ras-commander 0.59.0__tar.gz → 0.64.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. {ras_commander-0.59.0/ras_commander.egg-info → ras_commander-0.64.0}/PKG-INFO +79 -45
  2. {ras_commander-0.59.0 → ras_commander-0.64.0}/README.md +79 -45
  3. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/Decorators.py +13 -7
  4. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfBndry.py +91 -7
  5. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfInfiltration.py +7 -1
  6. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfPlan.py +44 -5
  7. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfResultsMesh.py +24 -14
  8. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfResultsPlan.py +380 -364
  9. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfStruc.py +30 -8
  10. ras_commander-0.64.0/ras_commander/RasMapper.py +24 -0
  11. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasPlan.py +218 -5
  12. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasPrj.py +146 -41
  13. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/__init__.py +3 -7
  14. {ras_commander-0.59.0 → ras_commander-0.64.0/ras_commander.egg-info}/PKG-INFO +79 -45
  15. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander.egg-info/SOURCES.txt +0 -2
  16. {ras_commander-0.59.0 → ras_commander-0.64.0}/setup.py +1 -1
  17. ras_commander-0.59.0/ras_commander/RasGpt.py +0 -27
  18. ras_commander-0.59.0/ras_commander/RasMapper.py +0 -105
  19. ras_commander-0.59.0/ras_commander/RasToGo.py +0 -37
  20. {ras_commander-0.59.0 → ras_commander-0.64.0}/LICENSE +0 -0
  21. {ras_commander-0.59.0 → ras_commander-0.64.0}/pyproject.toml +0 -0
  22. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfBase.py +0 -0
  23. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfFluvialPluvial.py +0 -0
  24. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfMesh.py +0 -0
  25. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfPipe.py +0 -0
  26. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfPlot.py +0 -0
  27. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfPump.py +0 -0
  28. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfResultsPlot.py +0 -0
  29. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfResultsXsec.py +0 -0
  30. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfUtils.py +0 -0
  31. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/HdfXsec.py +0 -0
  32. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/LoggingConfig.py +0 -0
  33. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasCmdr.py +0 -0
  34. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasExamples.py +0 -0
  35. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasGeo.py +0 -0
  36. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasUnsteady.py +0 -0
  37. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander/RasUtils.py +0 -0
  38. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander.egg-info/dependency_links.txt +0 -0
  39. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander.egg-info/requires.txt +0 -0
  40. {ras_commander-0.59.0 → ras_commander-0.64.0}/ras_commander.egg-info/top_level.txt +0 -0
  41. {ras_commander-0.59.0 → ras_commander-0.64.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ras-commander
3
- Version: 0.59.0
3
+ Version: 0.64.0
4
4
  Summary: A Python library for automating HEC-RAS 6.x operations
5
5
  Home-page: https://github.com/gpt-cmdr/ras-commander
6
6
  Author: William M. Katzenmeyer, P.E., C.F.M.
@@ -35,22 +35,25 @@ Dynamic: summary
35
35
  RAS Commander is a Python library for automating HEC-RAS operations, providing a set of tools to interact with HEC-RAS project files, execute simulations, and manage project data. This library was initially conceptualized in the Australian Water School course "AI Tools for Modelling Innovation", and subsequently expanded to cover the basic functionality of the HECRASController COM32 interface using open-source python libraries. This library uses a Test Driven Development strategy, leveraging the publicly-available HEC-RAS Example projects to create repeatable demonstration examples. The "Commmander" moniker is inspired by the "Command Line is All You Need" approach to HEC-RAS automation that was first implemented in the HEC-Commander Tools repository.
36
36
 
37
37
  ## Repository Author:
38
- (William Katzenmeyer, P.E., C.F.M.)[https://engineeringwithllms.info]
38
+ [William Katzenmeyer, P.E., C.F.M.](https://engineeringwithllms.info)
39
+ -----
39
40
 
40
- ## Don't Ask Me, Ask GPT!
41
+ ## Don't Ask Me, Ask GPT!
41
42
 
42
43
  This repository has several methods of interaction with Large Language Models and LLM-Assisted Coding built right in:
43
44
 
