ras-commander 0.78.0__tar.gz → 0.79.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ras_commander-0.78.0/ras_commander.egg-info → ras_commander-0.79.1}/PKG-INFO +6 -4
- {ras_commander-0.78.0 → ras_commander-0.79.1}/README.md +5 -3
- ras_commander-0.79.1/ras_commander/HdfFluvialPluvial.py +416 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfResultsMesh.py +0 -16
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasUnsteady.py +1 -1
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/__init__.py +1 -1
- {ras_commander-0.78.0 → ras_commander-0.79.1/ras_commander.egg-info}/PKG-INFO +6 -4
- {ras_commander-0.78.0 → ras_commander-0.79.1}/setup.py +1 -1
- ras_commander-0.78.0/ras_commander/HdfFluvialPluvial.py +0 -554
- {ras_commander-0.78.0 → ras_commander-0.79.1}/LICENSE +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/pyproject.toml +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/Decorators.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfBase.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfBndry.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfInfiltration.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfMesh.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfPipe.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfPlan.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfPlot.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfPump.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfResultsPlan.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfResultsPlot.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfResultsXsec.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfStruc.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfUtils.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/HdfXsec.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/LoggingConfig.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasCmdr.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasExamples.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasGeo.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasMap.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasPlan.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasPrj.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander/RasUtils.py +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander.egg-info/SOURCES.txt +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander.egg-info/dependency_links.txt +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander.egg-info/requires.txt +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/ras_commander.egg-info/top_level.txt +0 -0
- {ras_commander-0.78.0 → ras_commander-0.79.1}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ras-commander
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.79.1
|
4
4
|
Summary: A Python library for automating HEC-RAS 6.x operations
|
5
5
|
Home-page: https://github.com/gpt-cmdr/ras-commander
|
6
6
|
Author: William M. Katzenmeyer, P.E., C.F.M.
|
@@ -41,9 +41,11 @@ RAS Commander is a Python library for automating HEC-RAS operations, providing a
|
|
41
41
|
|
42
42
|
*[Check out the ASFPM Presentation on RAS-Commander Here](https://drive.google.com/file/d/1kX0twae8NrpLwR0iQ0Dmd8zAXdq-pYXD/view)*
|
43
43
|
|
44
|
-
## Repository Author
|
45
|
-
|
46
|
-
|
44
|
+
## Repository Author
|
45
|
+
|
46
|
+
**[William Katzenmeyer, P.E., C.F.M.](https://engineeringwithllms.info)**
|
47
|
+
Owner & Vice President, [CLB Engineering Corporation](https://clbengineering.com/)
|
48
|
+
|
47
49
|
|
48
50
|
## Don't Ask Me, Ask a GPT!
|
49
51
|
|
@@ -8,9 +8,11 @@ RAS Commander is a Python library for automating HEC-RAS operations, providing a
|
|
8
8
|
|
9
9
|
*[Check out the ASFPM Presentation on RAS-Commander Here](https://drive.google.com/file/d/1kX0twae8NrpLwR0iQ0Dmd8zAXdq-pYXD/view)*
|
10
10
|
|
11
|
-
## Repository Author
|
12
|
-
|
13
|
-
|
11
|
+
## Repository Author
|
12
|
+
|
13
|
+
**[William Katzenmeyer, P.E., C.F.M.](https://engineeringwithllms.info)**
|
14
|
+
Owner & Vice President, [CLB Engineering Corporation](https://clbengineering.com/)
|
15
|
+
|
14
16
|
|
15
17
|
## Don't Ask Me, Ask a GPT!
|
16
18
|
|
@@ -0,0 +1,416 @@
|
|
1
|
+
"""
|
2
|
+
Class: HdfFluvialPluvial
|
3
|
+
|
4
|
+
All of the methods in this class are static and are designed to be used without instantiation.
|
5
|
+
|
6
|
+
List of Functions in HdfFluvialPluvial:
|
7
|
+
- calculate_fluvial_pluvial_boundary(): Returns LineStrings representing the boundary.
|
8
|
+
- generate_fluvial_pluvial_polygons(): Returns dissolved Polygons for fluvial, pluvial, and ambiguous zones.
|
9
|
+
- _process_cell_adjacencies()
|
10
|
+
- _get_boundary_cell_pairs()
|
11
|
+
- _identify_boundary_edges()
|
12
|
+
|
13
|
+
"""
|
14
|
+
|
15
|
+
from typing import Dict, List, Tuple, Set, Optional
|
16
|
+
import pandas as pd
|
17
|
+
import geopandas as gpd
|
18
|
+
from collections import defaultdict
|
19
|
+
from shapely.geometry import LineString, MultiLineString
|
20
|
+
from tqdm import tqdm
|
21
|
+
from .HdfMesh import HdfMesh
|
22
|
+
from .HdfUtils import HdfUtils
|
23
|
+
from .Decorators import standardize_input
|
24
|
+
from .HdfResultsMesh import HdfResultsMesh
|
25
|
+
from .LoggingConfig import get_logger
|
26
|
+
from pathlib import Path
|
27
|
+
|
28
|
+
logger = get_logger(__name__)
|
29
|
+
|
30
|
+
class HdfFluvialPluvial:
|
31
|
+
"""
|
32
|
+
A class for analyzing and visualizing fluvial-pluvial boundaries in HEC-RAS 2D model results.
|
33
|
+
|
34
|
+
This class provides methods to process and visualize HEC-RAS 2D model outputs,
|
35
|
+
specifically focusing on the delineation of fluvial and pluvial flood areas.
|
36
|
+
It includes functionality for calculating fluvial-pluvial boundaries based on
|
37
|
+
the timing of maximum water surface elevations.
|
38
|
+
|
39
|
+
Key Concepts:
|
40
|
+
- Fluvial flooding: Flooding from rivers/streams
|
41
|
+
- Pluvial flooding: Flooding from rainfall/surface water
|
42
|
+
- delta_t: Time threshold (in hours) used to distinguish between fluvial and pluvial cells.
|
43
|
+
Cells with max WSE time differences greater than delta_t are considered boundaries.
|
44
|
+
|
45
|
+
Data Requirements:
|
46
|
+
- HEC-RAS plan HDF file containing:
|
47
|
+
- 2D mesh cell geometry (accessed via HdfMesh)
|
48
|
+
- Maximum water surface elevation times (accessed via HdfResultsMesh)
|
49
|
+
|
50
|
+
Usage Example:
|
51
|
+
>>> from ras_commander import HdfFluvialPluvial
|
52
|
+
>>> hdf_path = Path("path/to/plan.hdf")
|
53
|
+
|
54
|
+
# To get just the boundary lines
|
55
|
+
>>> boundary_lines_gdf = HdfFluvialPluvial.calculate_fluvial_pluvial_boundary(
|
56
|
+
... hdf_path,
|
57
|
+
... delta_t=12
|
58
|
+
... )
|
59
|
+
|
60
|
+
# To get classified flood polygons
|
61
|
+
>>> flood_polygons_gdf = HdfFluvialPluvial.generate_fluvial_pluvial_polygons(
|
62
|
+
... hdf_path,
|
63
|
+
... delta_t=12,
|
64
|
+
... temporal_tolerance_hours=1.0
|
65
|
+
... )
|
66
|
+
"""
|
67
|
+
def __init__(self):
|
68
|
+
self.logger = get_logger(__name__) # Initialize logger with module name
|
69
|
+
|
70
|
+
@staticmethod
|
71
|
+
@standardize_input(file_type='plan_hdf')
|
72
|
+
def calculate_fluvial_pluvial_boundary(
|
73
|
+
hdf_path: Path,
|
74
|
+
delta_t: float = 12,
|
75
|
+
min_line_length: Optional[float] = None
|
76
|
+
) -> gpd.GeoDataFrame:
|
77
|
+
"""
|
78
|
+
Calculate the fluvial-pluvial boundary lines based on cell polygons and maximum water surface elevation times.
