rcsb-embedding-model 0.0.5__tar.gz → 0.0.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rcsb-embedding-model might be problematic. Click here for more details.

Files changed (27) hide show
  1. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/PKG-INFO +3 -1
  2. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/pyproject.toml +9 -3
  3. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/cli/args_utils.py +11 -0
  4. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/cli/inference.py +149 -0
  5. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/dataset/esm_prot_from_csv.py +91 -0
  6. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/dataset/residue_embedding_from_csv.py +32 -0
  7. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/inference/chain_inference.py +50 -0
  8. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/inference/esm_inference.py +50 -0
  9. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/modules/chain_module.py +16 -0
  10. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/modules/esm_module.py +24 -0
  11. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/rcsb_structure_embedding.py +128 -0
  12. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/types/api_types.py +29 -0
  13. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/utils/data.py +47 -0
  14. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/utils/model.py +29 -0
  15. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/utils/structure_parser.py +51 -0
  16. rcsb_embedding_model-0.0.6/src/rcsb_embedding_model/writer/batch_writer.py +113 -0
  17. rcsb_embedding_model-0.0.5/tests/test_model.py → rcsb_embedding_model-0.0.6/tests/test_embedding_model.py +3 -2
  18. rcsb_embedding_model-0.0.5/src/rcsb_embedding_model/rcsb_structure_embedding.py +0 -171
  19. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/.gitignore +0 -0
  20. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/LICENSE.md +0 -0
  21. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/README.md +0 -0
  22. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/assets/embedding-model-architecture.png +0 -0
  23. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/examples/esm_embeddings.py +0 -0
  24. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/src/rcsb_embedding_model/__init__.py +0 -0
  25. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/src/rcsb_embedding_model/model/layers.py +0 -0
  26. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/src/rcsb_embedding_model/model/residue_embedding_aggregator.py +0 -0
  27. {rcsb_embedding_model-0.0.5 → rcsb_embedding_model-0.0.6}/tests/resources/1acb.cif +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rcsb-embedding-model
3
- Version: 0.0.5
3
+ Version: 0.0.6
4
4
  Summary: Protein Embedding Model for Structure Search
5
5
  Project-URL: Homepage, https://github.com/rcsb/rcsb-embedding-model
6
6
  Project-URL: Issues, https://github.com/rcsb/rcsb-embedding-model/issues
@@ -11,7 +11,9 @@ Classifier: Operating System :: OS Independent
11
11
  Classifier: Programming Language :: Python :: 3
12
12
  Requires-Python: >=3.10
13
13
  Requires-Dist: esm>=3.2.0
14
+ Requires-Dist: lightning>=2.5.0
14
15
  Requires-Dist: torch>=2.2.0
16
+ Requires-Dist: typer>=0.15.0
15
17
  Description-Content-Type: text/markdown
16
18
 
17
19
  # RCSB Embedding Model: A Deep Learning Approach for 3D Structure Embeddings
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "rcsb-embedding-model"
3
- version = "0.0.5"
3
+ version = "0.0.6"
4
4
  authors = [
5
5
  { name="Joan Segura", email="joan.segura@rcsb.org" },
6
6
  ]
@@ -15,8 +15,11 @@ license = "BSD-3-Clause"
15
15
  license-files = ["LICEN[CS]E*"]
16
16
  dependencies=[
17
17
  "esm >= 3.2.0",
18
- "torch >= 2.2.0"
18
+ "torch >= 2.2.0",
19
+ "lightning >= 2.5.0",
20
+ "typer >= 0.15.0"
19
21
  ]
22
+
20
23
  [project.urls]
21
24
  Homepage = "https://github.com/rcsb/rcsb-embedding-model"
22
25
  Issues = "https://github.com/rcsb/rcsb-embedding-model/issues"
@@ -26,4 +29,7 @@ requires = [
26
29
  "hatchling >= 1.14.1"
27
30
  ]
28
31
 
29
- build-backend = "hatchling.build"
32
+ build-backend = "hatchling.build"
33
+
34
+ [project.scripts]
35
+ inference = "rcsb_embedding_model.cli.inference:app"
@@ -0,0 +1,11 @@
1
+
2
+ from enum import Enum
3
+
4
+
5
+ def arg_devices(devices):
6
+ if len(devices) == 1:
7
+ return devices[0] if devices[0] == "auto" else int(devices[0])
8
+ return [int(x) for x in devices]
9
+
10
+
11
+
@@ -0,0 +1,149 @@
1
+ from typing import Annotated, List
2
+
3
+ import typer
4
+
5
+ from rcsb_embedding_model.cli.args_utils import arg_devices
6
+ from rcsb_embedding_model.types.api_types import SrcFormat, Accelerator, SrcLocation
7
+
8
+ app = typer.Typer()
9
+
10
+
11
+ @app.command(name="residue-embedding")
12
+ def residue_embedding(
13
+ src_file: Annotated[typer.FileText, typer.Option(
14
+ exists=True,
15
+ file_okay=True,
16
+ dir_okay=False,
17
+ resolve_path=True,
18
+ help='CSV file 3 columns: Structure File | Chain Id (asym_i for cif files) | Output file name.'
19
+ )],
20
+ src_location: Annotated[SrcLocation, typer.Option(
21
+ help='Source input location.'
22
+ )] = SrcLocation.local,
23
+ src_format: Annotated[SrcFormat, typer.Option(
24
+ help='Structure file format.'