44
- 1. **[RAS Commander Library Assistant GPT](https://chatgpt.com/g/g-TZRPR3oAO-ras-commander-library-assistant)**: A specialized GPT model with access to the ras-commander codebase and library, available for answering queries and providing code suggestions. You can even upload your own plan, unsteady and HDF files to inspect and help determine how to automate your workflows or visualize your results, although this ability is still limited by OpenAI's GPT frameworks and may not be useful for long conversations.
45
+ 1. **[Purpose-Built Knowledge Base Summaries](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/llm_knowledge_bases)**: Up-to-date compilations of the documentation and codebase for use with large language models like Claude, ChatGPT, Gemini or Grok. Look in 'ai_tools/assistant_knowledge_bases/' in the repo. The repo's codebase (without documentation and examples) has been curated to stay within the current ~200k context window limitations of frontier models, and for tasks that do not need an understanding of the underlying code, the Comprehensive Library Guide and any relevant examples from the example folder should be adequate context for leveraging the ras-commander API to complete tasks.
45
46
 
46
- 2. **[Purpose-Built Knowledge Base Summaries](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/assistant_knowledge_bases)**: Up-to-date compilations of the documentation and codebase for use with large language models like Claude or GPT-4. Look in 'ai_tools/assistant_knowledge_bases/' in the repo. The repo's codebase (without documentation and examples) has been curated to stay within the current ~200k context window limitations of frontier models, and for tasks that do not need an understanding of the underlying code, the Comprehensive Library Guide and any relevant examples from the example folder should be adequate context for leveraging the ras-commander API to complete tasks.
47
+ 2. **[Cursor IDE Integration](https://github.com/gpt-cmdr/ras-commander/blob/main/.cursorrules)**: Custom rules(.cursorrules) for the Cursor IDE to provide context-aware suggestions and documentation. Just open the repository folder in Cursor to recognize these instructions. You can create your own folders "/workspace/, "/projects/", or "my_projects/" as these are already in the .gitignore, and place your custom scripts there for your projects. This will allow easy referencing of the ras-commander documents and individual repo files, the automatic loading of the .cursorrules file. Alternatvely, download the github repo into your projects folder to easily load documents and use cursor rules files.
47
48
 
48
- 3. **[Cursor IDE Integration](https://github.com/gpt-cmdr/ras-commander/blob/main/.cursorrules)**: Custom rules(.cursorrules) for the Cursor IDE to provide context-aware suggestions and documentation. Just open the repository folder in Cursor to recognize these instructions. You can create your own folders "/workspace/, "/projects/", or "my_projects/" as these are already in the .gitignore, and place your custom scripts there for your projects. This will allow easy referencing of the ras-commander documents and individual repo files, the automatic loading of the .cursorrules file. Alternatvely, download the github repo into your projects folder to easily load documents and use cursor rules files.
49
+ 3. **[RAS-Commander Library Assistant](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/library_assistant)**: A full-featured interface for multi-turn conversations, using your own API keys and the ras-commander library for context. The library assistant allows you to load your own scripts and chat with specific examples and/or function classes in the RAS-Commander library to effectively utilize the library's functions in your workflow. To reduce hallucinations, a file browser is included which adds full files to the conversation to ensure grounded responses. A dashboard shows you the total context and estimated cost of each request. **Now with support for Claude 3.7, OpenAI's o1 and o3-mini, and Deepseek V3 and R1 models using US-based Together.ai**
50
+
51
+
52
+ 4. **[RAS Commander Library Assistant on ChatGPT](https://chatgpt.com/g/g-TZRPR3oAO-ras-commander-library-assistant)**: A specialized ChatGPT "GPT" with access to the ras-commander codebase and library, available for answering queries and providing code suggestions. You can even upload your own plan, unsteady and HDF files to inspect and help determine how to automate your workflows or visualize your results. _NOTE: GPT's are still quite limited by OpenAI's GPT frameworks and may not be useful for long conversations. Code interpreter cannot run HEC-RAS but can open and view smaller HDF files and projects for demonstration purposes_
49
53
 
50
- 5. **[RAS-Commander Library Assistant](https://github.com/gpt-cmdr/ras-commander/blob/main/library_assistant)**: A full-featured interface for multi-turn conversations, using your own API keys and the ras-commander library for context. The library assistant allows you to load your own scripts and chat with specific examples and/or function classes in the RAS-Commander library to effectively utilize the library's functions in your workflow. To reduce hallucinations, a file browser is included which adds full files to the conversation to ensure grounded responses. A dashboard shows you the total context and estimated cost of each request. **Now with support for OpenAI's o1 and o3-mini, and Deepseek V3 and R1 models using US-based Together.ai**
51
54
 