|
79
|
+
|
80
|
+
This function is useful for visualizing the line of transition between flooding mechanisms.
|
81
|
+
|
82
|
+
Args:
|
83
|
+
hdf_path (Path): Path to the HEC-RAS plan HDF file.
|
84
|
+
delta_t (float): Threshold time difference in hours. Cells with time differences
|
85
|
+
greater than this value are considered boundaries. Default is 12 hours.
|
86
|
+
min_line_length (float, optional): Minimum length (in CRS units) for boundary lines to be included.
|
87
|
+
Lines shorter than this will be dropped. Default is None (no filtering).
|
88
|
+
|
89
|
+
Returns:
|
90
|
+
gpd.GeoDataFrame: GeoDataFrame containing the fluvial-pluvial boundary lines.
|
91
|
+
"""
|
92
|
+
try:
|
93
|
+
logger.info("Getting cell polygons from HDF file...")
|
94
|
+
cell_polygons_gdf = HdfMesh.get_mesh_cell_polygons(hdf_path)
|
95
|
+
if cell_polygons_gdf.empty:
|
96
|
+
raise ValueError("No cell polygons found in HDF file")
|
97
|
+
|
98
|
+
logger.info("Getting maximum water surface data from HDF file...")
|
99
|
+
max_ws_df = HdfResultsMesh.get_mesh_max_ws(hdf_path)
|
100
|
+
if max_ws_df.empty:
|
101
|
+
raise ValueError("No maximum water surface data found in HDF file")
|
102
|
+
|
103
|
+
logger.info("Converting maximum water surface timestamps...")
|
104
|
+
max_ws_df['maximum_water_surface_time'] = max_ws_df['maximum_water_surface_time'].apply(
|
105
|
+
lambda x: HdfUtils.parse_ras_datetime(x) if isinstance(x, str) else x
|
106
|
+
)
|
107
|
+
|
108
|
+
logger.info("Processing cell adjacencies...")
|
109
|
+
cell_adjacency, common_edges = HdfFluvialPluvial._process_cell_adjacencies(cell_polygons_gdf)
|
110
|
+
|
111
|
+
logger.info("Extracting cell times from maximum water surface data...")
|
112
|
+
cell_times = max_ws_df.set_index('cell_id')['maximum_water_surface_time'].to_dict()
|
113
|
+
|
114
|
+
logger.info("Identifying boundary edges...")
|
115
|
+
boundary_edges = HdfFluvialPluvial._identify_boundary_edges(
|
116
|
+
cell_adjacency, common_edges, cell_times, delta_t, min_line_length=min_line_length
|
117
|
+
)
|
118
|
+
|
119
|
+
logger.info("Creating final GeoDataFrame for boundaries...")
|
120
|
+
boundary_gdf = gpd.GeoDataFrame(
|
121
|
+
geometry=boundary_edges,
|
122
|
+
crs=cell_polygons_gdf.crs
|
123
|
+
)
|
124
|
+
|
125
|
+
logger.info("Boundary line calculation completed successfully.")
|
126
|
+
return boundary_gdf
|
127
|
+
|
128
|
+
except Exception as e:
|
129
|
+
logger.error(f"Error calculating fluvial-pluvial boundary lines: {str(e)}")
|
130
|
+
return gpd.GeoDataFrame()
|
131
|
+
|
132
|
+
@staticmethod
|
133
|
+
@standardize_input(file_type='plan_hdf')
|
134
|
+
def generate_fluvial_pluvial_polygons(
|
135
|
+
hdf_path: Path,
|
136
|
+
delta_t: float = 12,
|
137
|
+
temporal_tolerance_hours: float = 1.0,
|
138
|
+
min_polygon_area_acres: Optional[float] = None
|
139
|
+
) -> gpd.GeoDataFrame:
|
140
|
+
"""
|
141
|
+
Generates dissolved polygons representing fluvial, pluvial, and ambiguous flood zones.
|
142
|
+
|
143
|
+
This function classifies each wetted cell and merges them into three distinct regions
|
144
|
+
based on the timing of maximum water surface elevation.
|
145
|
+
|
146
|
+
Optionally, for polygons classified as fluvial or pluvial, if their area is less than
|
147
|
+
min_polygon_area_acres, they are reclassified to the opposite type and merged with
|
148
|
+
adjacent polygons of that type. Ambiguous polygons are exempt from this logic.
|
149
|
+
|
150
|
+
Args:
|
151
|
+
hdf_path (Path): Path to the HEC-RAS plan HDF file.
|
152
|
+
delta_t (float): The time difference (in hours) between adjacent cells that defines
|
153
|
+
the initial boundary between fluvial and pluvial zones. Default is 12.
|
154
|
+
temporal_tolerance_hours (float): The maximum time difference (in hours) for a cell
|
155
|
+
to be considered part of an expanding region.
|
156
|
+
Default is 1.0.
|
157
|
+
min_polygon_area_acres (float, optional): Minimum polygon area (in acres). For fluvial or pluvial
|
158
|
+
polygons smaller than this, reclassify to the opposite
|
159
|
+
type and merge with adjacent polygons of that type.
|
160
|
+
Ambiguous polygons are not affected.
|
161
|
+
|
162
|
+
Returns:
|
163
|
+
gpd.GeoDataFrame: A GeoDataFrame with dissolved polygons for 'fluvial', 'pluvial',
|
164
|
+
and 'ambiguous' zones.
|
165
|
+
"""
|
166
|
+
try:
|
167
|
+
# --- 1. Data Loading and Preparation ---
|
168
|
+
logger.info("Loading mesh and results data...")
|
169
|
+
cell_polygons_gdf = HdfMesh.get_mesh_cell_polygons(hdf_path)
|
170
|
+
max_ws_df = HdfResultsMesh.get_mesh_max_ws(hdf_path)
|
171
|
+
max_ws_df['maximum_water_surface_time'] = max_ws_df['maximum_water_surface_time'].apply(
|
172
|
+
lambda x: HdfUtils.parse_ras_datetime(x) if isinstance(x, str) else x
|
173
|
+
)
|
174
|
+
cell_times = max_ws_df.set_index('cell_id')['maximum_water_surface_time'].to_dict()
|
175
|
+
|
176
|
+
logger.info("Processing cell adjacencies...")
|
177
|
+
cell_adjacency, _ = HdfFluvialPluvial._process_cell_adjacencies(cell_polygons_gdf)
|
178
|
+
|
179
|
+
# --- 2. Seeding the Classifications ---
|
180
|
+
logger.info(f"Identifying initial boundary seeds with delta_t = {delta_t} hours...")
|
181
|
+
boundary_pairs = HdfFluvialPluvial._get_boundary_cell_pairs(cell_adjacency, cell_times, delta_t)
|
182
|
+
|
183
|
+
classifications = pd.Series('unclassified', index=cell_polygons_gdf['cell_id'], name='classification')
|
184
|
+
|
185
|
+
for cell1, cell2 in boundary_pairs:
|
186
|
+
if cell_times.get(cell1) > cell_times.get(cell2):
|
187
|
+
classifications.loc[cell1] = 'fluvial'
|
188
|
+
classifications.loc[cell2] = 'pluvial'
|
189
|
+
else:
|
190
|
+
classifications.loc[cell1] = 'pluvial'
|
191
|
+
classifications.loc[cell2] = 'fluvial'
|
192
|
+
|
193
|
+
# --- 3. Iterative Region Growth ---
|
194
|
+
logger.info(f"Starting iterative region growth with tolerance = {temporal_tolerance_hours} hours...")