25
+ )] = SrcFormat.mmcif,
26
+ batch_size: Annotated[int, typer.Option(
27
+ help='Number of samples processed together in one iteration.'
28
+ )] = 1,
29
+ num_workers: Annotated[int, typer.Option(
30
+ help='Number of subprocesses to use for data loading.'
31
+ )] = 0,
32
+ num_nodes: Annotated[int, typer.Option(
33
+ help='Number of nodes to use for inference.'
34
+ )] = 1,
35
+ accelerator: Annotated[Accelerator, typer.Option(
36
+ help='Device used for inference.'
37
+ )] = Accelerator.auto,
38
+ devices: Annotated[List[str], typer.Option(
39
+ help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
40
+ )] = tuple(['auto']),
41
+ output_path: Annotated[typer.FileText, typer.Option(
42
+ exists=True,
43
+ file_okay=False,
44
+ dir_okay=True,
45
+ resolve_path=True,
46
+ help='Output path to store predictions.'
47
+ )] = None
48
+ ):
49
+ from rcsb_embedding_model.inference.esm_inference import predict
50
+ predict(
51
+ csv_file=src_file,
52
+ src_location=src_location,
53
+ src_format=src_format,
54
+ batch_size=batch_size,
55
+ num_workers=num_workers,
56
+ num_nodes=num_nodes,
57
+ accelerator=accelerator,
58
+ devices=arg_devices(devices),
59
+ out_path=output_path
60
+ )
61
+
62
+
63
+ @app.command(name="structure-embedding")
64
+ def structure_embedding(
65
+ src_file: Annotated[typer.FileText, typer.Option(
66
+ exists=True,
67
+ file_okay=True,
68
+ dir_okay=False,
69
+ resolve_path=True,
70
+ help='CSV file 3 columns: Structure File | Chain Id (asym_i for cif files) | Output file name.'
71
+ )],
72
+ src_location: Annotated[SrcLocation, typer.Option(
73
+ help='Source input location.'
74
+ )] = SrcLocation.local,
75
+ src_format: Annotated[SrcFormat, typer.Option(
76
+ help='Structure file format.'
77
+ )] = SrcFormat.mmcif,
78
+ batch_size: Annotated[int, typer.Option(
79
+ help='Number of samples processed together in one iteration.'
80
+ )] = 1,
81
+ num_workers: Annotated[int, typer.Option(
82
+ help='Number of subprocesses to use for data loading.'
83
+ )] = 0,
84
+ num_nodes: Annotated[int, typer.Option(
85
+ help='Number of nodes to use for inference.'
86
+ )] = 1,
87
+ accelerator: Annotated[Accelerator, typer.Option(
88
+ help='Device used for inference.'
89
+ )] = Accelerator.auto,
90
+ devices: Annotated[List[str], typer.Option(
91
+ help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
92
+ )] = tuple(['auto']),
93
+ output_path: Annotated[typer.FileText, typer.Option(
94
+ exists=True,
95
+ file_okay=False,
96
+ dir_okay=True,
97
+ resolve_path=True,
98
+ help='Output path to store predictions.'
99
+ )] = None
100
+ ):
101
+ pass
102
+
103
+
104
+ @app.command(name="chain-embedding")
105
+ def chain_embedding(
106
+ src_file: Annotated[typer.FileText, typer.Option(
107
+ exists=True,
108
+ file_okay=True,
109
+ dir_okay=False,
110
+ resolve_path=True,
111
+ help='CSV file 2 columns: Residue Embedding Tensor File | Output file name.'
112
+ )],
113
+ batch_size: Annotated[int, typer.Option(
114
+ help='Number of samples processed together in one iteration.'
115
+ )] = 1,
116
+ num_workers: Annotated[int, typer.Option(
117
+ help='Number of subprocesses to use for data loading.'
118
+ )] = 0,
119
+ num_nodes: Annotated[int, typer.Option(
120
+ help='Number of nodes to use for inference.'
121
+ )] = 1,
122
+ accelerator: Annotated[Accelerator, typer.Option(
123
+ help='Device used for inference.'
124
+ )] = Accelerator.auto,
125
+ devices: Annotated[List[str], typer.Option(
126
+ help='The devices to use. Can be set to a positive number or "auto". Repeat this argument to indicate multiple indices of devices. "auto" for automatic selection based on the chosen accelerator.'
127
+ )] = tuple(['auto']),
128
+ output_path: Annotated[typer.FileText, typer.Option(
129
+ exists=True,
130
+ file_okay=False,
131
+ dir_okay=True,
132
+ resolve_path=True,
133
+ help='Output path to store predictions.'