52
55
  ## Background
53
- The ras-commander library emerged from the initial test-bed of AI-driven coding represented by the HEC-Commander tools Python notebooks. These notebooks served as a proof of concept, demonstrating the value proposition of automating HEC-RAS operations. The transition from notebooks to a structured library aims to provide a more robust, maintainable, and extensible solution for water resources engineers.
56
+ The ras-commander library emerged from the initial test-bed of AI-driven coding represented by the [HEC-Commander tools](https://github.com/gpt-cmdr/HEC-Commander) Python notebooks. These notebooks served as a proof of concept, demonstrating the value proposition of automating HEC-RAS operations. In 2024, I taught a series of progressively more complex webinars demonstrating how to use simple prompting, example projects and natural language instruction to effectively code HEC-RAS automation workflows, culminating in a 6 hour course. The library published for utilization in that course, [awsrastools](https://github.com/gpt-cmdr/awsrastools) served as a foundation of examples which were iteratively extended into the full RAS-Commander library. Unlike the original notebook by the same name, this library is not focused on parallel execution across multiple machines. Instead, it is focused on providing a general-purpose python API for interacting with HEC-RAS projects, and building an AI-friendly library that will allow new users to quickly scaffold their own workflows into a python script. Example notebooks are provided, but the intention is to empower engineers, software developers, GIS personnel and data analysts to more easily access and interact with HEC-RAS data in a python environment. Also, by publishing these examples publicly, with complete working code examples and LLM optimization, future users can readily rewrite they key functions of the library for inclusion in into their own preferred libraries, languages or return formats.
54
57
 
55
58
  ## Features
56
59
 
@@ -92,7 +95,13 @@ In your virtual environment, install ras-commander using pip:
92
95
  pip install --upgrade ras-commander
93
96
  ```
94
97
  If you have dependency issues with pip (especially if you have errors with numpy), try clearing your local pip packages 'C:\Users\your_username\AppData\Roaming\Python\' and then creating a new virtual environment.
95
-
98
+
99
+ Dependencies can also be manually installed:
100
+ ```
101
+ pip install h5py numpy pandas requests tqdm scipy xarray geopandas matplotlib shapely pathlib rasterstats rtree
102
+ ```
103
+
104
+
96
105
  #### Work in a Local Copy
97
106
 
98
107
  If you want to make revisions and work actively in your local version of ras-commander, just skip the pip install rascommander step above and clone a fork of the repo to your local machine using Git (ask ChatGPT if you need help). Most of the notebooks and examples in this repo have a code segment similar to the one below, that works as long as the script is located in a first-level subfolder of the ras-commander repository:
@@ -119,11 +128,46 @@ It is highly suggested to fork this repository before going this route, and usin
119
128
  from ras_commander import init_ras_project, RasCmdr, RasPlan
120
129
  ```
121
130
 
122
- ### Initialize a project
131
+ ### Initialize a project (single project)
123
132
  ```
124
133
  init_ras_project(r"/path/to/project", "6.5")
125
134
  ```
126
135
 
136
+ ### Initialize a project (multiple projects)
137
+ ```
138
+ your_ras_project = RasPrj()
139
+ init_ras_project(r"/path/to/project", "6.5", ras_object=your_ras_project)
140
+ ```
141
+
142
+ ## Accessing Plan, Unsteady and Boundary Conditions Dataframes
143
+ Using the default 'ras" object, othewise substitute your_ras_project for muli-project scripts
144
+ ```
145
+ print("\nPlan Files DataFrame:")
146
+ ras.plan_df
147
+ ```
148
+ ```
149
+ print("\nFlow Files DataFrame:")
150
+ ras.flow_df
151
+ ```
152
+ ```
153
+ print("\nUnsteady Flow Files DataFrame:")
154
+ ras.unsteady_df
155
+ ```
156
+ ```
157
+ print("\nGeometry Files DataFrame:")
158
+ ras.geom_df
159
+ ```
160
+ ```
161
+ print("\nBoundary Conditions DataFrame:")
162
+ ras.boundaries_df
163
+ ```
164
+ ```
165
+ print("\nHDF Entries DataFrame:")
166
+ ras.get_hdf_entries()
167
+ ```
168
+
169
+
170
+
127
171
  ### Execute a single plan
128
172
  ```
129
173
  RasCmdr.compute_plan("01", dest_folder=r"/path/to/results", overwrite_dest=True)
@@ -185,8 +229,10 @@ RAS Commander allows working with multiple HEC-RAS projects simultaneously:
185
229
 
186
230
  ```python
187
231
  # Initialize multiple projects
188
- project1 = init_ras_project(path1, "6.6")
189
- project2 = init_ras_project(path2, "6.6")
232
+ project1 = RasPrj()
233
+ init_ras_project(path1, "6.6", ras_object=project1)
234
+ project2 = RasPrj()
235
+ init_ras_project(path2, "6.6", ras_object=project2)
190
236
 