|
195
|
+
fluvial_frontier = set(classifications[classifications == 'fluvial'].index)
|
196
|
+
pluvial_frontier = set(classifications[classifications == 'pluvial'].index)
|
197
|
+
|
198
|
+
iteration = 0
|
199
|
+
with tqdm(desc="Region Growing", unit="iter") as pbar:
|
200
|
+
while fluvial_frontier or pluvial_frontier:
|
201
|
+
iteration += 1
|
202
|
+
|
203
|
+
next_fluvial_candidates = set()
|
204
|
+
for cell_id in fluvial_frontier:
|
205
|
+
for neighbor_id in cell_adjacency.get(cell_id, []):
|
206
|
+
if classifications.loc[neighbor_id] == 'unclassified' and pd.notna(cell_times.get(neighbor_id)):
|
207
|
+
time_diff_seconds = abs((cell_times[cell_id] - cell_times[neighbor_id]).total_seconds())
|
208
|
+
if time_diff_seconds <= temporal_tolerance_hours * 3600:
|
209
|
+
next_fluvial_candidates.add(neighbor_id)
|
210
|
+
|
211
|
+
next_pluvial_candidates = set()
|
212
|
+
for cell_id in pluvial_frontier:
|
213
|
+
for neighbor_id in cell_adjacency.get(cell_id, []):
|
214
|
+
if classifications.loc[neighbor_id] == 'unclassified' and pd.notna(cell_times.get(neighbor_id)):
|
215
|
+
time_diff_seconds = abs((cell_times[cell_id] - cell_times[neighbor_id]).total_seconds())
|
216
|
+
if time_diff_seconds <= temporal_tolerance_hours * 3600:
|
217
|
+
next_pluvial_candidates.add(neighbor_id)
|
218
|
+
|
219
|
+
# Resolve conflicts
|
220
|
+
ambiguous_cells = next_fluvial_candidates.intersection(next_pluvial_candidates)
|
221
|
+
if ambiguous_cells:
|
222
|
+
classifications.loc[list(ambiguous_cells)] = 'ambiguous'
|
223
|
+
|
224
|
+
# Classify non-conflicted cells
|
225
|
+
newly_fluvial = next_fluvial_candidates - ambiguous_cells
|
226
|
+
if newly_fluvial:
|
227
|
+
classifications.loc[list(newly_fluvial)] = 'fluvial'
|
228
|
+
|
229
|
+
newly_pluvial = next_pluvial_candidates - ambiguous_cells
|
230
|
+
if newly_pluvial:
|
231
|
+
classifications.loc[list(newly_pluvial)] = 'pluvial'
|
232
|
+
|
233
|
+
# Update frontiers for the next iteration
|
234
|
+
fluvial_frontier = newly_fluvial
|
235
|
+
pluvial_frontier = newly_pluvial
|
236
|
+
|
237
|
+
pbar.update(1)
|
238
|
+
pbar.set_postfix({
|
239
|
+
"Fluvial": len(fluvial_frontier),
|
240
|
+
"Pluvial": len(pluvial_frontier),
|
241
|
+
"Ambiguous": len(ambiguous_cells)
|
242
|
+
})
|
243
|
+
|
244
|
+
logger.info(f"Region growing completed in {iteration} iterations.")
|
245
|
+
|
246
|
+
# --- 4. Finalization and Dissolving ---
|
247
|
+
# Classify any remaining unclassified (likely isolated) cells as ambiguous
|
248
|
+
classifications[classifications == 'unclassified'] = 'ambiguous'
|
249
|
+
|
250
|
+
logger.info("Merging classifications with cell polygons...")
|
251
|
+
classified_gdf = cell_polygons_gdf.merge(classifications.to_frame(), left_on='cell_id', right_index=True)
|
252
|
+
|
253
|
+
logger.info("Dissolving polygons by classification...")
|
254
|
+
final_regions_gdf = classified_gdf.dissolve(by='classification', aggfunc='first').reset_index()
|
255
|
+
|
256
|
+
# --- 5. Minimum Polygon Area Filtering and Merging (if requested) ---
|
257
|
+
if min_polygon_area_acres is not None:
|
258
|
+
logger.info(f"Applying minimum polygon area filter: {min_polygon_area_acres} acres")
|
259
|
+
# Calculate area in acres (1 acre = 4046.8564224 m^2)
|
260
|
+
# If CRS is not projected, warn and skip area filtering
|
261
|
+
if not final_regions_gdf.crs or not final_regions_gdf.crs.is_projected:
|
262
|
+
logger.warning("CRS is not projected. Area-based filtering skipped.")
|
263
|
+
else:
|
264
|
+
# Explode to individual polygons for area filtering
|
265
|
+
exploded = final_regions_gdf.explode(index_parts=False, ignore_index=True)
|
266
|
+
exploded['area_acres'] = exploded.geometry.area / 4046.8564224
|
267
|
+
|
268
|
+
# Only consider fluvial and pluvial polygons for area filtering
|
269
|
+
mask_fluvial = (exploded['classification'] == 'fluvial') & (exploded['area_acres'] < min_polygon_area_acres)
|
270
|
+
mask_pluvial = (exploded['classification'] == 'pluvial') & (exploded['area_acres'] < min_polygon_area_acres)
|
271
|
+
|
272
|
+
n_fluvial = mask_fluvial.sum()
|
273
|
+
n_pluvial = mask_pluvial.sum()
|
274
|
+
logger.info(f"Found {n_fluvial} small fluvial and {n_pluvial} small pluvial polygons to reclassify.")
|
275
|
+
|
276
|
+
# Reclassify small fluvial polygons as pluvial, and small pluvial polygons as fluvial
|
277
|
+
exploded.loc[mask_fluvial, 'classification'] = 'pluvial'
|
278
|
+
exploded.loc[mask_pluvial, 'classification'] = 'fluvial'
|
279
|
+
# Ambiguous polygons are not changed
|
280
|
+
|
281
|
+
# Redissolve by classification to merge with adjacent polygons of the same type
|
282
|
+
final_regions_gdf = exploded.dissolve(by='classification', aggfunc='first').reset_index()
|
283
|
+
logger.info("Redissolved polygons after reclassification of small areas.")
|
284
|
+
|
285
|
+
logger.info("Polygon generation completed successfully.")
|
286
|
+
return final_regions_gdf
|
287
|
+
|
288
|
+
except Exception as e:
|
289
|
+
logger.error(f"Error generating fluvial-pluvial polygons: {str(e)}", exc_info=True)
|
290
|
+
return gpd.GeoDataFrame()
|
291
|
+
|
292
|
+
|
293
|
+
@staticmethod
|
294
|
+
def _process_cell_adjacencies(cell_polygons_gdf: gpd.GeoDataFrame) -> Tuple[Dict[int, List[int]], Dict[int, Dict[int, LineString]]]:
|
295
|
+
"""
|
296
|
+
Optimized method to process cell adjacencies by extracting shared edges directly.