134
+ )] = None
135
+ ):
136
+ from rcsb_embedding_model.inference.chain_inference import predict
137
+ predict(
138
+ csv_file=src_file,
139
+ batch_size=batch_size,
140
+ num_workers=num_workers,
141
+ num_nodes=num_nodes,
142
+ accelerator=accelerator,
143
+ devices=arg_devices(devices),
144
+ out_path=output_path
145
+ )
146
+
147
+
148
+ if __name__ == "__main__":
149
+ app()
@@ -0,0 +1,91 @@
1
+ import argparse
2
+ import os
3
+
4
+ import torch
5
+ from biotite.structure import chain_iter
6
+ from esm.models.esm3 import ESM3
7
+ from esm.sdk.api import ESMProtein, SamplingConfig
8
+ from esm.utils.constants.models import ESM3_OPEN_SMALL
9
+ from esm.utils.structure.protein_chain import ProteinChain
10
+ from torch.utils.data import Dataset, DataLoader
11
+ import pandas as pd
12
+
13
+ from rcsb_embedding_model.types.api_types import SrcFormat, SrcLocation
14
+ from rcsb_embedding_model.utils.data import stringio_from_url
15
+ from rcsb_embedding_model.utils.structure_parser import get_structure_from_src
16
+
17
+
18
+ class EsmProtFromCsv(Dataset):
19
+
20
+ MIN_RES = 10
21
+ STREAM_ATTR = 'stream'
22
+ CH_ATTR = 'chain_id'
23
+ NAME_ATTR = 'name'
24
+
25
+ COLUMNS = [STREAM_ATTR, CH_ATTR, NAME_ATTR]
26
+
27
+ def __init__(
28
+ self,
29
+ csv_file,
30
+ src_location=SrcLocation.local,
31
+ src_format=SrcFormat.mmcif,
32
+ ):
33
+ super().__init__()
34
+ self.src_location = src_location
35
+ self.src_format = src_format
36
+ self.data = pd.DataFrame()
37
+ self.__load_stream(csv_file)
38
+
39
+ def __load_stream(self, stream_list):
40
+ self.data = pd.read_csv(
41
+ stream_list,
42
+ header=None,
43
+ index_col=None,
44
+ names=EsmProtFromCsv.COLUMNS
45
+ )
46
+
47
+ def __len__(self):
48
+ return len(self.data)
49
+
50
+ def __getitem__(self, idx):
51
+ structure_src = self.data.loc[idx, EsmProtFromCsv.STREAM_ATTR]
52
+ chain_id = self.data.loc[idx, EsmProtFromCsv.CH_ATTR]
53
+ name = self.data.loc[idx, EsmProtFromCsv.NAME_ATTR]
54
+ structure = get_structure_from_src(
55
+ structure_src if self.src_location == SrcLocation.local else stringio_from_url(structure_src),
56
+ src_format=self.src_format,
57
+ chain_id=chain_id
58
+ )
59
+ for atom_ch in chain_iter(structure):
60
+ protein_chain = ProteinChain.from_atomarray(atom_ch)
61
+ return ESMProtein.from_protein_chain(protein_chain), name
62
+
63
+
64
+ if __name__ == '__main__':
65
+
66
+ parser = argparse.ArgumentParser()
67
+ parser.add_argument('--file_list', type=argparse.FileType('r'), required=True)
68
+ args = parser.parse_args()
69
+
70
+ dataset = EsmProtFromCsv(
71
+ args.file_list
72
+ )
73
+
74
+ esm3 = ESM3.from_pretrained(
75
+ ESM3_OPEN_SMALL,
76
+ torch.device("cpu")
77
+ )
78
+
79
+ dataloader = DataLoader(
80
+ dataset,
81
+ batch_size=2,
82
+ collate_fn=lambda _: _
83
+ )
84
+
85
+ for _batch in dataloader:
86
+ for esm_prot, name in _batch:
87
+ protein_tensor = esm3.encode(esm_prot)
88
+ embeddings = esm3.forward_and_sample(
89
+ protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
90
+ ).per_residue_embedding
91
+ print(name, embeddings.shape)
@@ -0,0 +1,32 @@
1
+ import pandas as pd
2
+ import torch
3
+ from torch.utils.data import Dataset
4
+
5
+
6
+ class ResidueEmbeddingFromCSV(Dataset):
7
+
8
+ STREAM_ATTR = 'stream'
9
+ NAME_ATTR = 'name'
10
+
11
+ COLUMNS = [STREAM_ATTR, NAME_ATTR]
12
+
13
+ def __init__(self, csv_file):
14
+ super().__init__()
15
+ self.data = pd.DataFrame()
16
+ self.__load_stream(csv_file)
17
+
18
+ def __load_stream(self, csv_file):
19
+ self.data = pd.read_csv(
20
+ csv_file,
21
+ header=None,
22
+ index_col=None,
23
+ names=ResidueEmbeddingFromCSV.COLUMNS
24
+ )
25
+
26
+ def __len__(self):
27
+ return len(self.data)
28
+
29
+ def __getitem__(self, idx):
30
+ embedding_src = self.data.loc[idx, ResidueEmbeddingFromCSV.STREAM_ATTR]
31
+ name = self.data.loc[idx, ResidueEmbeddingFromCSV.NAME_ATTR]
32
+ return torch.load(embedding_src, map_location=torch.device('cpu')), name
@@ -0,0 +1,50 @@
1
+ from torch.utils.data import DataLoader
2
+ from lightning import Trainer
3
+ from typer import FileText
4
+
5
+ from rcsb_embedding_model.dataset.residue_embedding_from_csv import ResidueEmbeddingFromCSV
6
+ from rcsb_embedding_model.modules.chain_module import ChainModule
7
+ from rcsb_embedding_model.types.api_types import Accelerator, Devices, OptionalPath
8
+ from rcsb_embedding_model.utils.data import collate_seq_embeddings
9
+ from rcsb_embedding_model.writer.batch_writer import CsvBatchWriter
10
+
11
+
12
