rcsb-embedding-model 0.0.27__tar.gz → 0.0.29__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rcsb-embedding-model might be problematic. Click here for more details.

Files changed (48) hide show
  1. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/PKG-INFO +1 -1
  2. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/pyproject.toml +1 -1
  3. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/dataset/esm_prot_from_chain.py +5 -5
  4. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/dataset/esm_prot_from_structure.py +4 -2
  5. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/dataset/resdiue_assembly_embedding_from_structure.py +7 -6
  6. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/dataset/residue_assembly_embedding_from_tensor_file.py +4 -5
  7. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/dataset/residue_embedding_from_structure.py +7 -5
  8. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/dataset/residue_embedding_from_tensor_file.py +2 -2
  9. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/utils/data.py +18 -3
  10. rcsb_embedding_model-0.0.29/tests/resources/src_stream/instance.csv +2 -0
  11. rcsb_embedding_model-0.0.29/tests/test_remote_inference.py +108 -0
  12. rcsb_embedding_model-0.0.27/tests/test_remote_inference.py +0 -48
  13. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/.dockerignore +0 -0
  14. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/.github/workflows/_workflow-docker.yaml +0 -0
  15. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/.github/workflows/publish.yaml +0 -0
  16. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/.gitignore +0 -0
  17. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/Dockerfile +0 -0
  18. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/LICENSE.md +0 -0
  19. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/README.md +0 -0
  20. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/assets/embedding-model-architecture.png +0 -0
  21. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/examples/esm_embeddings.py +0 -0
  22. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/__init__.py +0 -0
  23. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/cli/args_utils.py +0 -0
  24. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/cli/inference.py +0 -0
  25. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/inference/assembly_inferece.py +0 -0
  26. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/inference/chain_inference.py +0 -0
  27. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/inference/esm_inference.py +0 -0
  28. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/inference/structure_inference.py +0 -0
  29. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/model/layers.py +0 -0
  30. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/model/residue_embedding_aggregator.py +0 -0
  31. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/modules/chain_module.py +0 -0
  32. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/modules/esm_module.py +0 -0
  33. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/modules/structure_module.py +0 -0
  34. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/rcsb_structure_embedding.py +0 -0
  35. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/types/api_types.py +0 -0
  36. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/utils/model.py +0 -0
  37. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/utils/structure_parser.py +0 -0
  38. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/utils/structure_provider.py +0 -0
  39. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/src/rcsb_embedding_model/writer/batch_writer.py +0 -0
  40. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/embeddings/1acb.A.pt +0 -0
  41. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/embeddings/1acb.B.pt +0 -0
  42. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/embeddings/2uzi.A.pt +0 -0
  43. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/embeddings/2uzi.B.pt +0 -0
  44. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/embeddings/2uzi.C.pt +0 -0
  45. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/pdb/1acb.cif +0 -0
  46. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/resources/pdb/2uzi.cif +0 -0
  47. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/test_embedding_model.py +0 -0
  48. {rcsb_embedding_model-0.0.27 → rcsb_embedding_model-0.0.29}/tests/test_inference.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rcsb-embedding-model
3
- Version: 0.0.27
3
+ Version: 0.0.29
4
4
  Summary: Protein Embedding Model for Structure Search
5
5
  Project-URL: Homepage, https://github.com/rcsb/rcsb-embedding-model
6
6
  Project-URL: Issues, https://github.com/rcsb/rcsb-embedding-model/issues
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "rcsb-embedding-model"
3
- version = "0.0.27"
3
+ version = "0.0.29"
4
4
  authors = [
5
5
  { name="Joan Segura", email="joan.segura@rcsb.org" },
6
6
  ]
@@ -59,10 +59,10 @@ class EsmProtFromChain(Dataset):
59
59
  return len(self.data)
60
60
 