191
237
  # Perform operations on each project
192
238
  RasCmdr.compute_plan("01", ras_object=project1, dest_folder=folder1)
@@ -202,7 +248,7 @@ print(f"Project 2: {project2.project_name}")
202
248
 
203
249
  This is useful for comparing different river systems, running scenario analyses across multiple watersheds, or managing a suite of related models.
204
250
 
205
- #### Key Components
251
+ #### Core HEC-RAS Automation Classes
206
252
 
207
253
  - `RasPrj`: Manages HEC-RAS projects, handling initialization and data loading
208
254
  - `RasCmdr`: Handles execution of HEC-RAS simulations
@@ -212,7 +258,7 @@ This is useful for comparing different river systems, running scenario analyses
212
258
  - `RasUtils`: Contains utility functions for file operations and data management
213
259
  - `RasExamples`: Manages and loads HEC-RAS example projects
214
260
 
215
- #### New Components:
261
+ #### HDF Data Access Classes
216
262
  - `HdfBase`: Core functionality for HDF file operations
217
263
  - `HdfBndry`: Enhanced boundary condition handling
218
264
  - `HdfMesh`: Comprehensive mesh data management
@@ -224,14 +270,18 @@ This is useful for comparing different river systems, running scenario analyses
224
270
  - `HdfPipe`: Pipe network analysis tools
225
271
  - `HdfPump`: Pump station analysis capabilities
226
272
  - `HdfFluvialPluvial`: Fluvial-pluvial boundary analysis
227
- - `RasMapper`: RASMapper interface
228
- - `RasToGo`: Go-Consequences integration
273
+ - `RasMapper`: RASMapper Functions
229
274
  - `HdfPlot` & `HdfResultsPlot`: Specialized plotting utilities
230
275
 
231
276
  ### Project Organization Diagram
232
277
 
233
278
  ```
234
279
  ras_commander
280
+ ├── ai_tools
281
+ │ ├── [AI Knowledge Bases](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/llm_knowledge_bases)
282
+ │ └── [Library Assistant](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/library_asssistant)
283
+ ├── examples
284
+ │ └── [Examples Notebooks](https://github.com/gpt-cmdr/ras-commander/tree/main/ras_commander)
235
285
  ├── ras_commander
236
286
  │ ├── __init__.py
237
287
  │ ├── _version.py
@@ -244,8 +294,6 @@ ras_commander
244
294
  │ ├── RasPrj.py
245
295
  │ ├── RasUnsteady.py
246
296
  │ ├── RasUtils.py
247
- │ ├── RasToGo.py
248
- │ ├── RasGpt.py
249
297
  │ ├── HdfBase.py
250
298
  │ ├── HdfBndry.py
251
299
  │ ├── HdfMesh.py
@@ -259,28 +307,13 @@ ras_commander
259
307
  │ ├── HdfFluvialPluvial.py
260
308
  │ ├── HdfPlot.py
261
309
  │ └── HdfResultsPlot.py
262
- ├── examples
263
- │ ├── 00_Using_RasExamples.ipynb
264
- │ ├── 01_project_initialization.ipynb
265
- │ ├── 02_plan_and_geometry_operations.ipynb
266
- │ ├── 03_unsteady_flow_operations.ipynb
267
- │ ├── 04_multiple_project_operations.ipynb
268
- │ ├── 05_single_plan_execution.ipynb
269
- │ ├── 06_executing_plan_sets.ipynb
270
- │ ├── 07_sequential_plan_execution.ipynb
271
- │ ├── 08_parallel_execution.ipynb
272
- │ └── 09_plan_parameter_operations.ipynb
273
- ├── tests
274
- │ └── ... (test files)
275
310
  ├── .gitignore
276
311
  ├── LICENSE
277
312
  ├── README.md
278
313
  ├── STYLE_GUIDE.md
279
314
  ├── Comprehensive_Library_Guide.md
280
315
  ├── pyproject.toml
281
- ├── setup.cfg
282
316
  ├── setup.py
283
- └── requirements.txt
284
317
  ```
285
318
 