+ def predict(
13
+ csv_file: FileText,
14
+ batch_size: int = 1,
15
+ num_workers: int = 0,
16
+ num_nodes: int = 1,
17
+ accelerator: Accelerator = Accelerator.auto,
18
+ devices: Devices = 'auto',
19
+ out_path: OptionalPath = None
20
+ ):
21
+ inference_set = ResidueEmbeddingFromCSV(
22
+ csv_file=csv_file
23
+ )
24
+
25
+ inference_dataloader = DataLoader(
26
+ dataset=inference_set,
27
+ batch_size=batch_size,
28
+ num_workers=num_workers,
29
+ collate_fn=lambda emb: (
30
+ collate_seq_embeddings([x for x, z in emb]),
31
+ tuple([z for x, z in emb])
32
+ )
33
+ )
34
+
35
+ module = ChainModule()
36
+
37
+ inference_writer = CsvBatchWriter(out_path) if out_path is not None else None
38
+ trainer = Trainer(
39
+ callbacks=[inference_writer] if inference_writer is not None else None,
40
+ num_nodes=num_nodes,
41
+ accelerator=accelerator,
42
+ devices=devices
43
+ )
44
+
45
+ prediction = trainer.predict(
46
+ module,
47
+ inference_dataloader
48
+ )
49
+
50
+ return prediction
@@ -0,0 +1,50 @@
1
+ from torch.utils.data import DataLoader
2
+ from lightning import Trainer
3
+ from typer import FileText
4
+
5
+ from rcsb_embedding_model.dataset.esm_prot_from_csv import EsmProtFromCsv
6
+ from rcsb_embedding_model.modules.esm_module import EsmModule
7
+ from rcsb_embedding_model.types.api_types import SrcFormat, Accelerator, Devices, OptionalPath, SrcLocation
8
+ from rcsb_embedding_model.writer.batch_writer import TensorBatchWriter
9
+
10
+
11
+ def predict(
12
+ csv_file: FileText,
13
+ src_location: SrcLocation = SrcLocation.local,
14
+ src_format: SrcFormat = SrcFormat.mmcif,
15
+ batch_size: int = 1,
16
+ num_workers: int = 0,
17
+ num_nodes: int = 1,
18
+ accelerator: Accelerator = Accelerator.auto,
19
+ devices: Devices = 'auto',
20
+ out_path: OptionalPath = None
21
+ ):
22
+
23
+ inference_set = EsmProtFromCsv(
24
+ csv_file=csv_file,
25
+ src_location=src_location,
26
+ src_format=src_format
27
+ )
28
+
29
+ inference_dataloader = DataLoader(
30
+ dataset=inference_set,
31
+ batch_size=batch_size,
32
+ num_workers=num_workers,
33
+ collate_fn=lambda _: _
34
+ )
35
+
36
+ module = EsmModule()
37
+ inference_writer = TensorBatchWriter(out_path) if out_path is not None else None
38
+ trainer = Trainer(
39
+ callbacks=[inference_writer] if inference_writer is not None else None,
40
+ num_nodes=num_nodes,
41
+ accelerator=accelerator,
42
+ devices=devices
43
+ )
44
+
45
+ prediction = trainer.predict(
46
+ module,
47
+ inference_dataloader
48
+ )
49
+
50
+ return prediction
@@ -0,0 +1,16 @@
1
+ from lightning import LightningModule
2
+
3
+ from rcsb_embedding_model.utils.model import get_aggregator_model
4
+
5
+
6
+ class ChainModule(LightningModule):
7
+
8
+ def __init__(
9
+ self
10
+ ):
11
+ super().__init__()
12
+ self.model = get_aggregator_model(device=self.device)
13
+
14
+ def predict_step(self, batch, batch_idx):
15
+ (x, x_mask), dom_id = batch
16
+ return self.model(x, x_mask), dom_id
@@ -0,0 +1,24 @@
1
+ from esm.sdk.api import SamplingConfig
2
+ from lightning import LightningModule
3
+
4
+ from rcsb_embedding_model.utils.model import get_residue_model
5
+
6
+
7
+ class EsmModule(LightningModule):
8
+
9
+ def __init__(
10
+ self
11
+ ):
12
+ super().__init__()
13
+ self.esm3 = get_residue_model(self.device)
14
+
15
+ def predict_step(self, prot_batch, batch_idx):
16
+ prot_embeddings = []
17
+ prot_names = []
18
+ for esm_prot, name in prot_batch:
19
+ embeddings = self.esm3.forward_and_sample(
20
+ self.esm3.encode(esm_prot), SamplingConfig(return_per_residue_embeddings=True)
21
+ ).per_residue_embedding
22
+ prot_embeddings.append(embeddings)
23
+ prot_names.append(name)
24
+ return tuple(prot_embeddings), tuple(prot_names)
@@ -0,0 +1,128 @@
1
+ import torch
2
+ from biotite.structure import get_residues, chain_iter, filter_amino_acids
3
+ from esm.sdk.api import ESMProtein, SamplingConfig
4
+ from esm.utils.structure.protein_chain import ProteinChain
5
+ from huggingface_hub import hf_hub_download
6
+
7
+ from rcsb_embedding_model.types.api_types import StreamSrc, SrcFormat
8
+ from rcsb_embedding_model.utils.model import get_aggregator_model, get_residue_model
9
+ from rcsb_embedding_model.utils.structure_parser import get_structure_from_src
10
+
11
+
12
+ class RcsbStructureEmbedding:
13
+
14
+ MIN_RES = 10
15
+
16
+ def __init__(self):
17
+ self.__residue_embedding = None
18
+ self.__aggregator_embedding = None
19
+
20
+ def load_models(
21
+ self,
22
+ device: torch.device = None
23
+ ):
24