61
61
  def __getitem__(self, idx):
62
- src_name = self.data.loc[idx, EsmProtFromChain.STREAM_NAME_ATTR]
63
- src_structure = self.data.loc[idx, EsmProtFromChain.STREAM_ATTR]
64
- chain_id = self.data.loc[idx, EsmProtFromChain.CH_ATTR]
65
- item_name = self.data.loc[idx, EsmProtFromChain.ITEM_NAME_ATTR]
62
+ src_name = self.data.iloc[idx][EsmProtFromChain.STREAM_NAME_ATTR]
63
+ src_structure = self.data.iloc[idx][EsmProtFromChain.STREAM_ATTR]
64
+ chain_id = self.data.iloc[idx][EsmProtFromChain.CH_ATTR]
65
+ item_name = self.data.iloc[idx][EsmProtFromChain.ITEM_NAME_ATTR]
66
66
  structure = self.__structure_provider.get_structure(
67
67
  src_name=src_name,
68
68
  src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
@@ -87,7 +87,7 @@ if __name__ == '__main__':
87
87
  src_stream=args.file_list,
88
88
  src_location=SrcLocation.file,
89
89
  structure_location=StructureLocation.remote,
90
- structure_format=StructureFormat.mmcif,
90
+ structure_format=StructureFormat.bciff,
91
91
  )
92
92
 
93
93
  esm3 = ESM3.from_pretrained(
@@ -40,7 +40,7 @@ class EsmProtFromStructure(EsmProtFromChain):
40
40
 
41
41
  def __get_chains(self, src_stream):
42
42
  chains = []
43
- for idx, row in (pd.DataFrame(
43
+ data = pd.DataFrame(
44
44
  src_stream,
45
45
  dtype=str,
46
46
  columns=EsmProtFromStructure.COLUMNS
@@ -50,7 +50,9 @@ class EsmProtFromStructure(EsmProtFromChain):
50
50
  index_col=None,
51
51
  dtype=str,
52
52
  names=EsmProtFromStructure.COLUMNS
53
- )).iterrows():
53
+ )
54
+ data = data.sort_values(by=data.columns[0])
55
+ for idx, row in data.iterrows():
54
56
  src_name = row[EsmProtFromStructure.STREAM_NAME_ATTR]
55
57
  src_structure = row[EsmProtFromStructure.STREAM_ATTR]
56
58
  item_name = row[EsmProtFromStructure.ITEM_NAME_ATTR]
@@ -33,7 +33,6 @@ class ResidueAssemblyDatasetFromStructure(ResidueAssemblyEmbeddingFromTensorFile
33
33
  self.structure_format = structure_format
34
34
  self.min_res_n = min_res_n
35
35
  self.max_res_n = max_res_n
36
- self.__structure_provider = structure_provider
37
36
  super().__init__(
38
37
  src_stream=self.__get_assemblies(src_stream),
39
38
  res_embedding_location=res_embedding_location,
@@ -47,17 +46,19 @@ class ResidueAssemblyDatasetFromStructure(ResidueAssemblyEmbeddingFromTensorFile
47
46
 
48
47
  def __get_assemblies(self, src_stream):
49
48
  assemblies = []
50
- for idx, row in (pd.DataFrame(
51
- src_stream,
52
- dtype=str,
53
- columns=ResidueAssemblyDatasetFromStructure.COLUMNS
49
+ data = pd.DataFrame(
50
+ src_stream,
51
+ dtype=str,
52
+ columns=ResidueAssemblyDatasetFromStructure.COLUMNS
54
53
  ) if self.src_location == SrcLocation.stream else pd.read_csv(
55
54
  src_stream,
56
55
  header=None,
57
56
  index_col=None,
58
57
  dtype=str,
59
58
  names=ResidueAssemblyDatasetFromStructure.COLUMNS
60
- )).iterrows():
59
+ )
60
+ data = data.sort_values(by=data.columns[0])
61
+ for idx, row in data.iterrows():
61
62
  src_name = row[ResidueAssemblyDatasetFromStructure.STREAM_NAME_ATTR]
62
63
  src_structure = row[ResidueAssemblyDatasetFromStructure.STREAM_ATTR]
63
64
  structure = stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure
@@ -58,11 +58,10 @@ class ResidueAssemblyEmbeddingFromTensorFile(Dataset):
58
58
  return len(self.data)
59
59
 