286
319
  ### Accessing HEC Examples through RasExamples
@@ -302,6 +335,8 @@ projects = ras_examples.list_projects("Steady Flow")
302
335
  extracted_paths = ras_examples.extract_project(["Bald Eagle Creek", "Muncie"])
303
336
  ```
304
337
 
338
+ The RasExamples class is used to provide an alternative to traditional unit testing, with example notebooks doubling as tests and in-context examples for the end user. This increases interpretability by LLM's, reducing hallucinations.
339
+
305
340
  ### RasPrj
306
341
 
307
342
  The `RasPrj` class is central to managing HEC-RAS projects within the ras-commander library. It handles project initialization, data loading, and provides access to project components.
@@ -426,18 +461,11 @@ The ras-commander library is an ongoing project. Future plans include:
426
461
  - [GPT-Commander YouTube Channel](https://www.youtube.com/@GPT_Commander)
427
462
  - [ChatGPT Examples for Water Resources Engineers](https://github.com/gpt-cmdr/HEC-Commander/tree/main/ChatGPT%20Examples)
428
463
 
429
- ## Contributing
430
-
431
- We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
432
464
 
433
465
  ## Style Guide
434
466
 
435
467
  This project follows a specific style guide to maintain consistency across the codebase. Please refer to the [Style Guide](STYLE_GUIDE.md) for details on coding conventions, documentation standards, and best practices.
436
468
 
437
- ## License
438
-
439
- ras-commander is released under the MIT License. See the license file for details.
440
-
441
469
  ## Acknowledgments
442
470
 
443
471
  RAS Commander is based on the HEC-Commander project's "Command Line is All You Need" approach, leveraging the HEC-RAS command-line interface for automation. The initial development of this library was presented in the HEC-Commander Tools repository. In a 2024 Australian Water School webinar, Bill demonstrated the derivation of basic HEC-RAS automation functions from plain language instructions. Leveraging the previously developed code and AI tools, the library was created. The primary tools used for this initial development were Anthropic's Claude, GPT-4, Google's Gemini Experimental models, and the Cursor AI Coding IDE.
@@ -455,7 +483,7 @@ Additionally, we would like to acknowledge the following notable contributions a
455
483
  Xiaofeng Liu, Ph.D., P.E., Associate Professor, Department of Civil and Environmental Engineering
456
484
  Institute of Computational and Data Sciences, Penn State University
457
485
 
458
- 3. Attribution: The[ffrd\rashdf'](https://github.com/fema-ffrd/rashdf) project by FEMA-FFRD (FEMA Future of Flood Risk Data) was incorporated, revised, adapted and extended in rascommander's RasHDF libaries (where noted).
486
+ 3. Attribution: The [ffrd\rashdf'](https://github.com/fema-ffrd/rashdf) project by FEMA-FFRD (FEMA Future of Flood Risk Data) was incorporated, revised, adapted and extended in rascommander's RasHDF libaries (where noted).
459
487
 
460
488
  These acknowledgments recognize the contributions and inspirations that have helped shape RAS Commander, ensuring proper attribution for the ideas and code that have influenced its development.
461
489
 
@@ -466,19 +494,25 @@ These acknowledgments recognize the contributions and inspirations that have hel
466
494
  ## Official RAS Commander AI-Generated Songs:
467
495
 
468
496
  [No More Wait and See (Bluegrass)](https://suno.com/song/16889f3e-50f1-4afe-b779-a41738d7617a)
469
-
497
+
498
+
470
499
  [No More Wait and See (Cajun Zydeco)](https://suno.com/song/4441c45d-f6cd-47b9-8fbc-1f7b277ee8ed)
471
-
500
+
472
501
  ## Other Resources
473
502
 
474
- Notebook version of RAS-Commander: [RAS-Commander Notebook in the HEC-Commander Tools Repository](https://github.com/gpt-cmdr/HEC-Commander/tree/main/RAS-Commander)
503
+ Notebook version of RAS-Commander: [RAS-Commander Notebook in the HEC-Commander Tools Repository](https://github.com/gpt-cmdr/HEC-Commander/tree/main/RAS-Commander)
504
+
475
505
  Youtube Tutorials for HEC-Commander Tools and RAS-Commander: [GPT-Commander on YouTube](https://www.youtube.com/@GPT_Commander/videos)
476
506
 
507
+ ## Contributing
508
+
509
+ We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
510
+
477
511
  ## LICENSE
478
512
 
479
513
  This software is released under the MIT license.
480
514
 
481
515
  ## Contact
482
516
 
483
- For questions, suggestions, or support, please contact:
517
+ For questions, suggestions, or support, please contact:
484
518
  William Katzenmeyer, P.E., C.F.M. - heccommander@gmail.com
@@ -3,22 +3,25 @@
3
3
  RAS Commander is a Python library for automating HEC-RAS operations, providing a set of tools to interact with HEC-RAS project files, execute simulations, and manage project data. This library was initially conceptualized in the Australian Water School course "AI Tools for Modelling Innovation", and subsequently expanded to cover the basic functionality of the HECRASController COM32 interface using open-source python libraries. This library uses a Test Driven Development strategy, leveraging the publicly-available HEC-RAS Example projects to create repeatable demonstration examples. The "Commmander" moniker is inspired by the "Command Line is All You Need" approach to HEC-RAS automation that was first implemented in the HEC-Commander Tools repository.
4
4
 
5
5
  ## Repository Author:
6
- (William Katzenmeyer, P.E., C.F.M.)[https://engineeringwithllms.info]
6
+ [William Katzenmeyer, P.E., C.F.M.](https://engineeringwithllms.info)
7
+ -----
7
8
 
8
- ## Don't Ask Me, Ask GPT!
9
+ ## Don't Ask Me, Ask GPT!
9
10
 
10
11
  This repository has several methods of interaction with Large Language Models and LLM-Assisted Coding built right in:
11
12
 
12
- 1. **[RAS Commander Library Assistant GPT](https://chatgpt.com/g/g-TZRPR3oAO-ras-commander-library-assistant)**: A specialized GPT model with access to the ras-commander codebase and library, available for answering queries and providing code suggestions. You can even upload your own plan, unsteady and HDF files to inspect and help determine how to automate your workflows or visualize your results, although this ability is still limited by OpenAI's GPT frameworks and may not be useful for long conversations.
13
+ 1. **[Purpose-Built Knowledge Base Summaries](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/llm_knowledge_bases)**: Up-to-date compilations of the documentation and codebase for use with large language models like Claude, ChatGPT, Gemini or Grok. Look in 'ai_tools/assistant_knowledge_bases/' in the repo. The repo's codebase (without documentation and examples) has been curated to stay within the current ~200k context window limitations of frontier models, and for tasks that do not need an understanding of the underlying code, the Comprehensive Library Guide and any relevant examples from the example folder should be adequate context for leveraging the ras-commander API to complete tasks.
13