+ self.load_residue_embedding(device)
25
+ self.load_aggregator_embedding(device)
26
+
27
+ def load_residue_embedding(
28
+ self,
29
+ device: torch.device = None
30
+ ):
31
+ if not device:
32
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33
+ self.__residue_embedding = _load_res_model(device)
34
+
35
+ def load_aggregator_embedding(
36
+ self,
37
+ device: torch.device = None
38
+ ):
39
+ if not device:
40
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
41
+ self.__aggregator_embedding = _load_model(device)
42
+
43
+ def structure_embedding(
44
+ self,
45
+ structure_src: StreamSrc,
46
+ src_format: SrcFormat = SrcFormat.mmcif,
47
+ chain_id: str = None,
48
+ assembly_id: str = None
49
+ ):
50
+ res_embedding = self.residue_embedding(structure_src, src_format, chain_id, assembly_id)
51
+ return self.aggregator_embedding(res_embedding)
52
+
53
+ def residue_embedding(
54
+ self,
55
+ structure_src: StreamSrc,
56
+ src_format: SrcFormat = SrcFormat.mmcif,
57
+ chain_id: str = None,
58
+ assembly_id: str = None
59
+ ):
60
+ self.__check_residue_embedding()
61
+ structure = get_structure_from_src(structure_src, src_format, chain_id, assembly_id)
62
+ embedding_ch = []
63
+ for atom_ch in chain_iter(structure):
64
+ atom_res = atom_ch[filter_amino_acids(atom_ch)]
65
+ if len(atom_res) == 0 or len(get_residues(atom_res)[0]) < RcsbStructureEmbedding.MIN_RES:
66
+ continue
67
+ protein_chain = ProteinChain.from_atomarray(atom_ch)
68
+ protein = ESMProtein.from_protein_chain(protein_chain)
69
+ protein_tensor = self.__residue_embedding.encode(protein)
70
+ embedding_ch.append(self.__residue_embedding.forward_and_sample(
71
+ protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
72
+ ).per_residue_embedding)
73
+ return torch.cat(
74
+ embedding_ch,
75
+ dim=0
76
+ )
77
+
78
+ def sequence_embedding(
79
+ self,
80
+ sequence: str
81
+ ):
82
+ self.__check_residue_embedding()
83
+
84
+ if sequence.startswith(">"):
85
+ sequence = "".join(line.strip() for line in sequence.splitlines() if not line.startswith(">"))
86
+
87
+ if len(sequence) < RcsbStructureEmbedding.MIN_RES:
88
+ raise ValueError(f"Sequence too short for embedding (min {RcsbStructureEmbedding.MIN_RES} residues)")
89
+
90
+ protein = ESMProtein(sequence=sequence)
91
+ protein_tensor = self.__residue_embedding.encode(protein)
92
+
93
+ result = self.__residue_embedding.forward_and_sample(
94
+ protein_tensor,
95
+ SamplingConfig(return_per_residue_embeddings=True)
96
+ )
97
+
98
+ return result.per_residue_embedding
99
+
100
+ def aggregator_embedding(
101
+ self,
102
+ residue_embedding: torch.Tensor
103
+ ):
104
+ self.__check_aggregator_embedding()
105
+ return self.__aggregator_embedding(residue_embedding)
106
+
107
+ def __check_residue_embedding(self):
108
+ if self.__residue_embedding is None:
109
+ self.load_residue_embedding()
110
+
111
+ def __check_aggregator_embedding(self):
112
+ if self.__aggregator_embedding is None:
113
+ self.load_aggregator_embedding()
114
+
115
+
116
+ def _load_model(device=None):
117
+ if not device:
118
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
119
+ aggregator_model = get_aggregator_model(device=device)
120
+ aggregator_model.to(device)
121
+ aggregator_model.eval()
122
+ return aggregator_model
123
+
124
+
125
+ def _load_res_model(device=None):
126
+ if not device:
127
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
128
+ return get_residue_model(device)
@@ -0,0 +1,29 @@
1
+ from enum import Enum
2
+ from os import PathLike
3
+ from typing import NewType, Union, IO, Tuple, List, Optional
4
+
5
+ StreamSrc = NewType('StreamSrc', Union[PathLike, IO])
6
+ StreamTuple = NewType('StreamTuple', Tuple[StreamSrc, str, str])
7
+
8
+ Devices = NewType('Devices', Union[int, List[int], "auto"])
9
+
10
+ OptionalPath = NewType('OptionalPath', Optional[PathLike])
11
+
12
+
13
+ class SrcFormat(str, Enum):
14
+ pdb = "pdb"
15
+ mmcif = "mmcif"
16
+ bciff = "binarycif"
17
+
18
+
19
+ class Accelerator(str, Enum):
20
+ cpu = "cpu"
21
+ gpu = "gpu"
22
+ tpu = "tpu"
23
+ hpu = "hpu"
24
+ auto = "auto"
25
+
26
+
27
+ class SrcLocation(str, Enum):
28
+ local = "local"
29
+ remote = "remote"
@@ -0,0 +1,47 @@
1
+ from io import StringIO
2
+
3
+ import requests
4
+ import torch
5
+
6
+
7
+ def collate_seq_embeddings(batch_list):
8
+ """
9
+ Pads the tensors in a batch to the same size.
10
+
11
+ Args:
12
+ batch_list (list of torch.Tensor): A list of samples, where each sample is a tensor of shape (sequence_length, embedding_dim).