|
297
|
+
"""
|
298
|
+
cell_adjacency = defaultdict(list)
|
299
|
+
common_edges = defaultdict(dict)
|
300
|
+
edge_to_cells = defaultdict(set)
|
301
|
+
|
302
|
+
def edge_key(coords1, coords2, precision=8):
|
303
|
+
coords1 = tuple(round(coord, precision) for coord in coords1)
|
304
|
+
coords2 = tuple(round(coord, precision) for coord in coords2)
|
305
|
+
return tuple(sorted([coords1, coords2]))
|
306
|
+
|
307
|
+
for _, row in cell_polygons_gdf.iterrows():
|
308
|
+
cell_id = row['cell_id']
|
309
|
+
geom = row['geometry']
|
310
|
+
if geom.is_empty or not geom.is_valid:
|
311
|
+
continue
|
312
|
+
coords = list(geom.exterior.coords)
|
313
|
+
for i in range(len(coords) - 1):
|
314
|
+
key = edge_key(coords[i], coords[i + 1])
|
315
|
+
edge_to_cells[key].add(cell_id)
|
316
|
+
|
317
|
+
for edge, cells in edge_to_cells.items():
|
318
|
+
cell_list = list(cells)
|
319
|
+
if len(cell_list) >= 2:
|
320
|
+
for i in range(len(cell_list)):
|
321
|
+
for j in range(i + 1, len(cell_list)):
|
322
|
+
cell1, cell2 = cell_list[i], cell_list[j]
|
323
|
+
cell_adjacency[cell1].append(cell2)
|
324
|
+
cell_adjacency[cell2].append(cell1)
|
325
|
+
common_edge = LineString([edge[0], edge[1]])
|
326
|
+
common_edges[cell1][cell2] = common_edge
|
327
|
+
common_edges[cell2][cell1] = common_edge
|
328
|
+
|
329
|
+
return cell_adjacency, common_edges
|
330
|
+
|
331
|
+
@staticmethod
|
332
|
+
def _get_boundary_cell_pairs(
|
333
|
+
cell_adjacency: Dict[int, List[int]],
|
334
|
+
cell_times: Dict[int, pd.Timestamp],
|
335
|
+
delta_t: float
|
336
|
+
) -> List[Tuple[int, int]]:
|
337
|
+
"""
|
338
|
+
Identifies pairs of adjacent cell IDs that form a boundary.
|
339
|
+
|
340
|
+
A boundary is defined where the difference in max water surface time
|
341
|
+
between two adjacent cells is greater than delta_t.
|
342
|
+
|
343
|
+
Args:
|
344
|
+
cell_adjacency (Dict[int, List[int]]): Dictionary of cell adjacencies.
|
345
|
+
cell_times (Dict[int, pd.Timestamp]): Dictionary mapping cell IDs to their max WSE times.
|
346
|
+
delta_t (float): Time threshold in hours.
|
347
|
+
|
348
|
+
Returns:
|
349
|
+
List[Tuple[int, int]]: A list of tuples, where each tuple contains a pair of
|
350
|
+
cell IDs forming a boundary.
|
351
|
+
"""
|
352
|
+
boundary_cell_pairs = []
|
353
|
+
processed_pairs = set()
|
354
|
+
delta_t_seconds = delta_t * 3600
|
355
|
+
|
356
|
+
for cell_id, neighbors in cell_adjacency.items():
|
357
|
+
time1 = cell_times.get(cell_id)
|
358
|
+
if not pd.notna(time1):
|
359
|
+
continue
|
360
|
+
|
361
|
+
for neighbor_id in neighbors:
|
362
|
+
pair = tuple(sorted((cell_id, neighbor_id)))
|
363
|
+
if pair in processed_pairs:
|
364
|
+
continue
|
365
|
+
|
366
|
+
time2 = cell_times.get(neighbor_id)
|
367
|
+
if not pd.notna(time2):
|
368
|
+
continue
|
369
|
+
|
370
|
+
time_diff = abs((time1 - time2).total_seconds())
|
371
|
+
|
372
|
+
if time_diff >= delta_t_seconds:
|
373
|
+
boundary_cell_pairs.append(pair)
|
374
|
+
|
375
|
+
processed_pairs.add(pair)
|
376
|
+
|
377
|
+
return boundary_cell_pairs
|
378
|
+
|
379
|
+
@staticmethod
|
380
|
+
def _identify_boundary_edges(
|
381
|
+
cell_adjacency: Dict[int, List[int]],
|
382
|
+
common_edges: Dict[int, Dict[int, LineString]],
|
383
|
+
cell_times: Dict[int, pd.Timestamp],
|
384
|
+
delta_t: float,
|
385
|
+
min_line_length: Optional[float] = None
|
386
|
+
) -> List[LineString]:
|
387
|
+
"""
|
388
|
+
Identify boundary edges between cells with significant time differences.
|
389
|
+
|
390
|
+
This function now uses the helper `_get_boundary_cell_pairs`.
|
391
|
+
|
392
|
+
Args:
|
393
|
+
cell_adjacency (Dict[int, List[int]]): Dictionary of cell adjacencies.
|
394
|
+
common_edges (Dict[int, Dict[int, LineString]]): Dictionary of shared edges between cells.
|
395
|
+
cell_times (Dict[int, pd.Timestamp]): Dictionary mapping cell IDs to their max WSE times.
|
396
|
+
delta_t (float): Time threshold in hours.
|
397
|
+
min_line_length (float, optional): Minimum length (in CRS units) for boundary lines to be included.
|
398
|
+
Lines shorter than this will be dropped. Default is None (no filtering).
|
399
|
+
|
400
|
+
Returns:
|
401
|
+
List[LineString]: List of LineString geometries representing boundaries.
|
402
|
+
"""
|
403
|
+
boundary_pairs = HdfFluvialPluvial._get_boundary_cell_pairs(cell_adjacency, cell_times, delta_t)
|
404
|
+
|
405
|
+
boundary_edges = [common_edges[c1][c2] for c1, c2 in boundary_pairs]
|
406
|
+
|
407
|
+
logger.info(f"Identified {len(boundary_edges)} boundary edges using delta_t of {delta_t} hours.")
|
408
|
+
|
409
|
+
if min_line_length is not None:
|
410
|
+
filtered_edges = [edge for edge in boundary_edges if edge.length >= min_line_length]
|
411
|
+
num_dropped = len(boundary_edges) - len(filtered_edges)
|
412
|
+
if num_dropped > 0:
|
413
|
+
logger.info(f"{num_dropped} boundary line(s) shorter than {min_line_length} units were dropped after filtering.")
|
414
|
+
boundary_edges = filtered_edges
|
415
|
+
|
416
|
+
return boundary_edges
|
@@ -42,22 +42,6 @@ HdfUtils for common operations. Methods use @log_call decorator for logging and
|
|
42
42
|
|
43
43
|
|
44
44
|
|
45
|
-
REVISIONS MADE:
|
46
|
-
|
47
|
-
Use get_ prefix for functions that return data.
|
48
|
-
BUT, we will never set results data, so we should use get_ for results data.
|
49
|
-
|
50
|
-
Renamed functions:
|
51
|
-
- mesh_summary_output() to get_mesh_summary()
|
52
|
-
- mesh_timeseries_output() to get_mesh_timeseries()
|
53
|
-
- mesh_faces_timeseries_output() to get_mesh_faces_timeseries()
|
54
|
-
- mesh_cells_timeseries_output() to get_mesh_cells_timeseries()
|
55
|
-
- mesh_last_iter() to get_mesh_last_iter()
|
56
|
-
- mesh_max_ws() to get_mesh_max_ws()
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
45
|
|
62
46
|
|
63
47
|
|
@@ -651,7 +651,7 @@ class RasUnsteady:
|
|
651
651
|
formatted_values = []
|
652
652
|
for i in range(0, len(df), 10):
|
653
653
|
row = df['Value'].iloc[i:i+10]
|
654
|
-
formatted_row = ''.join(f'{value:8.
|
654
|
+
formatted_row = ''.join(f'{value:8.2f}' for value in row)
|
655
655
|
formatted_values.append(formatted_row + '\n')
|
656
656
|
|
657
657
|
# Replace old table with new formatted values
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ras-commander
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.79.1
|
4
4
|
Summary: A Python library for automating HEC-RAS 6.x operations
|
5
5
|
Home-page: https://github.com/gpt-cmdr/ras-commander
|
6
6
|
Author: William M. Katzenmeyer, P.E., C.F.M.