14
 
14
- 2. **[Purpose-Built Knowledge Base Summaries](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/assistant_knowledge_bases)**: Up-to-date compilations of the documentation and codebase for use with large language models like Claude or GPT-4. Look in 'ai_tools/assistant_knowledge_bases/' in the repo. The repo's codebase (without documentation and examples) has been curated to stay within the current ~200k context window limitations of frontier models, and for tasks that do not need an understanding of the underlying code, the Comprehensive Library Guide and any relevant examples from the example folder should be adequate context for leveraging the ras-commander API to complete tasks.
15
+ 2. **[Cursor IDE Integration](https://github.com/gpt-cmdr/ras-commander/blob/main/.cursorrules)**: Custom rules(.cursorrules) for the Cursor IDE to provide context-aware suggestions and documentation. Just open the repository folder in Cursor to recognize these instructions. You can create your own folders "/workspace/, "/projects/", or "my_projects/" as these are already in the .gitignore, and place your custom scripts there for your projects. This will allow easy referencing of the ras-commander documents and individual repo files, the automatic loading of the .cursorrules file. Alternatvely, download the github repo into your projects folder to easily load documents and use cursor rules files.
15
16
 
16
- 3. **[Cursor IDE Integration](https://github.com/gpt-cmdr/ras-commander/blob/main/.cursorrules)**: Custom rules(.cursorrules) for the Cursor IDE to provide context-aware suggestions and documentation. Just open the repository folder in Cursor to recognize these instructions. You can create your own folders "/workspace/, "/projects/", or "my_projects/" as these are already in the .gitignore, and place your custom scripts there for your projects. This will allow easy referencing of the ras-commander documents and individual repo files, the automatic loading of the .cursorrules file. Alternatvely, download the github repo into your projects folder to easily load documents and use cursor rules files.
17
+ 3. **[RAS-Commander Library Assistant](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/library_assistant)**: A full-featured interface for multi-turn conversations, using your own API keys and the ras-commander library for context. The library assistant allows you to load your own scripts and chat with specific examples and/or function classes in the RAS-Commander library to effectively utilize the library's functions in your workflow. To reduce hallucinations, a file browser is included which adds full files to the conversation to ensure grounded responses. A dashboard shows you the total context and estimated cost of each request. **Now with support for Claude 3.7, OpenAI's o1 and o3-mini, and Deepseek V3 and R1 models using US-based Together.ai**
18
+
19
+
20
+ 4. **[RAS Commander Library Assistant on ChatGPT](https://chatgpt.com/g/g-TZRPR3oAO-ras-commander-library-assistant)**: A specialized ChatGPT "GPT" with access to the ras-commander codebase and library, available for answering queries and providing code suggestions. You can even upload your own plan, unsteady and HDF files to inspect and help determine how to automate your workflows or visualize your results. _NOTE: GPT's are still quite limited by OpenAI's GPT frameworks and may not be useful for long conversations. Code interpreter cannot run HEC-RAS but can open and view smaller HDF files and projects for demonstration purposes_
17
21
 
18
- 5. **[RAS-Commander Library Assistant](https://github.com/gpt-cmdr/ras-commander/blob/main/library_assistant)**: A full-featured interface for multi-turn conversations, using your own API keys and the ras-commander library for context. The library assistant allows you to load your own scripts and chat with specific examples and/or function classes in the RAS-Commander library to effectively utilize the library's functions in your workflow. To reduce hallucinations, a file browser is included which adds full files to the conversation to ensure grounded responses. A dashboard shows you the total context and estimated cost of each request. **Now with support for OpenAI's o1 and o3-mini, and Deepseek V3 and R1 models using US-based Together.ai**
19
22
 
20
23
  ## Background
21
- The ras-commander library emerged from the initial test-bed of AI-driven coding represented by the HEC-Commander tools Python notebooks. These notebooks served as a proof of concept, demonstrating the value proposition of automating HEC-RAS operations. The transition from notebooks to a structured library aims to provide a more robust, maintainable, and extensible solution for water resources engineers.
24
+ The ras-commander library emerged from the initial test-bed of AI-driven coding represented by the [HEC-Commander tools](https://github.com/gpt-cmdr/HEC-Commander) Python notebooks. These notebooks served as a proof of concept, demonstrating the value proposition of automating HEC-RAS operations. In 2024, I taught a series of progressively more complex webinars demonstrating how to use simple prompting, example projects and natural language instruction to effectively code HEC-RAS automation workflows, culminating in a 6 hour course. The library published for utilization in that course, [awsrastools](https://github.com/gpt-cmdr/awsrastools) served as a foundation of examples which were iteratively extended into the full RAS-Commander library. Unlike the original notebook by the same name, this library is not focused on parallel execution across multiple machines. Instead, it is focused on providing a general-purpose python API for interacting with HEC-RAS projects, and building an AI-friendly library that will allow new users to quickly scaffold their own workflows into a python script. Example notebooks are provided, but the intention is to empower engineers, software developers, GIS personnel and data analysts to more easily access and interact with HEC-RAS data in a python environment. Also, by publishing these examples publicly, with complete working code examples and LLM optimization, future users can readily rewrite they key functions of the library for inclusion in into their own preferred libraries, languages or return formats.
22
25
 
23
26
  ## Features
24
27
 
@@ -60,7 +63,13 @@ In your virtual environment, install ras-commander using pip:
60
63
  pip install --upgrade ras-commander
61
64
  ```
62
65
  If you have dependency issues with pip (especially if you have errors with numpy), try clearing your local pip packages 'C:\Users\your_username\AppData\Roaming\Python\' and then creating a new virtual environment.
63
-
66
+
67
+ Dependencies can also be manually installed:
68
+ ```
69
+ pip install h5py numpy pandas requests tqdm scipy xarray geopandas matplotlib shapely pathlib rasterstats rtree
70
+ ```
71
+
72
+
64
73
  #### Work in a Local Copy
65
74
 
