rb-deeplearning-lib 0.0.2__tar.gz → 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/LICENSE +20 -20
- {rb_deeplearning_lib-0.0.2/src/rb_deeplearning_lib.egg-info → rb_deeplearning_lib-0.1.0}/PKG-INFO +37 -37
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/README.md +25 -25
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/pyproject.toml +19 -19
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/setup.cfg +4 -4
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib/__init__.py +3 -3
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib/autogradient.py +275 -275
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib/neural_net.py +199 -194
- rb_deeplearning_lib-0.1.0/src/rb_deeplearning_lib/optimizer.py +100 -0
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib/sequence.py +23 -23
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0/src/rb_deeplearning_lib.egg-info}/PKG-INFO +37 -37
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib.egg-info/SOURCES.txt +1 -0
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib.egg-info/dependency_links.txt +0 -0
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib.egg-info/requires.txt +0 -0
- {rb_deeplearning_lib-0.0.2 → rb_deeplearning_lib-0.1.0}/src/rb_deeplearning_lib.egg-info/top_level.txt +0 -0
|
@@ -1,21 +1,21 @@
|
|
|
1
|
-
MIT License
|
|
2
|
-
|
|
3
|
-
Copyright (c) 2026 Rylan L Berry
|
|
4
|
-
|
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
-
in the Software without restriction, including without limitation the rights
|
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
-
furnished to do so, subject to the following conditions:
|
|
11
|
-
|
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
|
13
|
-
copies or substantial portions of the Software.
|
|
14
|
-
|
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Rylan L Berry
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
21
|
SOFTWARE.
|
{rb_deeplearning_lib-0.0.2/src/rb_deeplearning_lib.egg-info → rb_deeplearning_lib-0.1.0}/PKG-INFO
RENAMED
|
@@ -1,37 +1,37 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: rb-deeplearning-lib
|
|
3
|
-
Version: 0.0
|
|
4
|
-
Summary: This is a machine learning--more specifically deep learning--library from my independent study on deep learning. This library is both a result of my learning and a tool for AI development.
|
|
5
|
-
License-Expression: MIT
|
|
6
|
-
Project-URL: Homepage, https://github.com/rylan-berry/DeepLearningIndependentStudy/tree/main/deeplearning_package
|
|
7
|
-
Requires-Python: >=3.8
|
|
8
|
-
Description-Content-Type: text/markdown
|
|
9
|
-
License-File: LICENSE
|
|
10
|
-
Requires-Dist: numpy>=2.0
|
|
11
|
-
Dynamic: license-file
|
|
12
|
-
|
|
13
|
-
# Deeplearning Package
|
|
14
|
-
|
|
15
|
-
## Overview
|
|
16
|
-
|
|
17
|
-
This package is designed to be similar to the PyTorch system of a building block system. Providing the functions that can be mixed, matched, and customized as pleased for any given model. This library is bare bones and only includes the few methods and ideas I learned about while studying *Deep Learning* by Ian Goodfellow et. al.. AI was used in the project, but it was used sparingly.
|
|
18
|
-
|
|
19
|
-
## Modules
|
|
20
|
-
|
|
21
|
-
This project has three main modules:
|
|
22
|
-
|
|
23
|
-
* `autogradient.py`
|
|
24
|
-
* `sequence.py`
|
|
25
|
-
* `neural_net.py`
|
|
26
|
-
|
|
27
|
-
All of which are automatically part of the initial import of the package.
|
|
28
|
-
|
|
29
|
-
## Making and Running a Model
|
|
30
|
-
|
|
31
|
-
When creating a model, use the Model class, which runs most of the functions included in the package itself. The first argument is a list of layers or blocks, each element is the steps in the network. These steps can be a Dense, Layer, or Dropout blocks (more will be made), a Dense is just multiple layers stacked back to back.
|
|
32
|
-
Training a model is done through: def train(epochs, x\_t, y\_t, x\_v, y\_v, val\_run=1, l\_rate=0.01, \_lambda\=0.1, batch\_size \= None)
|
|
33
|
-
Where epochs is the number of times you train through the data, the \#\_t means training data and \#\_v means validation data, x means input, y means output, val\_run is the epochs between when you want to test the validation data, l\_rate is the learn rate, \_lambda is a hyperparameter that determines the strength of the penalty functions, and batch\_size determines how large batches will be (if the batch size isn’t a multiple of the data size then it will still run, there is just a smaller batch then the others).
|
|
34
|
-
|
|
35
|
-
## Dependencies
|
|
36
|
-
|
|
37
|
-
The auto gradient–which is used for back propagation–relies heavily on **numpy**.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: rb-deeplearning-lib
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: This is a machine learning--more specifically deep learning--library from my independent study on deep learning. This library is both a result of my learning and a tool for AI development.