|
@@ -41,9 +41,11 @@ RAS Commander is a Python library for automating HEC-RAS operations, providing a
|
|
41
41
|
|
42
42
|
*[Check out the ASFPM Presentation on RAS-Commander Here](https://drive.google.com/file/d/1kX0twae8NrpLwR0iQ0Dmd8zAXdq-pYXD/view)*
|
43
43
|
|
44
|
-
## Repository Author
|
45
|
-
|
46
|
-
|
44
|
+
## Repository Author
|
45
|
+
|
46
|
+
**[William Katzenmeyer, P.E., C.F.M.](https://engineeringwithllms.info)**
|
47
|
+
Owner & Vice President, [CLB Engineering Corporation](https://clbengineering.com/)
|
48
|
+
|
47
49
|
|
48
50
|
## Don't Ask Me, Ask a GPT!
|
49
51
|
|
@@ -1,554 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
Class: HdfFluvialPluvial
|
3
|
-
|
4
|
-
All of the methods in this class are static and are designed to be used without instantiation.
|
5
|
-
|
6
|
-
List of Functions in HdfFluvialPluvial:
|
7
|
-
- calculate_fluvial_pluvial_boundary()
|
8
|
-
- _process_cell_adjacencies()
|
9
|
-
- _identify_boundary_edges()
|
10
|
-
|
11
|
-
"""
|
12
|
-
|
13
|
-
from typing import Dict, List, Tuple
|
14
|
-
import pandas as pd
|
15
|
-
import geopandas as gpd
|
16
|
-
from collections import defaultdict
|
17
|
-
from shapely.geometry import LineString, MultiLineString # Added MultiLineString import
|
18
|
-
from tqdm import tqdm
|
19
|
-
from .HdfMesh import HdfMesh
|
20
|
-
from .HdfUtils import HdfUtils
|
21
|
-
from .Decorators import standardize_input
|
22
|
-
from .HdfResultsMesh import HdfResultsMesh
|
23
|
-
from .LoggingConfig import get_logger
|
24
|
-
from pathlib import Path
|
25
|
-
|
26
|
-
logger = get_logger(__name__)
|
27
|
-
|
28
|
-
class HdfFluvialPluvial:
|
29
|
-
"""
|
30
|
-
A class for analyzing and visualizing fluvial-pluvial boundaries in HEC-RAS 2D model results.
|
31
|
-
|
32
|
-
This class provides methods to process and visualize HEC-RAS 2D model outputs,
|
33
|
-
specifically focusing on the delineation of fluvial and pluvial flood areas.
|
34
|
-
It includes functionality for calculating fluvial-pluvial boundaries based on
|
35
|
-
the timing of maximum water surface elevations.
|
36
|
-
|
37
|
-
Key Concepts:
|
38
|
-
- Fluvial flooding: Flooding from rivers/streams
|
39
|
-
- Pluvial flooding: Flooding from rainfall/surface water
|
40
|
-
- Delta_t: Time threshold (in hours) used to distinguish between fluvial and pluvial cells.
|
41
|
-
Cells with max WSE time differences greater than delta_t are considered boundaries.
|
42
|
-
|
43
|
-
Data Requirements:
|
44
|
-
- HEC-RAS plan HDF file containing:
|
45
|
-
- 2D mesh cell geometry (accessed via HdfMesh)
|
46
|
-
- Maximum water surface elevation times (accessed via HdfResultsMesh)
|
47
|
-
|
48
|
-
Usage Example:
|
49
|
-
>>> ras = init_ras_project(project_path, ras_version)
|
50
|
-
>>> hdf_path = Path("path/to/plan.hdf")
|
51
|
-
>>> boundary_gdf = HdfFluvialPluvial.calculate_fluvial_pluvial_boundary(
|
52
|
-
... hdf_path,
|
53
|
-
... delta_t=12
|
54
|
-
... )
|
55
|
-
"""
|
56
|
-
def __init__(self):
|
57
|
-
self.logger = get_logger(__name__) # Initialize logger with module name
|
58
|
-
|
59
|
-
@staticmethod
|
60
|
-
@standardize_input(file_type='plan_hdf')
|
61
|
-
def calculate_fluvial_pluvial_boundary(hdf_path: Path, delta_t: float = 12) -> gpd.GeoDataFrame:
|
62
|
-
"""
|
63
|
-
Calculate the fluvial-pluvial boundary based on cell polygons and maximum water surface elevation times.
|
64
|
-
|
65
|
-
Args:
|
66
|
-
hdf_path (Path): Path to the HEC-RAS plan HDF file
|
67
|
-
delta_t (float): Threshold time difference in hours. Cells with time differences
|
68
|
-
greater than this value are considered boundaries. Default is 12 hours.
|
69
|
-
|
70
|
-
Returns:
|
71
|
-
gpd.GeoDataFrame: GeoDataFrame containing the fluvial-pluvial boundaries with:
|
72
|
-
- geometry: LineString features representing boundaries
|
73
|
-
- CRS: Coordinate reference system matching the input HDF file
|
74
|
-
|
75
|
-
Raises:
|
76
|
-
ValueError: If no cell polygons or maximum water surface data found in HDF file
|
77
|
-
Exception: If there are errors during boundary calculation
|
78
|
-
|
79
|
-
Note:
|
80
|
-
The returned boundaries represent locations where the timing of maximum water surface
|
81
|
-
elevation changes significantly (> delta_t), indicating potential transitions between
|
82
|
-
fluvial and pluvial flooding mechanisms.
|
83
|
-
"""
|
84
|
-
try:
|
85
|
-
# Get cell polygons from HdfMesh
|
86
|
-
logger.info("Getting cell polygons from HDF file...")
|
87
|
-
cell_polygons_gdf = HdfMesh.get_mesh_cell_polygons(hdf_path)
|
88
|
-
if cell_polygons_gdf.empty:
|
89
|
-
raise ValueError("No cell polygons found in HDF file")
|
90
|
-
|
91
|
-
# Get max water surface data from HdfResultsMesh
|
92
|
-
logger.info("Getting maximum water surface data from HDF file...")
|
93
|
-
max_ws_df = HdfResultsMesh.get_mesh_max_ws(hdf_path)
|
94
|
-
if max_ws_df.empty:
|
95
|
-
raise ValueError("No maximum water surface data found in HDF file")
|
96
|
-
|
97
|
-
# Convert timestamps using the renamed utility function
|
98
|
-
logger.info("Converting maximum water surface timestamps...")
|
99
|
-
if 'maximum_water_surface_time' in max_ws_df.columns:
|
100
|
-
max_ws_df['maximum_water_surface_time'] = max_ws_df['maximum_water_surface_time'].apply(
|
101
|
-
lambda x: HdfUtils.parse_ras_datetime(x) if isinstance(x, str) else x
|
102
|
-
)
|
103
|
-
|
104
|
-
# Process cell adjacencies
|
105
|
-
logger.info("Processing cell adjacencies...")
|
106
|
-
cell_adjacency, common_edges = HdfFluvialPluvial._process_cell_adjacencies(cell_polygons_gdf)
|
107
|
-
|
108
|
-
# Get cell times from max_ws_df
|
109
|
-
logger.info("Extracting cell times from maximum water surface data...")
|
110
|
-
cell_times = max_ws_df.set_index('cell_id')['maximum_water_surface_time'].to_dict()
|
111
|
-
|
112
|
-
# Identify boundary edges
|
113
|
-
logger.info("Identifying boundary edges...")
