ray-embedding 0.9.10__tar.gz → 0.10.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ray-embedding might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ray-embedding
3
- Version: 0.9.10
3
+ Version: 0.10.1
4
4
  Summary: Deploy SentenceTransformers embedding models to a ray cluster
5
5
  Author: Crispin Almodovar
6
6
  Author-email:
@@ -0,0 +1,97 @@
1
+ import logging
2
+ import os.path
3
+ import time
4
+ from typing import Optional, Dict, Any, List
5
+
6
+ import torch
7
+ from fastapi import FastAPI, HTTPException
8
+ from ray import serve
9
+ from sentence_transformers import SentenceTransformer
10
+
11
+ from ray_embedding.dto import EmbeddingResponse, EmbeddingRequest
12
+
13
+ web_api = FastAPI(title=f"Ray Embeddings - OpenAI-compatible API")
14
+
15
+
16
+ @serve.deployment(
17
+ num_replicas="auto",
18
+ ray_actor_options={
19
+ "num_cpus": 1,
20
+ "num_gpus": 0
21
+ },
22
+ autoscaling_config={
23
+ "target_ongoing_requests": 2,
24
+ "min_replicas": 0,
25
+ "initial_replicas": 1,
26
+ "max_replicas": 1,
27
+ }
28
+ )
29
+ @serve.ingress(web_api)
30
+ class EmbeddingModel:
31
+ def __init__(self, model: str, backend: Optional[str] = "torch", matryoshka_dim: Optional[int] = None,
32
+ trust_remote_code: Optional[bool] = False, model_kwargs: Dict[str, Any] = None):
33
+ logging.basicConfig(level=logging.INFO)
34
+ self.logger = logging.getLogger(__name__)
35
+ self.model = model
36
+ self.backend = backend or "torch"
37
+ self.matryoshka_dim = matryoshka_dim
38
+ self.trust_remote_code = trust_remote_code or False
39
+ self.model_kwargs = model_kwargs or {}
40
+ self.torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
41
+ self.logger.info(f"Initializing embedding model: {self.model}")
42
+ self.embedding_model = SentenceTransformer(self.model, backend=self.backend, trust_remote_code=self.trust_remote_code,
43
+ model_kwargs=self.model_kwargs)
44
+
45
+ self.served_model_name = os.path.basename(self.model)
46
+ self.available_models = [
47
+ {"id": self.served_model_name,
48
+ "object": "model",
49
+ "created": int(time.time()),
50
+ "owned_by": "openai",
51
+ "permission": []}
52
+ ]
53
+ self.logger.info(f"Successfully initialized embedding model {self.model} using device {self.torch_device}")
54
+
55
+ @web_api.post("/v1/embeddings", response_model=EmbeddingResponse)
56
+ async def create_embeddings(self, request: EmbeddingRequest):
57
+ """Generate embeddings for the input text using the specified model."""
58
+ try:
59
+ assert request.model == self.served_model_name, (
60
+ f"Model '{request.model}' is not supported. Use '{self.served_model_name}' instead."
61
+ )
62
+ if isinstance(request.input, str):
63
+ request.input = [request.input]
64
+
65
+ truncate_dim = request.dimensions or self.matryoshka_dim
66
+
67
+ # Compute embeddings and convert to a PyTorch tensor on the GPU
68
+ embeddings = self.embedding_model.encode(
69
+ request.input, convert_to_tensor=True, normalize_embeddings=True, show_progress_bar=False,
70
+ ).to(self.torch_device)
71
+
72
+ if truncate_dim is not None:
73
+ # Truncate and re-normalize the embeddings
74
+ embeddings = embeddings[:, :truncate_dim]
75
+ embeddings = embeddings / torch.norm(embeddings, dim=1, keepdim=True)
76
+
77
+ # Move all embeddings to CPU at once before conversion
78
+ embeddings = embeddings.cpu().tolist()
79
+
80
+ # Convert embeddings to list format for response
81
+ response_data = [
82
+ {"index": idx, "embedding": emb}
83
+ for idx, emb in enumerate(embeddings)
84
+ ]
85
+ return EmbeddingResponse(object="list", data=response_data, model=request.model)
86
+
87
+ except Exception as e:
88
+ self.logger.error(e)
89
+ raise HTTPException(status_code=500, detail=str(e))
90
+
91
+ @web_api.get("/v1/models")
92
+ async def list_models(self):
93
+ """Returns the list of available models in OpenAI-compatible format."""