13
+
14
+ Returns:
15
+ tuple: A tuple containing:
16
+ - padded_batch (torch.Tensor): A tensor of shape (batch_size, max_seq_length, embedding_dim), where each sample is padded to the max sequence length.
17
+ - mask_batch (torch.Tensor): A tensor of shape (batch_size, max_seq_length) where padded positions are marked as False.
18
+ """
19
+ if batch_list[0] is None:
20
+ return None
21
+ device = batch_list[0].device # Get the device of the input tensors
22
+ max_len = max(sample.size(0) for sample in batch_list) # Determine the maximum sequence length
23
+ dim = batch_list[0].size(1) # Determine the embedding dimension
24
+ batch_size = len(batch_list) # Determine the batch size
25
+
26
+ # Initialize tensors for the padded batch and masks on the same device as the input tensors
27
+ padded_batch = torch.zeros((batch_size, max_len, dim), dtype=batch_list[0].dtype, device=device)
28
+ mask_batch = torch.ones((batch_size, max_len), dtype=torch.bool, device=device)
29
+
30
+ for i, sample in enumerate(batch_list):
31
+ seq_len = sample.size(0) # Get the length of the current sequence
32
+ padded_batch[i, :seq_len] = sample # Pad the sequence with zeros
33
+ mask_batch[i, :seq_len] = False # Set mask positions for the actual data to False
34
+
35
+ return padded_batch, mask_batch
36
+
37
+
38
+ def stringio_from_url(url):
39
+ try:
40
+ response = requests.get(url)
41
+ response.raise_for_status()
42
+ return StringIO(response.text)
43
+ except requests.exceptions.RequestException as e:
44
+ print(f"Error fetching URL: {e}")
45
+ return None
46
+
47
+
@@ -0,0 +1,29 @@
1
+ import torch
2
+ from esm.models.esm3 import ESM3
3
+ from esm.utils.constants.models import ESM3_OPEN_SMALL
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ from rcsb_embedding_model.model.residue_embedding_aggregator import ResidueEmbeddingAggregator
7
+
8
+ REPO_ID = "rcsb/rcsb-embedding-model"
9
+ FILE_NAME = "rcsb-embedding-model.pt"
10
+ REVISION = "410606e40b1bb7968ce318c41009355c3ac32503"
11
+
12
+
13
+ def get_aggregator_model(device=None):
14
+ model_path = hf_hub_download(
15
+ repo_id=REPO_ID,
16
+ filename=FILE_NAME,
17
+ revision=REVISION
18
+ )
19
+ weights = torch.load(model_path, weights_only=True, map_location=device)
20
+ aggregator_model = ResidueEmbeddingAggregator()
21
+ aggregator_model.load_state_dict(weights)
22
+ return aggregator_model
23
+
24
+
25
+ def get_residue_model(device=None):
26
+ return ESM3.from_pretrained(
27
+ ESM3_OPEN_SMALL,
28
+ device
29
+ )
@@ -0,0 +1,51 @@
1
+
2
+ from biotite.structure.io.pdb import PDBFile, get_structure as get_pdb_structure, get_assembly as get_pdb_assembly
3
+ from biotite.structure.io.pdbx import CIFFile, get_structure, get_assembly, BinaryCIFFile
4
+
5
+
6
+ def get_structure_from_src(
7
+ structure_src,
8
+ src_format="mmcif",
9
+ chain_id=None,
10
+ assembly_id=None
11
+ ):
12
+ if src_format == "pdb":
13
+ pdb_file = PDBFile.read(structure_src)
14
+ structure = __get_pdb_structure(pdb_file, assembly_id)
15
+ elif src_format == "mmcif":
16
+ cif_file = CIFFile.read(structure_src)
17
+ structure = __get_structure(cif_file, assembly_id)
18
+ elif src_format == "binarycif":
19
+ cif_file = BinaryCIFFile.read(structure_src)
20
+ structure = __get_structure(cif_file, assembly_id)
21
+ else:
22
+ raise RuntimeError(f"Unknown file format {src_format}")
23
+
24
+ if chain_id is not None:
25
+ structure = structure[structure.chain_id == chain_id]
26
+
27
+ return structure
28
+
29
+
30
+ def __get_pdb_structure(pdb_file, assembly_id=None):
31
+ return get_pdb_structure(
32
+ pdb_file,
33
+ model=1
34
+ ) if assembly_id is None else get_pdb_assembly(
35
+ pdb_file,
36
+ assembly_id=assembly_id,
37
+ model=1
38
+ )
39
+
40
+
41
+ def __get_structure(cif_file, assembly_id=None):
42
+ return get_structure(
43
+ cif_file,
44
+ model=1,
45
+ use_author_fields=False
46
+ ) if assembly_id is None else get_assembly(
47
+ cif_file,
48
+ assembly_id=assembly_id,
49
+ model=1,
50
+ use_author_fields=False
51
+ )
@@ -0,0 +1,113 @@
1
+
2
+ from abc import abstractmethod
3
+ from collections import deque
4
+ from abc import ABC
5
+
6
+ import torch
7
+ import pandas as pd
8
+
9
+ from lightning.pytorch.callbacks import BasePredictionWriter
10
+
11
+
12
+ class CoreBatchWriter(BasePredictionWriter, ABC):
13
+ def __init__(
14
+ self,
15
+ output_path,
16
+ postfix,
17
+ write_interval="batch"
18
+ ):
19
+ super().__init__(write_interval)
20
+ self.out_path = output_path
21
+ self.postfix = postfix