66
75
  If you want to make revisions and work actively in your local version of ras-commander, just skip the pip install rascommander step above and clone a fork of the repo to your local machine using Git (ask ChatGPT if you need help). Most of the notebooks and examples in this repo have a code segment similar to the one below, that works as long as the script is located in a first-level subfolder of the ras-commander repository:
@@ -87,11 +96,46 @@ It is highly suggested to fork this repository before going this route, and usin
87
96
  from ras_commander import init_ras_project, RasCmdr, RasPlan
88
97
  ```
89
98
 
90
- ### Initialize a project
99
+ ### Initialize a project (single project)
91
100
  ```
92
101
  init_ras_project(r"/path/to/project", "6.5")
93
102
  ```
94
103
 
104
+ ### Initialize a project (multiple projects)
105
+ ```
106
+ your_ras_project = RasPrj()
107
+ init_ras_project(r"/path/to/project", "6.5", ras_object=your_ras_project)
108
+ ```
109
+
110
+ ## Accessing Plan, Unsteady and Boundary Conditions Dataframes
111
+ Using the default 'ras" object, othewise substitute your_ras_project for muli-project scripts
112
+ ```
113
+ print("\nPlan Files DataFrame:")
114
+ ras.plan_df
115
+ ```
116
+ ```
117
+ print("\nFlow Files DataFrame:")
118
+ ras.flow_df
119
+ ```
120
+ ```
121
+ print("\nUnsteady Flow Files DataFrame:")
122
+ ras.unsteady_df
123
+ ```
124
+ ```
125
+ print("\nGeometry Files DataFrame:")
126
+ ras.geom_df
127
+ ```
128
+ ```
129
+ print("\nBoundary Conditions DataFrame:")
130
+ ras.boundaries_df
131
+ ```
132
+ ```
133
+ print("\nHDF Entries DataFrame:")
134
+ ras.get_hdf_entries()
135
+ ```
136
+
137
+
138
+
95
139
  ### Execute a single plan
96
140
  ```
97
141
  RasCmdr.compute_plan("01", dest_folder=r"/path/to/results", overwrite_dest=True)
@@ -153,8 +197,10 @@ RAS Commander allows working with multiple HEC-RAS projects simultaneously:
153
197
 