|
|
5
|
+
License-Expression: MIT
|
|
6
|
+
Project-URL: Homepage, https://github.com/rylan-berry/DeepLearningIndependentStudy/tree/main/deeplearning_package
|
|
7
|
+
Requires-Python: >=3.8
|
|
8
|
+
Description-Content-Type: text/markdown
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Requires-Dist: numpy>=2.0
|
|
11
|
+
Dynamic: license-file
|
|
12
|
+
|
|
13
|
+
# Deeplearning Package
|
|
14
|
+
|
|
15
|
+
## Overview
|
|
16
|
+
|
|
17
|
+
This package is designed to be similar to the PyTorch system of a building block system. Providing the functions that can be mixed, matched, and customized as pleased for any given model. This library is bare bones and only includes the few methods and ideas I learned about while studying *Deep Learning* by Ian Goodfellow et. al.. AI was used in the project, but it was used sparingly.
|
|
18
|
+
|
|
19
|
+
## Modules
|
|
20
|
+
|
|
21
|
+
This project has three main modules:
|
|
22
|
+
|
|
23
|
+
* `autogradient.py`
|
|
24
|
+
* `sequence.py`
|
|
25
|
+
* `neural_net.py`
|
|
26
|
+
|
|
27
|
+
All of which are automatically part of the initial import of the package.
|
|
28
|
+
|
|
29
|
+
## Making and Running a Model
|
|
30
|
+
|
|
31
|
+
When creating a model, use the Model class, which runs most of the functions included in the package itself. The first argument is a list of layers or blocks, each element is the steps in the network. These steps can be a Dense, Layer, or Dropout blocks (more will be made), a Dense is just multiple layers stacked back to back.
|
|
32
|
+
Training a model is done through: def train(epochs, x\_t, y\_t, x\_v, y\_v, val\_run=1, l\_rate=0.01, \_lambda\=0.1, batch\_size \= None)
|
|
33
|
+
Where epochs is the number of times you train through the data, the \#\_t means training data and \#\_v means validation data, x means input, y means output, val\_run is the epochs between when you want to test the validation data, l\_rate is the learn rate, \_lambda is a hyperparameter that determines the strength of the penalty functions, and batch\_size determines how large batches will be (if the batch size isn’t a multiple of the data size then it will still run, there is just a smaller batch then the others).
|
|
34
|
+
|
|
35
|
+
## Dependencies
|
|
36
|
+
|
|
37
|
+
The auto gradient–which is used for back propagation–relies heavily on **numpy**.
|
|
@@ -1,25 +1,25 @@
|
|
|
1
|
-
# Deeplearning Package
|
|
2
|
-
|
|
3
|
-
## Overview
|
|
4
|
-
|
|
5
|
-
This package is designed to be similar to the PyTorch system of a building block system. Providing the functions that can be mixed, matched, and customized as pleased for any given model. This library is bare bones and only includes the few methods and ideas I learned about while studying *Deep Learning* by Ian Goodfellow et. al.. AI was used in the project, but it was used sparingly.
|
|
6
|
-
|
|
7
|
-
## Modules
|
|
8
|
-
|
|
9
|
-
This project has three main modules:
|
|
10
|
-
|
|
11
|
-
* `autogradient.py`
|
|
12
|
-
* `sequence.py`
|
|
13
|
-
* `neural_net.py`
|
|
14
|
-
|
|
15
|
-
All of which are automatically part of the initial import of the package.
|
|
16
|
-
|
|
17
|
-
## Making and Running a Model
|
|
18
|
-
|
|
19
|
-
When creating a model, use the Model class, which runs most of the functions included in the package itself. The first argument is a list of layers or blocks, each element is the steps in the network. These steps can be a Dense, Layer, or Dropout blocks (more will be made), a Dense is just multiple layers stacked back to back.
|
|
20
|
-
Training a model is done through: def train(epochs, x\_t, y\_t, x\_v, y\_v, val\_run=1, l\_rate=0.01, \_lambda\=0.1, batch\_size \= None)
|
|
21
|
-
Where epochs is the number of times you train through the data, the \#\_t means training data and \#\_v means validation data, x means input, y means output, val\_run is the epochs between when you want to test the validation data, l\_rate is the learn rate, \_lambda is a hyperparameter that determines the strength of the penalty functions, and batch\_size determines how large batches will be (if the batch size isn’t a multiple of the data size then it will still run, there is just a smaller batch then the others).
|
|
22
|
-
|
|
23
|
-
## Dependencies
|
|
24
|
-
|
|
25
|
-
The auto gradient–which is used for back propagation–relies heavily on **numpy**.
