+
help='CSV file 4 columns: Structure Name | Structure File Path | Assembly Id | Output embedding name.'
|
|
205
|
+
)],
|
|
206
|
+
res_embedding_location: Annotated[typer.FileText, typer.Option(
|
|
207
|
+
exists=True,
|
|
208
|
+
file_okay=False,
|
|
209
|
+
dir_okay=True,
|
|
210
|
+
resolve_path=True,
|
|
211
|
+
help='Path where residue level embeddings for single chains are located.'
|
|
212
|
+
)],
|
|
213
|
+
output_path: Annotated[typer.FileText, typer.Option(
|
|
214
|
+
exists=True,
|
|
215
|
+
file_okay=False,
|
|
216
|
+
dir_okay=True,
|
|
217
|
+
resolve_path=True,
|
|
218
|
+
help='Output path to store predictions. Embeddings are stored as csv files.'
|
|
219
|
+
)],
|
|
220
|
+
src_from: Annotated[SrcAssemblyFrom, typer.Option(
|
|
221
|
+
help='Use specific assembly or all assemblies in a structure.'
|
|
222
|
+
)] = SrcAssemblyFrom.assembly,
|
|
223
|
+
structure_location: Annotated[StructureLocation, typer.Option(
|
|
224
|
+
help='Source input location.'
|
|
225
|
+
)] = StructureLocation.local,
|
|
226
|
+
structure_format: Annotated[StructureFormat, typer.Option(
|
|
227
|
+
help='Structure file format.'
|
|
228
|
+
)] = StructureFormat.mmcif,
|
|
229
|
+
min_res_n: Annotated[int, typer.Option(
|
|
230
|
+
help='Consider only assembly chains with more than <min_res_n> residues.'
|
|
231
|
+
)] = 0,
|
|
232
|
+
max_res_n: Annotated[int, typer.Option(
|
|
233
|
+
help='Stop adding assembly chains when number of residues is greater than <max_res_n> residues.'
|
|
234
|
+
)] = sys.maxsize,
|
|
235
|
+
batch_size: Annotated[int, typer.Option(
|
|
236
|
+
help='Number of samples processed together in one iteration.'
|
|
237
|
+
)] = 1,
|
|
238
|
+
num_workers: Annotated[int, typer.Option(
|
|
239
|
+
help='Number of subprocesses to use for data loading.'
|
|
240
|
+
)] = 0,
|
|
241
|
+
num_nodes: Annotated[int, typer.Option(
|
|
242
|
+
help='Number of nodes to use for inference.'
|
|
243
|
+
)] = 1,
|
|
244
|
+
accelerator: Annotated[Accelerator, typer.Option(
|
|
245
|
+
help='Device used for inference.'
|
|
246
|
+
)] = Accelerator.auto,
|
|
247
|
+
devices: Annotated[List[str], typer.Option(
|
|
248
|
+
help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
|
|
249
|
+
)] = tuple(['auto'])
|
|
250
|
+
):
|
|
251
|
+
from rcsb_embedding_model.inference.assembly_inferece import predict
|
|
252
|
+
predict(
|
|
253
|
+
src_stream=src_file,
|
|
254
|
+
res_embedding_location=res_embedding_location,
|
|
255
|
+
src_location=SrcLocation.local,
|
|
256
|
+
src_from=src_from,
|
|
257
|
+
structure_location=structure_location,
|
|
258
|
+
structure_format=structure_format,
|
|
259
|
+
min_res_n=min_res_n,
|
|
260
|
+
max_res_n=max_res_n,
|
|
261
|
+
batch_size=batch_size,
|
|
262
|
+
num_workers=num_workers,
|
|
263
|
+
num_nodes=num_nodes,
|
|
264
|
+
accelerator=accelerator,
|
|
265
|
+
devices=arg_devices(devices),
|
|
266
|
+
out_path=output_path
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
if __name__ == "__main__":
|
|
271
|
+
app()
|
|
@@ -0,0 +1,102 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from biotite.structure import chain_iter
|
|
5
|
+
from esm.models.esm3 import ESM3
|
|
6
|
+
from esm.sdk.api import ESMProtein, SamplingConfig
|
|
7
|
+
from esm.utils.constants.models import ESM3_OPEN_SMALL
|
|
8
|
+
from esm.utils.structure.protein_chain import ProteinChain
|
|
9
|
+
from torch.utils.data import Dataset, DataLoader
|
|
10
|
+
import pandas as pd
|
|
11
|
+
|
|
12
|
+
from rcsb_embedding_model.types.api_types import StructureFormat, StructureLocation, SrcLocation
