ray-embedding 0.11.2__tar.gz → 0.11.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ray-embedding might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ray-embedding
3
- Version: 0.11.2
3
+ Version: 0.11.4
4
4
  Summary: Deploy SentenceTransformers embedding models to a ray cluster
5
5
  Author: Crispin Almodovar
6
6
  Author-email:
@@ -16,7 +16,7 @@ class EmbeddingModel:
16
16
  matryoshka_dim: Optional[int] = None, trust_remote_code: Optional[bool] = False,
17
17
  model_kwargs: Dict[str, Any] = None):
18
18
  logging.basicConfig(level=logging.INFO)
19
- self.logger = logging.getLogger(__name__)
19
+ self.logger = logging.getLogger(self.__class__.__name__)
20
20
  self.model = model
21
21
  self.init_device = device
22
22
  if self.init_device is None or self.init_device == "auto":
@@ -14,8 +14,9 @@ web_api = FastAPI(title="Ray Embeddings - OpenAI-compatible API")
14
14
  @serve.ingress(web_api)
15
15
  class EmbeddingService:
16
16
  def __init__(self, served_models: Dict[str, DeployedModel]):
17
- self.logger = logging.getLogger(self.__class__.__name__)
18
17
  assert served_models, "models cannot be empty"
18
+ logging.basicConfig(level=logging.INFO)
19
+ self.logger = logging.getLogger(self.__class__.__name__)
19
20
  self.served_models = served_models
20
21
  self.available_models = [
21
22
  {"id": str(item),
@@ -65,6 +66,7 @@ class EmbeddingService:
65
66
  async def compute_embeddings(self, request: EmbeddingRequest):
66
67
  try:
67
68
  inputs = request.input if isinstance(request.input, list) else [request.input]
69
+ self.logger.info(f"Received input of size {len(inputs)} text chunks")
68
70
  embeddings = await self._compute_embeddings_from_resized_batches(request.model, inputs, request.dimensions)
69
71
  response_data = [
70
72
  {"index": idx, "embedding": emb}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ray-embedding
3
- Version: 0.11.2
3
+ Version: 0.11.4
4
4
  Summary: Deploy SentenceTransformers embedding models to a ray cluster
5
5
  Author: Crispin Almodovar
6
6
  Author-email:
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = ray-embedding
3
- version = 0.11.2
3
+ version = 0.11.4
4
4
  author = Crispin Almodovar
5
5
  author_email =
6
6
  description = Deploy SentenceTransformers embedding models to a ray cluster
File without changes