60
60
  def __getitem__(self, idx):
61
- src_name = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.STREAM_NAME_ATTR]
62
- src_structure = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.STREAM_ATTR]
63
- assembly_id = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.ASSEMBLY_ATTR]
64
- item_name = self.data.loc[idx, ResidueAssemblyEmbeddingFromTensorFile.ITEM_NAME_ATTR]
65
-
61
+ src_name = self.data.iloc[idx][ResidueAssemblyEmbeddingFromTensorFile.STREAM_NAME_ATTR]
62
+ src_structure = self.data.iloc[idx][ResidueAssemblyEmbeddingFromTensorFile.STREAM_ATTR]
63
+ assembly_id = self.data.iloc[idx][ResidueAssemblyEmbeddingFromTensorFile.ASSEMBLY_ATTR]
64
+ item_name = self.data.iloc[idx][ResidueAssemblyEmbeddingFromTensorFile.ITEM_NAME_ATTR]
66
65
  structure = self.__structure_provider.get_structure(
67
66
  src_name=src_name,
68
67
  src_structure=stringio_from_url(src_structure) if self.structure_location == StructureLocation.remote else src_structure,
@@ -42,17 +42,19 @@ class ResidueEmbeddingFromStructure(ResidueEmbeddingFromTensorFile):
42
42
 
43
43
  def __get_chains(self, src_stream):
44
44
  chains = []
45
- for idx, row in (pd.DataFrame(
46
- src_stream,
47
- dtype=str,
48
- columns=ResidueEmbeddingFromStructure.COLUMNS
45
+ data = pd.DataFrame(
46
+ src_stream,
47
+ dtype=str,
48
+ columns=ResidueEmbeddingFromStructure.COLUMNS
49
49
  ) if self.src_location == SrcLocation.stream else pd.read_csv(
50
50
  src_stream,
51
51
  header=None,
52
52
  index_col=None,
53
53
  dtype=str,
54
54
  names=ResidueEmbeddingFromStructure.COLUMNS
55
- )).iterrows():
55
+ )
56
+ data = data.sort_values(by=data.columns[0])
57
+ for idx, row in data.iterrows():
56
58
  src_name = row[ResidueEmbeddingFromStructure.STREAM_NAME_ATTR]
57
59
  src_structure = row[ResidueEmbeddingFromStructure.STREAM_ATTR]
58
60
  item_name = row[ResidueEmbeddingFromStructure.ITEM_NAME_ATTR]
@@ -39,6 +39,6 @@ class ResidueEmbeddingFromTensorFile(Dataset):
39
39
  return len(self.data)
40
40
 
41
41
  def __getitem__(self, idx):
42
- embedding_src = self.data.loc[idx, ResidueEmbeddingFromTensorFile.FILE_ATTR]
43
- item_name = self.data.loc[idx, ResidueEmbeddingFromTensorFile.ITEM_NAME_ATTR]
42
+ embedding_src = self.data.iloc[idx][ResidueEmbeddingFromTensorFile.FILE_ATTR]
43
+ item_name = self.data.iloc[idx][ResidueEmbeddingFromTensorFile.ITEM_NAME_ATTR]
44
44
  return torch.load(embedding_src, map_location=torch.device('cpu')), item_name
@@ -1,7 +1,8 @@
1
1
  import os
2
- from io import StringIO
3
-
4
2
  import requests
3
+ import gzip
4
+ from io import StringIO, BytesIO
5
+
5
6
  import torch
6
7
 
7
8
 
@@ -40,10 +41,24 @@ def stringio_from_url(url):
40
41
  try:
41
42
  response = requests.get(url)
42
43
  response.raise_for_status()
43
- return StringIO(response.text)
44
+ data = response.content
45
+ if url.endswith('.bcif.gz'):
46
+ with gzip.GzipFile(fileobj=BytesIO(data), mode='rb') as gz:
47
+ decompressed_data = gz.read()
48
+ return BytesIO(decompressed_data)
49
+ if url.endswith('.gz'):
50
+ compressed = BytesIO(data)
51
+ with gzip.open(compressed, 'rt') as f:
52
+ return StringIO(f.read())
53
+ else:
54
+ return StringIO(response.text)
44
55
  except requests.exceptions.RequestException as e:
45
56
  print(f"Error fetching URL: {e}")
46
57
  return None
58
+ except (OSError, gzip.BadGzipFile) as e:
59
+ print(f"Error decompressing gzip file: {e}")
60
+ return None
61
+
47
62
 