|
114
|
-
boundary_edges = HdfFluvialPluvial._identify_boundary_edges(
|
115
|
-
cell_adjacency, common_edges, cell_times, delta_t
|
116
|
-
)
|
117
|
-
|
118
|
-
# FOCUS YOUR REVISIONS HERE:
|
119
|
-
# Join adjacent LineStrings into simple LineStrings by connecting them at shared endpoints
|
120
|
-
logger.info("Joining adjacent LineStrings into simple LineStrings...")
|
121
|
-
|
122
|
-
def get_coords(geom):
|
123
|
-
"""Helper function to extract coordinates from geometry objects
|
124
|
-
|
125
|
-
Args:
|
126
|
-
geom: A Shapely LineString or MultiLineString geometry
|
127
|
-
|
128
|
-
Returns:
|
129
|
-
tuple: Tuple containing:
|
130
|
-
- list of original coordinates [(x1,y1), (x2,y2),...]
|
131
|
-
- list of rounded coordinates for comparison
|
132
|
-
- None if invalid geometry
|
133
|
-
"""
|
134
|
-
if isinstance(geom, LineString):
|
135
|
-
orig_coords = list(geom.coords)
|
136
|
-
# Round coordinates to 0.01 for comparison
|
137
|
-
rounded_coords = [(round(x, 2), round(y, 2)) for x, y in orig_coords]
|
138
|
-
return orig_coords, rounded_coords
|
139
|
-
elif isinstance(geom, MultiLineString):
|
140
|
-
orig_coords = list(geom.geoms[0].coords)
|
141
|
-
rounded_coords = [(round(x, 2), round(y, 2)) for x, y in orig_coords]
|
142
|
-
return orig_coords, rounded_coords
|
143
|
-
return None, None
|
144
|
-
|
145
|
-
def find_connecting_line(current_end, unused_lines, endpoint_counts, rounded_endpoints):
|
146
|
-
"""Find a line that connects to the current endpoint
|
147
|
-
|
148
|
-
Args:
|
149
|
-
current_end: Tuple of (x, y) coordinates
|
150
|
-
unused_lines: Set of unused line indices
|
151
|
-
endpoint_counts: Dict of endpoint occurrence counts
|
152
|
-
rounded_endpoints: Dict of rounded endpoint coordinates
|
153
|
-
|
154
|
-
Returns:
|
155
|
-
tuple: (line_index, should_reverse, found) or (None, None, False)
|
156
|
-
"""
|
157
|
-
rounded_end = (round(current_end[0], 2), round(current_end[1], 2))
|
158
|
-
|
159
|
-
# Skip if current endpoint is connected to more than 2 lines
|
160
|
-
if endpoint_counts.get(rounded_end, 0) > 2:
|
161
|
-
return None, None, False
|
162
|
-
|
163
|
-
for i in unused_lines:
|
164
|
-
start, end = rounded_endpoints[i]
|
165
|
-
if start == rounded_end and endpoint_counts.get(start, 0) <= 2:
|
166
|
-
return i, False, True
|
167
|
-
elif end == rounded_end and endpoint_counts.get(end, 0) <= 2:
|
168
|
-
return i, True, True
|
169
|
-
return None, None, False
|
170
|
-
|
171
|
-
# Initialize data structures
|
172
|
-
joined_lines = []
|
173
|
-
unused_lines = set(range(len(boundary_edges)))
|
174
|
-
|
175
|
-
# Create endpoint lookup dictionaries
|
176
|
-
line_endpoints = {}
|
177
|
-
rounded_endpoints = {}
|
178
|
-
for i, edge in enumerate(boundary_edges):
|
179
|
-
coords_result = get_coords(edge)
|
180
|
-
if coords_result:
|
181
|
-
orig_coords, rounded_coords = coords_result
|
182
|
-
line_endpoints[i] = (orig_coords[0], orig_coords[-1])
|
183
|
-
rounded_endpoints[i] = (rounded_coords[0], rounded_coords[-1])
|
184
|
-
|
185
|
-
# Count endpoint occurrences
|
186
|
-
endpoint_counts = {}
|
187
|
-
for start, end in rounded_endpoints.values():
|
188
|
-
endpoint_counts[start] = endpoint_counts.get(start, 0) + 1
|
189
|
-
endpoint_counts[end] = endpoint_counts.get(end, 0) + 1
|
190
|
-
|
191
|
-
# Iteratively join lines
|
192
|
-
while unused_lines:
|
193
|
-
# Start a new line chain
|
194
|
-
current_points = []
|
195
|
-
|
196
|
-
# Find first unused line
|
197
|
-
start_idx = unused_lines.pop()
|
198
|
-
start_coords, _ = get_coords(boundary_edges[start_idx])
|
199
|
-
if start_coords:
|
200
|
-
current_points.extend(start_coords)
|
201
|
-
|
202
|
-
# Try to extend in both directions
|
203
|
-
continue_joining = True
|
204
|
-
while continue_joining:
|
205
|
-
continue_joining = False
|
206
|
-
|
207
|
-
# Try to extend forward
|
208
|
-
next_idx, should_reverse, found = find_connecting_line(
|
209
|
-
current_points[-1],
|
210
|
-
unused_lines,
|
211
|
-
endpoint_counts,
|
212
|
-
rounded_endpoints
|
213
|
-
)
|
214
|
-
|
215
|
-
if found:
|
216
|
-
unused_lines.remove(next_idx)
|
217
|
-
next_coords, _ = get_coords(boundary_edges[next_idx])
|
218
|
-
if next_coords:
|
219
|
-
if should_reverse:
|
220
|
-
current_points.extend(reversed(next_coords[:-1]))
|
221
|
-
else:
|
222
|
-
current_points.extend(next_coords[1:])
|
223
|
-
continue_joining = True
|
224
|
-
continue
|
225
|
-
|
226
|
-
# Try to extend backward
|
227
|
-
prev_idx, should_reverse, found = find_connecting_line(
|
228
|
-
current_points[0],
|
229
|
-
unused_lines,
|
230
|
-
endpoint_counts,
|
231
|
-
rounded_endpoints
|
232
|
-
)
|
233
|
-
|
234
|
-
if found:
|
235
|
-
unused_lines.remove(prev_idx)
|
236
|
-
prev_coords, _ = get_coords(boundary_edges[prev_idx])
|
237
|
-
if prev_coords:
|
238
|
-
if should_reverse:
|
239
|
-
current_points[0:0] = reversed(prev_coords[:-1])
|
240
|
-
else:
|
241
|
-
current_points[0:0] = prev_coords[:-1]
|
242
|
-
continue_joining = True
|
243
|
-
|
244
|
-
# Create final LineString from collected points
|
245
|
-
if current_points:
|
246
|
-
joined_lines.append(LineString(current_points))
|
247
|
-
|
248
|
-
# FILL GAPS BETWEEN JOINED LINES
|
249
|
-
logger.info(f"Starting gap analysis for {len(joined_lines)} line segments...")
|
250
|
-
|
251
|
-
def find_endpoints(lines):
|
252
|
-
"""Get all endpoints of the lines with their indices"""
|
253
|
-
endpoints = []
|
254
|
-
for i, line in enumerate(lines):
|
255
|
-
coords = list(line.coords)
|
256
|
-
endpoints.append((coords[0], i, 'start'))
|
257
|
-
endpoints.append((coords[-1], i, 'end'))
|
258
|
-
return endpoints
|
259
|
-
|
260
|
-
def find_nearby_points(point1, point2, tolerance=0.01):
|
261
|
-
"""Check if two points are within tolerance distance"""
|
262
|
-
return (abs(point1[0] - point2[0]) <= tolerance and
|
263
|
-
abs(point1[1] - point2[1]) <= tolerance)
|
264
|
-
|
265
|
-
def find_gaps(lines, tolerance=0.01):
|
266
|
-
"""Find gaps between line endpoints"""
|
267
|
-
logger.info("Analyzing line endpoints to identify gaps...")