22
+
23
+ def write_on_batch_end(
24
+ self,
25
+ trainer,
26
+ pl_module,
27
+ prediction,
28
+ batch_indices,
29
+ batch,
30
+ batch_idx,
31
+ dataloader_idx
32
+ ):
33
+ if prediction is None:
34
+ return
35
+ embeddings, dom_ids = prediction
36
+ deque(map(
37
+ self._write_embedding,
38
+ embeddings,
39
+ dom_ids
40
+ ))
41
+
42
+ def file_name(self, dom_id):
43
+ return f'{self.out_path}/{dom_id}.{self.postfix}'
44
+
45
+ @abstractmethod
46
+ def _write_embedding(self, embedding, dom_id):
47
+ pass
48
+
49
+
50
+ class CsvBatchWriter(CoreBatchWriter, ABC):
51
+ def __init__(
52
+ self,
53
+ output_path,
54
+ postfix="csv",
55
+ write_interval="batch"
56
+ ):
57
+ super().__init__(output_path, postfix, write_interval)
58
+
59
+ def _write_embedding(self, embedding, dom_id):
60
+ pd.DataFrame(embedding.to('cpu').numpy()).to_csv(
61
+ self.file_name(dom_id),
62
+ index=False,
63
+ header=False
64
+ )
65
+
66
+
67
+ class TensorBatchWriter(CoreBatchWriter, ABC):
68
+ def __init__(
69
+ self,
70
+ output_path,
71
+ postfix="pt",
72
+ write_interval="batch",
73
+ device="cpu"
74
+ ):
75
+ super().__init__(output_path, postfix, write_interval)
76
+ self.device = device
77
+
78
+ def _write_embedding(self, embedding, dom_id):
79
+ torch.save(
80
+ embedding.to(self.device),
81
+ self.file_name(dom_id)
82
+ )
83
+
84
+
85
+ class DataFrameStorage(CoreBatchWriter, ABC):
86
+ def __init__(
87
+ self,
88
+ output_path,
89
+ df_id,
90
+ postfix="pkl",
91
+ write_interval="batch"
92
+ ):
93
+ super().__init__(output_path, postfix, write_interval)
94
+ self.df_id = df_id
95
+ self.embedding = pd.DataFrame(
96
+ data={},
97
+ columns=['id', 'embedding'],
98
+ )
99
+
100
+ def _write_embedding(self, embedding, dom_id):
101
+ self.embedding = pd.concat([
102
+ self.embedding,
103
+ pd.DataFrame(
104
+ data={'id': dom_id, 'embedding': [embedding.to('cpu').numpy()]},
105
+ columns=['id', 'embedding'],
106
+ )
107
+ ], ignore_index=True)
108
+
109
+ def on_predict_end(self, trainer, pl_module):
110
+ self.embedding.to_pickle(
111
+ f"{self.out_path}/{self.df_id}.pkl.gz",
112
+ compression='gzip'
113
+ )
@@ -2,6 +2,7 @@ import os
2
2
  import unittest
3
3
 
4
4
  from rcsb_embedding_model import RcsbStructureEmbedding
5
+ from rcsb_embedding_model.types.api_types import SrcFormat
5
6
 
6
7
 
7
8
  class TestEmbeddingModel(unittest.TestCase):
@@ -13,7 +14,7 @@ class TestEmbeddingModel(unittest.TestCase):
13
14
  model = RcsbStructureEmbedding()
14
15
  res_embedding = model.residue_embedding(
15
16
  f"{self.__test_path}/resources/1acb.cif",
16
- format="mmcif",
17
+ src_format=SrcFormat.mmcif,
17
18
  chain_id='A'
18
19
  )
19
20
  self.assertEqual(list(res_embedding.shape), [243, 1536])
@@ -33,7 +34,7 @@ class TestEmbeddingModel(unittest.TestCase):
33
34
  model = RcsbStructureEmbedding()
34
35
  res_embedding = model.residue_embedding(
35
36
  f"{self.__test_path}/resources/1acb.cif",
36
- format="mmcif",
37
+ src_format=SrcFormat.mmcif,
37
38
  chain_id='A'
38
39
  )
39
40
  structure_embedding = model.aggregator_embedding(
@@ -1,171 +0,0 @@
1
- import torch
2
- from biotite.structure import get_residues, chain_iter, filter_amino_acids
3
- from biotite.structure.io.pdb import PDBFile, get_structure as get_pdb_structure, get_assembly as get_pdb_assembly
4
- from biotite.structure.io.pdbx import CIFFile, get_structure, get_assembly, BinaryCIFFile
5
- from esm.models.esm3 import ESM3
6
- from esm.sdk.api import ESMProtein, SamplingConfig
7
- from esm.utils.constants.models import ESM3_OPEN_SMALL
8
- from esm.utils.structure.protein_chain import ProteinChain
9
- from huggingface_hub import hf_hub_download
10
-
11
- from rcsb_embedding_model.model.residue_embedding_aggregator import ResidueEmbeddingAggregator
12
-
13
-
14
- class RcsbStructureEmbedding:
15
-
16
- MIN_RES = 10
17
- REPO_ID = "rcsb/rcsb-embedding-model"
18
- FILE_NAME = "rcsb-embedding-model.pt"
19
- VERSION = "410606e40b1bb7968ce318c41009355c3ac32503"
20
-
21
- def __init__(self):
22
- self.__residue_embedding = None
23
- self.__aggregator_embedding = None
24
-
25
- def load_models(self, device=None):
26
- self.load_residue_embedding(device)
27
- self.load_aggregator_embedding(device)
28
-
29
- def load_residue_embedding(self, device=None):
30
- if not device:
31
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
- self.__residue_embedding = _load_res_model(device)
33
-
34
- def load_aggregator_embedding(self, device=None):
35
- if not device:
36