|
|
1
|
+
# Deeplearning Package
|
|
2
|
+
|
|
3
|
+
## Overview
|
|
4
|
+
|
|
5
|
+
This package is designed to be similar to the PyTorch system of a building block system. Providing the functions that can be mixed, matched, and customized as pleased for any given model. This library is bare bones and only includes the few methods and ideas I learned about while studying *Deep Learning* by Ian Goodfellow et. al.. AI was used in the project, but it was used sparingly.
|
|
6
|
+
|
|
7
|
+
## Modules
|
|
8
|
+
|
|
9
|
+
This project has three main modules:
|
|
10
|
+
|
|
11
|
+
* `autogradient.py`
|
|
12
|
+
* `sequence.py`
|
|
13
|
+
* `neural_net.py`
|
|
14
|
+
|
|
15
|
+
All of which are automatically part of the initial import of the package.
|
|
16
|
+
|
|
17
|
+
## Making and Running a Model
|
|
18
|
+
|
|
19
|
+
When creating a model, use the Model class, which runs most of the functions included in the package itself. The first argument is a list of layers or blocks, each element is the steps in the network. These steps can be a Dense, Layer, or Dropout blocks (more will be made), a Dense is just multiple layers stacked back to back.
|
|
20
|
+
Training a model is done through: def train(epochs, x\_t, y\_t, x\_v, y\_v, val\_run=1, l\_rate=0.01, \_lambda\=0.1, batch\_size \= None)
|
|
21
|
+
Where epochs is the number of times you train through the data, the \#\_t means training data and \#\_v means validation data, x means input, y means output, val\_run is the epochs between when you want to test the validation data, l\_rate is the learn rate, \_lambda is a hyperparameter that determines the strength of the penalty functions, and batch\_size determines how large batches will be (if the batch size isn’t a multiple of the data size then it will still run, there is just a smaller batch then the others).
|
|
22
|
+
|
|
23
|
+
## Dependencies
|
|
24
|
+
|
|
25
|
+
The auto gradient–which is used for back propagation–relies heavily on **numpy**.
|
|
@@ -1,19 +1,19 @@
|
|
|
1
|
-
[project]
|
|
2
|
-
name = "rb-deeplearning-lib"
|
|
3
|
-
version = "0.0
|
|
4
|
-
description = "This is a machine learning--more specifically deep learning--library from my independent study on deep learning. This library is both a result of my learning and a tool for AI development."
|
|
5
|
-
readme = "README.md"
|
|
6
|
-
requires-python = ">=3.8"
|
|
7
|
-
license = "MIT"
|
|
8
|
-
license-files = ["LICENSE"]
|
|
9
|
-
dependencies = [
|
|
10
|
-
"numpy>=2.0"
|
|
11
|
-
]
|
|
12
|
-
|
|
13
|
-
[project.urls]
|
|
14
|
-
Homepage = "https://github.com/rylan-berry/DeepLearningIndependentStudy/tree/main/deeplearning_package"
|
|
15
|
-
|
|
16
|
-
[build-system]
|
|
17
|
-
requires = ["setuptools>=77.0.3"]
|
|
18
|
-
build-backend = "setuptools.build_meta"
|
|
19
|
-
|
|
1
|
+
[project]
|
|
2
|
+
name = "rb-deeplearning-lib"
|
|
3
|
+
version = "0.1.0"
|
|
4
|
+
description = "This is a machine learning--more specifically deep learning--library from my independent study on deep learning. This library is both a result of my learning and a tool for AI development."
|
|
5
|
+
readme = "README.md"
|
|
6
|
+
requires-python = ">=3.8"
|
|
7
|
+
license = "MIT"
|
|
8
|
+
license-files = ["LICENSE"]
|
|
9
|
+
dependencies = [
|
|
10
|
+
"numpy>=2.0"
|
|
11
|
+
]
|
|
12
|
+
|
|
13
|
+
[project.urls]
|
|
14
|
+
Homepage = "https://github.com/rylan-berry/DeepLearningIndependentStudy/tree/main/deeplearning_package"
|
|
15
|
+
|
|
16
|
+
[build-system]
|
|
17
|
+
requires = ["setuptools>=77.0.3"]
|
|
18
|
+
build-backend = "setuptools.build_meta"
|
|
19
|
+
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
[egg_info]
|
|
2
|
-
tag_build =
|
|
3
|
-
tag_date = 0
|
|
4
|
-
|
|
1
|
+
[egg_info]
|
|
2
|
+
tag_build =
|
|
3
|
+
tag_date = 0
|
|
4
|
+
|
|
@@ -1,3 +1,3 @@
|
|
|
1
|
-
import autogradient
|
|
2
|
-
import sequence
|
|
3
|
-
import neural_net
|
|
1
|
+
import autogradient
|
|
2
|
+
import sequence
|
|
3
|
+
import neural_net
|