|
268
|
-
endpoints = []
|
269
|
-
for i, line in enumerate(lines):
|
270
|
-
coords = list(line.coords)
|
271
|
-
start = coords[0]
|
272
|
-
end = coords[-1]
|
273
|
-
endpoints.append({
|
274
|
-
'point': start,
|
275
|
-
'line_idx': i,
|
276
|
-
'position': 'start',
|
277
|
-
'coords': coords
|
278
|
-
})
|
279
|
-
endpoints.append({
|
280
|
-
'point': end,
|
281
|
-
'line_idx': i,
|
282
|
-
'position': 'end',
|
283
|
-
'coords': coords
|
284
|
-
})
|
285
|
-
|
286
|
-
logger.info(f"Found {len(endpoints)} endpoints to analyze")
|
287
|
-
gaps = []
|
288
|
-
|
289
|
-
# Compare each endpoint with all others
|
290
|
-
for i, ep1 in enumerate(endpoints):
|
291
|
-
for ep2 in endpoints[i+1:]:
|
292
|
-
# Skip if endpoints are from same line
|
293
|
-
if ep1['line_idx'] == ep2['line_idx']:
|
294
|
-
continue
|
295
|
-
|
296
|
-
point1 = ep1['point']
|
297
|
-
point2 = ep2['point']
|
298
|
-
|
299
|
-
# Skip if points are too close (already connected)
|
300
|
-
if find_nearby_points(point1, point2):
|
301
|
-
continue
|
302
|
-
|
303
|
-
# Check if this could be a gap
|
304
|
-
dist = LineString([point1, point2]).length
|
305
|
-
if dist < 10.0: # Maximum gap distance threshold
|
306
|
-
gaps.append({
|
307
|
-
'start': ep1,
|
308
|
-
'end': ep2,
|
309
|
-
'distance': dist
|
310
|
-
})
|
311
|
-
|
312
|
-
logger.info(f"Identified {len(gaps)} potential gaps to fill")
|
313
|
-
return sorted(gaps, key=lambda x: x['distance'])
|
314
|
-
|
315
|
-
def join_lines_with_gap(line1_coords, line2_coords, gap_start_pos, gap_end_pos):
|
316
|
-
"""Join two lines maintaining correct point order based on gap positions"""
|
317
|
-
if gap_start_pos == 'end' and gap_end_pos == 'start':
|
318
|
-
# line1 end connects to line2 start
|
319
|
-
return line1_coords + line2_coords
|
320
|
-
elif gap_start_pos == 'start' and gap_end_pos == 'end':
|
321
|
-
# line1 start connects to line2 end
|
322
|
-
return list(reversed(line2_coords)) + line1_coords
|
323
|
-
elif gap_start_pos == 'end' and gap_end_pos == 'end':
|
324
|
-
# line1 end connects to line2 end
|
325
|
-
return line1_coords + list(reversed(line2_coords))
|
326
|
-
else: # start to start
|
327
|
-
# line1 start connects to line2 start
|
328
|
-
return list(reversed(line1_coords)) + line2_coords
|
329
|
-
|
330
|
-
# Process gaps and join lines
|
331
|
-
processed_lines = joined_lines.copy()
|
332
|
-
line_groups = [[i] for i in range(len(processed_lines))]
|
333
|
-
gaps = find_gaps(processed_lines)
|
334
|
-
|
335
|
-
filled_gap_count = 0
|
336
|
-
for gap_idx, gap in enumerate(gaps, 1):
|
337
|
-
logger.info(f"Processing gap {gap_idx}/{len(gaps)} (distance: {gap['distance']:.3f})")
|
338
|
-
|
339
|
-
line1_idx = gap['start']['line_idx']
|
340
|
-
line2_idx = gap['end']['line_idx']
|
341
|
-
|
342
|
-
# Find the groups containing these lines
|
343
|
-
group1 = next(g for g in line_groups if line1_idx in g)
|
344
|
-
group2 = next(g for g in line_groups if line2_idx in g)
|
345
|
-
|
346
|
-
# Skip if lines are already in the same group
|
347
|
-
if group1 == group2:
|
348
|
-
continue
|
349
|
-
|
350
|
-
# Get the coordinates for both lines
|
351
|
-
line1_coords = gap['start']['coords']
|
352
|
-
line2_coords = gap['end']['coords']
|
353
|
-
|
354
|
-
# Join the lines in correct order
|
355
|
-
joined_coords = join_lines_with_gap(
|
356
|
-
line1_coords,
|
357
|
-
line2_coords,
|
358
|
-
gap['start']['position'],
|
359
|
-
gap['end']['position']
|
360
|
-
)
|
361
|
-
|
362
|
-
# Create new joined line
|
363
|
-
new_line = LineString(joined_coords)
|
364
|
-
|
365
|
-
# Update processed_lines and line_groups
|
366
|
-
new_idx = len(processed_lines)
|
367
|
-
processed_lines.append(new_line)
|
368
|
-
|
369
|
-
# Merge groups and remove old ones
|
370
|
-
new_group = group1 + group2
|
371
|
-
line_groups.remove(group1)
|
372
|
-
line_groups.remove(group2)
|
373
|
-
line_groups.append(new_group + [new_idx])
|
374
|
-
|
375
|
-
filled_gap_count += 1
|
376
|
-
logger.info(f"Successfully joined lines {line1_idx} and {line2_idx}")
|
377
|
-
|
378
|
-
logger.info(f"Gap filling complete. Filled {filled_gap_count} out of {len(gaps)} gaps")
|
379
|
-
|
380
|
-
# Get final lines (take the last line from each group)
|
381
|
-
final_lines = [processed_lines[group[-1]] for group in line_groups]
|
382
|
-
|
383
|
-
logger.info(f"Final cleanup complete. Resulting in {len(final_lines)} line segments")
|
384
|
-
joined_lines = final_lines
|
385
|
-
|
386
|
-
# Create final GeoDataFrame with CRS from cell_polygons_gdf
|
387
|
-
logger.info("Creating final GeoDataFrame for boundaries...")
|
388
|
-
boundary_gdf = gpd.GeoDataFrame(
|
389
|
-
geometry=joined_lines,
|
390
|
-
crs=cell_polygons_gdf.crs
|
391
|
-
)
|
392
|
-
|
393
|
-
# Clean up intermediate dataframes
|
394
|
-
logger.info("Cleaning up intermediate dataframes...")
|
395
|
-
del cell_polygons_gdf
|
396
|
-
del max_ws_df
|
397
|
-
|
398
|
-
logger.info("Fluvial-pluvial boundary calculation completed successfully.")
|
399
|
-
return boundary_gdf
|
400
|
-
|
401
|
-
except Exception as e:
|
402
|
-
self.logger.error(f"Error calculating fluvial-pluvial boundary: {str(e)}")
|
403
|
-
return None
|
404
|
-
|
405
|
-
|
406
|
-
@staticmethod
|
407
|
-
def _process_cell_adjacencies(cell_polygons_gdf: gpd.GeoDataFrame) -> Tuple[Dict[int, List[int]], Dict[int, Dict[int, LineString]]]:
|
408
|
-
"""
|
409
|
-
Optimized method to process cell adjacencies by extracting shared edges directly.
|
410
|
-
|
411
|
-
Args:
|
412
|
-
cell_polygons_gdf (gpd.GeoDataFrame): GeoDataFrame containing 2D mesh cell polygons
|
413
|
-
with 'cell_id' and 'geometry' columns.
|
414
|
-
|
415
|
-
Returns:
|
416
|
-
Tuple containing:
|
417
|
-
- Dict[int, List[int]]: Dictionary mapping cell IDs to lists of adjacent cell IDs.