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
37
- self.__aggregator_embedding = _load_model(
38
- _download_model(
39
- RcsbStructureEmbedding.REPO_ID,
40
- RcsbStructureEmbedding.FILE_NAME,
41
- RcsbStructureEmbedding.VERSION
42
- ),
43
- device
44
- )
45
-
46
- def structure_embedding(self, structure_src, format="pdb", chain_id=None, assembly_id=None):
47
- res_embedding = self.residue_embedding(structure_src, format, chain_id, assembly_id)
48
- return self.aggregator_embedding(res_embedding)
49
-
50
- def residue_embedding(self, structure_src, format="pdb", chain_id=None, assembly_id=None):
51
- self.__check_residue_embedding()
52
- structure = _get_structure_from_src(structure_src, format, chain_id, assembly_id)
53
- embedding_ch = []
54
- for atom_ch in chain_iter(structure):
55
- atom_res = atom_ch[filter_amino_acids(atom_ch)]
56
- if len(atom_res) == 0 or len(get_residues(atom_res)[0]) < RcsbStructureEmbedding.MIN_RES:
57
- continue
58
- protein_chain = ProteinChain.from_atomarray(atom_ch)
59
- protein = ESMProtein.from_protein_chain(protein_chain)
60
- protein_tensor = self.__residue_embedding.encode(protein)
61
- embedding_ch.append(self.__residue_embedding.forward_and_sample(
62
- protein_tensor, SamplingConfig(return_per_residue_embeddings=True)
63
- ).per_residue_embedding)
64
- return torch.cat(
65
- embedding_ch,
66
- dim=0
67
- )
68
-
69
- def sequence_embedding(self, sequence):
70
- self.__check_residue_embedding()
71
-
72
- if sequence.startswith(">"):
73
- sequence = "".join(line.strip() for line in sequence.splitlines() if not line.startswith(">"))
74
-
75
- if len(sequence) < RcsbStructureEmbedding.MIN_RES:
76
- raise ValueError(f"Sequence too short for embedding (min {RcsbStructureEmbedding.MIN_RES} residues)")
77
-
78
- protein = ESMProtein(sequence=sequence)
79
- protein_tensor = self.__residue_embedding.encode(protein)
80
-
81
- result = self.__residue_embedding.forward_and_sample(
82
- protein_tensor,
83
- SamplingConfig(return_per_residue_embeddings=True)
84
- )
85
-
86
- return result.per_residue_embedding
87
-
88
- def aggregator_embedding(self, residue_embedding):
89
- self.__check_aggregator_embedding()
90
- return self.__aggregator_embedding(residue_embedding)
91
-
92
- def __check_residue_embedding(self):
93
- if self.__residue_embedding is None:
94
- self.load_residue_embedding()
95
-
96
- def __check_aggregator_embedding(self):
97
- if self.__aggregator_embedding is None:
98
- self.load_aggregator_embedding()
99
-
100
-
101
- def _get_structure_from_src(structure_src, format="pdb", chain_id=None, assembly_id=None):
102
- if format == "pdb":
103
- pdb_file = PDBFile.read(structure_src)
104
- structure = _get_pdb_structure(pdb_file, assembly_id)
105
- elif format == "mmcif":
106
- cif_file = CIFFile.read(structure_src)
107
- structure = _get_structure(cif_file, assembly_id)
108
- elif format == "binarycif":
109
- cif_file = BinaryCIFFile.read(structure_src)
110
- structure = _get_structure(cif_file, assembly_id)
111
- else:
112
- raise RuntimeError(f"Unknown file format {format}")
113
-
114
- if chain_id is not None:
115
- structure = structure[structure.chain_id == chain_id]
116
-
117
- return structure
118
-
119
-
120
- def _get_pdb_structure(pdb_file, assembly_id = None):
121
- return get_pdb_structure(
122
- pdb_file,
123
- model=1
124
- ) if assembly_id is None else get_pdb_assembly(
125
- pdb_file,
126
- assembly_id=assembly_id,
127
- model=1
128
- )
129
-
130
-
131
- def _get_structure(cif_file, assembly_id = None):
132
- return get_structure(
133
- cif_file,
134
- model=1,
135
- use_author_fields=False
136
- ) if assembly_id is None else get_assembly(
137
- cif_file,
138
- assembly_id=assembly_id,
139
- model=1,
140
- use_author_fields=False
141
- )
142
-
143
-
144
- def _download_model(
145
- repo_id,
146
- filename,
147
- revision
148
- ):
149
- return hf_hub_download(
150
- repo_id=repo_id,
151
- filename=filename,
152
- revision=revision
153
- )
154
-
155
-
156
- def _load_model(model_path, device=None):
157
- if not device:
158
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
159
- weights = torch.load(model_path, weights_only=True, map_location=device)
160
- aggregator_model = ResidueEmbeddingAggregator()
161
- aggregator_model.load_state_dict(weights)
162
- aggregator_model.to(device)
163
- aggregator_model.eval()
164
- return aggregator_model
165
-
166
-
167
- def _load_res_model(device=None):
168
- return ESM3.from_pretrained(
169
- ESM3_OPEN_SMALL,
170
- device
171
- )