48
63
 
49
64
  def concatenate_tensors(file_list, max_residues, dim=0):
@@ -0,0 +1,2 @@
1
+ 1acb,https://models.rcsb.org/1acb.bcif.gz,A,1acb.A
2
+ 2uzi,https://models.rcsb.org/2uzi.bcif.gz,A,2uzi.A
@@ -0,0 +1,108 @@
1
+ import os.path
2
+ import unittest
3
+
4
+ from rcsb_embedding_model.types.api_types import SrcLocation, SrcProteinFrom, StructureLocation, StructureFormat, \
5
+ Accelerator, SrcAssemblyFrom
6
+
7
+
8
+ class TestRemoteInference(unittest.TestCase):
9
+
10
+ __test_path = os.path.dirname(__file__)
11
+
12
+ def test_esm_inference_from_structure(self):
13
+ from rcsb_embedding_model.inference.esm_inference import predict
14
+
15
+ esm_embeddings = predict(
16
+ src_stream=[
17
+ ("1acb", "https://files.rcsb.org/download/1acb.cif", "1acb"),
18
+ ("2uzi", "https://files.rcsb.org/download/2uzi.cif", "2uzi")
19
+ ],
20
+ src_location=SrcLocation.stream,
21
+ src_from=SrcProteinFrom.structure,
22
+ structure_location=StructureLocation.remote,
23
+ structure_format=StructureFormat.mmcif,
24
+ accelerator=Accelerator.cpu
25
+ )
26
+
27
+ self.assertEqual(len(esm_embeddings), 5)
28
+ shapes = ((243, 1536), (65, 1536), (116, 1536), (106, 1536), (168, 1536))
29
+ for idx, shape in enumerate(shapes):
30
+ self.assertEqual(tuple(esm_embeddings[idx][0][0].shape), shape)
31
+
32
+ def test_esm_inference_from_bcif_gz(self):
33
+ from rcsb_embedding_model.inference.esm_inference import predict
34
+
35
+ esm_embeddings = predict(
36
+ src_stream=[
37
+ ("1acb", "https://models.rcsb.org/1acb.bcif.gz", "1acb"),
38
+ ("2uzi", "https://models.rcsb.org/2uzi.bcif.gz", "2uzi")
39
+ ],
40
+ src_location=SrcLocation.stream,
41
+ src_from=SrcProteinFrom.structure,
42
+ structure_location=StructureLocation.remote,
43
+ structure_format=StructureFormat.bciff,
44
+ accelerator=Accelerator.cpu
45
+ )
46
+
47
+ self.assertEqual(len(esm_embeddings), 5)
48
+ shapes = ((243, 1536), (65, 1536), (116, 1536), (106, 1536), (168, 1536))
49
+ for idx, shape in enumerate(shapes):
50
+ self.assertEqual(tuple(esm_embeddings[idx][0][0].shape), shape)
51
+
52
+
53
+ def test_esm_inference_from_csv_bcif_gz(self):
54
+ from rcsb_embedding_model.inference.esm_inference import predict
55
+
56
+ esm_embeddings = predict(
57
+ src_stream=f"{self.__test_path}/resources/src_stream/instance.csv",
58
+ src_location=SrcLocation.file,
59
+ src_from=SrcProteinFrom.chain,
60
+ structure_location=StructureLocation.remote,
61
+ structure_format=StructureFormat.bciff,
62
+ accelerator=Accelerator.cpu
63
+ )
64
+
65
+ self.assertEqual(len(esm_embeddings), 2)
66
+ shapes = ((243, 1536), (116, 1536))
67
+ for idx, shape in enumerate(shapes):
68
+ self.assertEqual(tuple(esm_embeddings[idx][0][0].shape), shape)
69
+
70
+
71
+ def test_esm_inference_from_cif_gz(self):
72
+ from rcsb_embedding_model.inference.esm_inference import predict
73
+
74
+ esm_embeddings = predict(
75
+ src_stream=[
76
+ ("1acb", "https://files.rcsb.org/download/1acb.cif.gz", "1acb"),
77