94
+ return {"object": "list", "data": self.available_models}
95
+
96
+
97
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ray-embedding
3
- Version: 0.9.10
3
+ Version: 0.10.1
4
4
  Summary: Deploy SentenceTransformers embedding models to a ray cluster
5
5
  Author: Crispin Almodovar
6
6
  Author-email:
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = ray-embedding
3
- version = 0.9.10
3
+ version = 0.10.1
4
4
  author = Crispin Almodovar
5
5
  author_email =
6
6
  description = Deploy SentenceTransformers embedding models to a ray cluster
@@ -1,131 +0,0 @@
1
- import logging
2
- import os.path
3
- import time
4
- from typing import Optional, Dict, Any, List
5
-
6
- import torch
7
- from fastapi import FastAPI, HTTPException
8
- from ray import serve
9
- from sentence_transformers import SentenceTransformer
10
-
11
- from ray_embedding.dto import EmbeddingResponse, EmbeddingRequest
12
-
13
- web_api = FastAPI(title=f"Ray Embeddings - OpenAI-compatible API")
14
-
15
-
16
- @serve.deployment(
17
- num_replicas="auto",
18
- ray_actor_options={
19
- "num_cpus": 1,
20
- "num_gpus": 0
21
- },
22
- autoscaling_config={
23
- "target_ongoing_requests": 2,
24
- "min_replicas": 0,
25
- "initial_replicas": 1,
26
- "max_replicas": 1,
27
- },
28
- user_config={
29
- "max_batch_size": 8,
30
- "batch_wait_timeout_s": 0.25,
31
- }
32
- )
33
- @serve.ingress(web_api)
34
- class EmbeddingModel:
35
- def __init__(self, model: str, backend: Optional[str] = "torch", matryoshka_dim: Optional[int] = None,
36
- trust_remote_code: Optional[bool] = False, model_kwargs: Dict[str, Any] = None):
37
- logging.basicConfig(level=logging.INFO)
38
- self.logger = logging.getLogger(__name__)
39
- self.model = model
40
- self.backend = backend or "torch"
41
- self.matryoshka_dim = matryoshka_dim
42
- self.trust_remote_code = trust_remote_code or False
43
- self.model_kwargs = model_kwargs or {}
44
- self.torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
45
- self.logger.info(f"Initializing embedding model: {self.model}")
46
- self.embedding_model = SentenceTransformer(self.model, backend=self.backend, trust_remote_code=self.trust_remote_code,
47
- model_kwargs=self.model_kwargs)
48
-
49
- self.served_model_name = os.path.basename(self.model)
50
- self.available_models = [
51
- {"id": self.served_model_name,
52
- "object": "model",
53
- "created": int(time.time()),
54
- "owned_by": "openai",
55
- "permission": []}
56
- ]
57
- self.logger.info(f"Successfully initialized embedding model {self.model} using device {self.torch_device}")
58
-
59
- async def reconfigure(self, user_config: Dict):
60
- assert "max_batch_size" in user_config and "batch_wait_timeout_s" in user_config, "Invalid user config"
61
- self.logger.info(f"Reconfiguring dynamic batching parameters: {user_config}")
62
- self.__create_embeddings_batch.set_max_batch_size(user_config["max_batch_size"])
63
- self.__create_embeddings_batch.set_batch_wait_timeout_s(user_config["batch_wait_timeout_s"])
64
-
65
- @web_api.post("/v1/embeddings", response_model=EmbeddingResponse)
66
- async def create_embeddings(self, request: EmbeddingRequest):
67
- """Generate embeddings for the input text using the specified model."""
68
- try:
69
- assert request.model == self.served_model_name, (
70
- f"Model '{request.model}' is not supported. Use '{self.served_model_name}' instead."
71
- )
72
- return await self.__create_embeddings_batch(request)
73
- except Exception as e:
74
- self.logger.error(e)
75
- raise HTTPException(status_code=500, detail=str(e))
76
-
77
- @serve.batch(max_batch_size=8, batch_wait_timeout_s=0.25)
78
- async def __create_embeddings_batch(self, requests_batch: List[EmbeddingRequest]) -> List[EmbeddingResponse]:
79
- self_0 = self[0] if isinstance(self, list) else self # Ray also passes an array of self refs; just take the first one
80
- embedding_model, matryoshka_dim, torch_device = self_0.embedding_model, self_0.matryoshka_dim, self_0.torch_device
81
-
82
- inputs, truncate_dims, num_inputs_list = [], [], []
83
- for request in requests_batch:
84
- input_text = request.input if isinstance(request.input, list) else [request.input] # Can be a list of texts
85
- inputs.extend(input_text)
86
- num_inputs_list.append(len(input_text))
87
- truncate_dims.append(request.dimensions or matryoshka_dim)
88
-
89
- embeddings = embedding_model.encode(
90
- inputs, convert_to_tensor=True, normalize_embeddings=True, show_progress_bar=False,
91
- ).to(torch_device)
92
-
93
- model_name = requests_batch[0].model
94
- truncate_needed = any(dim is not None for dim in truncate_dims)
95
- results_batch, ix = [], 0
96
-
97
- if truncate_needed:
98
- for truncate_dim, num_inputs in zip(truncate_dims, num_inputs_list):
99
- batch_embeddings = embeddings[ix: ix + num_inputs]
100
- ix += num_inputs
101
-
102
- if truncate_dim is not None:
103
- # Truncate and normalize using pytorch (faster)
104
- batch_embeddings = batch_embeddings[:, :truncate_dim]
105
- batch_embeddings = batch_embeddings / torch.norm(batch_embeddings, dim=1, keepdim=True)
106
-
107
- batch_embeddings = batch_embeddings.cpu().tolist()
108
- response_data = [
109
- {"index": emb_ix, "embedding": emb} for emb_ix, emb in enumerate(batch_embeddings)
110
- ]
111
- results_batch.append(EmbeddingResponse(object="list", data=response_data, model=model_name))
112
- else:
113
- embeddings_list = embeddings.cpu().tolist() # Move everything to CPU
114
- for num_inputs in num_inputs_list:
115
- batch_embeddings = embeddings_list[ix: ix + num_inputs]
116
- ix += num_inputs
117
-
118
- response_data = [
119
- {"index": emb_ix, "embedding": emb} for emb_ix, emb in enumerate(batch_embeddings)
120
- ]
121
- results_batch.append(EmbeddingResponse(object="list", data=response_data, model=model_name))
122
-
123
- return results_batch
124
-
125
- @web_api.get("/v1/models")
126
- async def list_models(self):
127
- """Returns the list of available models in OpenAI-compatible format."""
128
- return {"object": "list", "data": self.available_models}
129
-
130
-
131
-
File without changes