|
418
|
-
- Dict[int, Dict[int, LineString]]: Nested dictionary storing common edges between cells,
|
419
|
-
where common_edges[cell1][cell2] gives the shared boundary.
|
420
|
-
"""
|
421
|
-
cell_adjacency = defaultdict(list)
|
422
|
-
common_edges = defaultdict(dict)
|
423
|
-
|
424
|
-
# Build an edge to cells mapping
|
425
|
-
edge_to_cells = defaultdict(set)
|
426
|
-
|
427
|
-
# Function to generate edge keys
|
428
|
-
def edge_key(coords1, coords2, precision=8):
|
429
|
-
# Round coordinates
|
430
|
-
coords1 = tuple(round(coord, precision) for coord in coords1)
|
431
|
-
coords2 = tuple(round(coord, precision) for coord in coords2)
|
432
|
-
# Create sorted key to handle edge direction
|
433
|
-
return tuple(sorted([coords1, coords2]))
|
434
|
-
|
435
|
-
# For each polygon, extract edges
|
436
|
-
for idx, row in cell_polygons_gdf.iterrows():
|
437
|
-
cell_id = row['cell_id']
|
438
|
-
geom = row['geometry']
|
439
|
-
if geom.is_empty or not geom.is_valid:
|
440
|
-
continue
|
441
|
-
# Get exterior coordinates
|
442
|
-
coords = list(geom.exterior.coords)
|
443
|
-
num_coords = len(coords)
|
444
|
-
for i in range(num_coords - 1):
|
445
|
-
coord1 = coords[i]
|
446
|
-
coord2 = coords[i + 1]
|
447
|
-
key = edge_key(coord1, coord2)
|
448
|
-
edge_to_cells[key].add(cell_id)
|
449
|
-
|
450
|
-
# Now, process edge_to_cells to build adjacency
|
451
|
-
for edge, cells in edge_to_cells.items():
|
452
|
-
cells = list(cells)
|
453
|
-
if len(cells) >= 2:
|
454
|
-
# For all pairs of cells sharing this edge
|
455
|
-
for i in range(len(cells)):
|
456
|
-
for j in range(i + 1, len(cells)):
|
457
|
-
cell1 = cells[i]
|
458
|
-
cell2 = cells[j]
|
459
|
-
# Update adjacency
|
460
|
-
if cell2 not in cell_adjacency[cell1]:
|
461
|
-
cell_adjacency[cell1].append(cell2)
|
462
|
-
if cell1 not in cell_adjacency[cell2]:
|
463
|
-
cell_adjacency[cell2].append(cell1)
|
464
|
-
# Store common edge
|
465
|
-
common_edge = LineString([edge[0], edge[1]])
|
466
|
-
common_edges[cell1][cell2] = common_edge
|
467
|
-
common_edges[cell2][cell1] = common_edge
|
468
|
-
|
469
|
-
logger.info("Cell adjacencies processed successfully.")
|
470
|
-
return cell_adjacency, common_edges
|
471
|
-
|
472
|
-
@staticmethod
|
473
|
-
def _identify_boundary_edges(cell_adjacency: Dict[int, List[int]],
|
474
|
-
common_edges: Dict[int, Dict[int, LineString]],
|
475
|
-
cell_times: Dict[int, pd.Timestamp],
|
476
|
-
delta_t: float) -> List[LineString]:
|
477
|
-
"""
|
478
|
-
Identify boundary edges between cells with significant time differences.
|
479
|
-
|
480
|
-
Args:
|
481
|
-
cell_adjacency (Dict[int, List[int]]): Dictionary of cell adjacencies
|
482
|
-
common_edges (Dict[int, Dict[int, LineString]]): Dictionary of shared edges between cells
|
483
|
-
cell_times (Dict[int, pd.Timestamp]): Dictionary mapping cell IDs to their max WSE times
|
484
|
-
delta_t (float): Time threshold in hours
|
485
|
-
|
486
|
-
Returns:
|
487
|
-
List[LineString]: List of LineString geometries representing boundaries
|
488
|
-
"""
|
489
|
-
# Validate cell_times data
|
490
|
-
valid_times = {k: v for k, v in cell_times.items() if pd.notna(v)}
|
491
|
-
if len(valid_times) < len(cell_times):
|
492
|
-
logger.warning(f"Found {len(cell_times) - len(valid_times)} cells with invalid timestamps")
|
493
|
-
cell_times = valid_times
|
494
|
-
|
495
|
-
# Use a set to store processed cell pairs and avoid duplicates
|
496
|
-
processed_pairs = set()
|
497
|
-
boundary_edges = []
|
498
|
-
|
499
|
-
# Track time differences for debugging
|
500
|
-
time_diffs = []
|
501
|
-
|
502
|
-
with tqdm(total=len(cell_adjacency), desc="Processing cell adjacencies") as pbar:
|
503
|
-
for cell_id, neighbors in cell_adjacency.items():
|
504
|
-
if cell_id not in cell_times:
|
505
|
-
logger.debug(f"Skipping cell {cell_id} - no timestamp data")
|
506
|
-
pbar.update(1)
|
507
|
-
continue
|
508
|
-
|
509
|
-
cell_time = cell_times[cell_id]
|
510
|
-
|
511
|
-
for neighbor_id in neighbors:
|
512
|
-
if neighbor_id not in cell_times:
|
513
|
-
logger.debug(f"Skipping neighbor {neighbor_id} of cell {cell_id} - no timestamp data")
|
514
|
-
continue
|
515
|
-
|
516
|
-
# Create a sorted tuple of the cell pair to ensure uniqueness
|
517
|
-
cell_pair = tuple(sorted([cell_id, neighbor_id]))
|
518
|
-
|
519
|
-
# Skip if we've already processed this pair
|
520
|
-
if cell_pair in processed_pairs:
|
521
|
-
continue
|
522
|
-
|
523
|
-
neighbor_time = cell_times[neighbor_id]
|
524
|
-
|
525
|
-
# Ensure both timestamps are valid
|
526
|
-
if pd.isna(cell_time) or pd.isna(neighbor_time):
|
527
|
-
continue
|
528
|
-
|
529
|
-
# Calculate time difference in hours
|
530
|
-
time_diff = abs((cell_time - neighbor_time).total_seconds() / 3600)
|
531
|
-
time_diffs.append(time_diff)
|
532
|
-
|
533
|
-
logger.debug(f"Time difference between cells {cell_id} and {neighbor_id}: {time_diff:.2f} hours")
|
534
|
-
|
535
|
-
if time_diff >= delta_t:
|
536
|
-
logger.debug(f"Found boundary edge between cells {cell_id} and {neighbor_id} "
|
537
|
-
f"(time diff: {time_diff:.2f} hours)")
|
538
|
-
boundary_edges.append(common_edges[cell_id][neighbor_id])
|
539
|
-
|
540
|
-
# Mark this pair as processed
|
541
|
-
processed_pairs.add(cell_pair)
|
542
|
-
|
543
|
-
pbar.update(1)
|
544
|
-
|
545
|
-
# Log summary statistics
|
546
|
-
if time_diffs:
|
547
|
-
logger.info(f"Time difference statistics:")
|
548
|
-
logger.info(f" Min: {min(time_diffs):.2f} hours")
|
549
|
-
logger.info(f" Max: {max(time_diffs):.2f} hours")
|
550
|
-
logger.info(f" Mean: {sum(time_diffs)/len(time_diffs):.2f} hours")
|
551
|
-
logger.info(f" Number of boundaries found: {len(boundary_edges)}")
|
552
|
-
logger.info(f" Delta-t threshold: {delta_t} hours")
|
553
|
-
|
554
|
-
return boundary_edges
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|