+ ("2uzi", "https://files.rcsb.org/download/2uzi.cif.gz", "2uzi")
78
+ ],
79
+ src_location=SrcLocation.stream,
80
+ src_from=SrcProteinFrom.structure,
81
+ structure_location=StructureLocation.remote,
82
+ structure_format=StructureFormat.mmcif,
83
+ accelerator=Accelerator.cpu
84
+ )
85
+
86
+ self.assertEqual(len(esm_embeddings), 5)
87
+ shapes = ((243, 1536), (65, 1536), (116, 1536), (106, 1536), (168, 1536))
88
+ for idx, shape in enumerate(shapes):
89
+ self.assertEqual(tuple(esm_embeddings[idx][0][0].shape), shape)
90
+
91
+
92
+ def test_assembly_inference_from_structure(self):
93
+ from rcsb_embedding_model.inference.assembly_inferece import predict
94
+
95
+ assembly_embeddings = predict(
96
+ src_stream=[
97
+ ("1acb", "https://files.rcsb.org/download/1acb.cif", "1acb"),
98
+ ("2uzi", "https://files.rcsb.org/download/2uzi.cif", "2uzi")
99
+ ],
100
+ res_embedding_location=f"{self.__test_path}/resources/embeddings",
101
+ src_location=SrcLocation.stream,
102
+ src_from=SrcAssemblyFrom.structure,
103
+ structure_location=StructureLocation.remote,
104
+ structure_format=StructureFormat.mmcif,
105
+ accelerator=Accelerator.cpu
106
+ )
107
+
108
+ self.assertEqual(len(assembly_embeddings), 2)
@@ -1,48 +0,0 @@
1
- import os.path
2
- import unittest
3
-
4
- from rcsb_embedding_model.types.api_types import SrcLocation, SrcProteinFrom, StructureLocation, StructureFormat, \
5
- Accelerator, SrcAssemblyFrom
6
-
7
-
8
- class TestRemoteInference(unittest.TestCase):
9
-
10
- __test_path = os.path.dirname(__file__)
11
-
12
- def test_esm_inference_from_structure(self):
13
- from rcsb_embedding_model.inference.esm_inference import predict
14
-
15
- esm_embeddings = predict(
16
- src_stream=[
17
- ("1acb", "https://files.rcsb.org/download/1acb.cif", "1acb"),
18
- ("2uzi", "https://files.rcsb.org/download/2uzi.cif", "2uzi")
19
- ],
20
- src_location=SrcLocation.stream,
21
- src_from=SrcProteinFrom.structure,
22
- structure_location=StructureLocation.remote,
23
- structure_format=StructureFormat.mmcif,
24
- accelerator=Accelerator.cpu
25
- )
26
-
27
- self.assertEqual(len(esm_embeddings), 5)
28
- shapes = ((243, 1536), (65, 1536), (116, 1536), (106, 1536), (168, 1536))
29
- for idx, shape in enumerate(shapes):
30
- self.assertEqual(tuple(esm_embeddings[idx][0][0].shape), shape)
31
-
32
- def test_assembly_inference_from_structure(self):
33
- from rcsb_embedding_model.inference.assembly_inferece import predict
34
-
35
- assembly_embeddings = predict(
36
- src_stream=[
37
- ("1acb", "https://files.rcsb.org/download/1acb.cif", "1acb"),
38
- ("2uzi", "https://files.rcsb.org/download/2uzi.cif", "2uzi")
39
- ],
40
- res_embedding_location=f"{self.__test_path}/resources/embeddings",
41
- src_location=SrcLocation.stream,
42
- src_from=SrcAssemblyFrom.structure,
43
- structure_location=StructureLocation.remote,
44
- structure_format=StructureFormat.mmcif,
45
- accelerator=Accelerator.cpu
46
- )
47
-
48
- self.assertEqual(len(assembly_embeddings), 2)