|
|
13
|
+
from rcsb_embedding_model.utils.data import stringio_from_url
|
|
14
|
+
from rcsb_embedding_model.utils.structure_parser import rename_atom_ch
|
|
15
|
+
from rcsb_embedding_model.utils.structure_provider import StructureProvider
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class EsmProtFromChain(Dataset):
|
|
19
|
+
|
|
20
|
+
STREAM_NAME_ATTR = 'stream_name'
|
|
21
|
+
STREAM_ATTR = 'stream'
|
|
22
|
+
CH_ATTR = 'chain_id'
|
|
23
|
+
ITEM_NAME_ATTR = 'item_name'
|
|
24
|
+
|
|
25
|
+
COLUMNS = [STREAM_NAME_ATTR, STREAM_ATTR, CH_ATTR, ITEM_NAME_ATTR]
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
src_stream,
|
|
30
|
+
src_location=SrcLocation.local,
|
|
31
|
+
structure_location=StructureLocation.local,
|
|
32
|
+
structure_format=StructureFormat.mmcif,
|
|
33
|
+
structure_provider=StructureProvider()
|
|
34
|
+
):
|
|
35
|
+
super().__init__()
|
|
36
|
+
self.__structure_provider = structure_provider
|
|
37
|
+
self.src_location = src_location
|
|
38
|
+
self.structure_location = structure_location
|
|
39
|
+
self.structure_format = structure_format
|
|
40
|
+
self.data = pd.DataFrame()
|
|
41
|
+
self.__load_stream(src_stream)
|
|
42
|
+
|
|
43
|
+
def __load_stream(self, src_stream):
|
|
44
|
+
self.data = pd.DataFrame(
|
|
45
|
+
src_stream,
|
|
46
|
+
dtype=str,
|
|
47
|
+
columns=EsmProtFromChain.COLUMNS
|
|
48
|
+
) if self.src_location == SrcLocation.stream else pd.read_csv(
|
|
49
|
+
src_stream,
|
|
50
|
+
header=None,
|
|
51
|
+
index_col=None,
|
|
52
|
+
dtype=str,
|
|
53
|
+
names=EsmProtFromChain.COLUMNS
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def __len__(self):
|
|
57
|
+
return len(self.data)
|
|
58
|
+
|
|
59
|
+
def __getitem__(self, idx):
|
|
60
|
+
src_name = self.data.loc[idx, EsmProtFromChain.STREAM_NAME_ATTR]
|
|
61
|
+
src_structure = self.data.loc[idx, EsmProtFromChain.STREAM_ATTR]
|
|
62
|
+
chain_id = self.data.loc[idx, EsmProtFromChain.CH_ATTR]
|
|
63
|
+
item_name = self.data.loc[idx, EsmProtFromChain.ITEM_NAME_ATTR]
|
|
64
|
+
structure = self.__structure_provider.get_structure(
|
|
65
|
+
src_name=src_name,
|
|
66
|
+
src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
|
|
67
|
+
structure_format=self.structure_format,
|
|
68
|
+
chain_id=chain_id
|
|
69
|
+
)
|
|
70
|
+
for atom_ch in chain_iter(structure):
|
|
71
|
+
protein_chain = ProteinChain.from_atomarray(rename_atom_ch(atom_ch))
|
|
72
|
+
return ESMProtein.from_protein_chain(protein_chain), item_name
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
if __name__ == '__main__':
|
|
76
|
+
|
|
77
|
+
parser = argparse.ArgumentParser()
|
|
78
|
+
parser.add_argument('--file_list', type=argparse.FileType('r'), required=True)
|
|
79
|
+
args = parser.parse_args()
|
|
80
|
+
|
|
81
|
+
dataset = EsmProtFromChain(
|
|
82
|
+
args.file_list
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
esm3 = ESM3.from_pretrained(
|
|
86
|
+
ESM3_OPEN_SMALL,
|
|
87
|
+
torch.device("cpu")
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
dataloader = DataLoader(
|
|
91
|
+
dataset,
|
|
92
|
+
batch_size=2,
|
|
93
|
+
collate_fn=lambda _: _
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
for _batch in dataloader:
|
|
97
|
+
for esm_prot, prot_name in _batch:
|
|
98
|
+
protein_tensor = esm3.encode(esm_prot)
|
|
99
|
+
embeddings = esm3.forward_and_sample(
|
|
100
|
+
protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
|
|
101
|
+
).per_residue_embedding
|
|
102
|
+
print(prot_name, embeddings.shape)
|