154
198
  ```python
155
199
  # Initialize multiple projects
156
- project1 = init_ras_project(path1, "6.6")
157
- project2 = init_ras_project(path2, "6.6")
200
+ project1 = RasPrj()
201
+ init_ras_project(path1, "6.6", ras_object=project1)
202
+ project2 = RasPrj()
203
+ init_ras_project(path2, "6.6", ras_object=project2)
158
204
 
159
205
  # Perform operations on each project
160
206
  RasCmdr.compute_plan("01", ras_object=project1, dest_folder=folder1)
@@ -170,7 +216,7 @@ print(f"Project 2: {project2.project_name}")
170
216
 
171
217
  This is useful for comparing different river systems, running scenario analyses across multiple watersheds, or managing a suite of related models.
172
218
 
173
- #### Key Components
219
+ #### Core HEC-RAS Automation Classes
174
220
 
175
221
  - `RasPrj`: Manages HEC-RAS projects, handling initialization and data loading
176
222
  - `RasCmdr`: Handles execution of HEC-RAS simulations
@@ -180,7 +226,7 @@ This is useful for comparing different river systems, running scenario analyses
180
226
  - `RasUtils`: Contains utility functions for file operations and data management
181
227
  - `RasExamples`: Manages and loads HEC-RAS example projects
182
228
 
183
- #### New Components:
229
+ #### HDF Data Access Classes
184
230
  - `HdfBase`: Core functionality for HDF file operations
185
231
  - `HdfBndry`: Enhanced boundary condition handling
186
232
  - `HdfMesh`: Comprehensive mesh data management
@@ -192,14 +238,18 @@ This is useful for comparing different river systems, running scenario analyses
192
238
  - `HdfPipe`: Pipe network analysis tools
193
239
  - `HdfPump`: Pump station analysis capabilities
194
240
  - `HdfFluvialPluvial`: Fluvial-pluvial boundary analysis
195
- - `RasMapper`: RASMapper interface
196
- - `RasToGo`: Go-Consequences integration
241
+ - `RasMapper`: RASMapper Functions
197
242
  - `HdfPlot` & `HdfResultsPlot`: Specialized plotting utilities
198
243
 
199
244
  ### Project Organization Diagram
200
245
 
201
246
  ```
202
247
  ras_commander
248
+ ├── ai_tools
249
+ │ ├── [AI Knowledge Bases](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/llm_knowledge_bases)
250
+ │ └── [Library Assistant](https://github.com/gpt-cmdr/ras-commander/tree/main/ai_tools/library_asssistant)
251
+ ├── examples
252
+ │ └── [Examples Notebooks](https://github.com/gpt-cmdr/ras-commander/tree/main/ras_commander)
203
253
  ├── ras_commander
204
254
  │ ├── __init__.py
205
255
  │ ├── _version.py
@@ -212,8 +262,6 @@ ras_commander
212
262
  │ ├── RasPrj.py
213
263
  │ ├── RasUnsteady.py
214
264
  │ ├── RasUtils.py
215
- │ ├── RasToGo.py
216
- │ ├── RasGpt.py
217
265
  │ ├── HdfBase.py
218
266
  │ ├── HdfBndry.py
219
267
  │ ├── HdfMesh.py
@@ -227,28 +275,13 @@ ras_commander
227
275
  │ ├── HdfFluvialPluvial.py
228
276
  │ ├── HdfPlot.py
229
277
  │ └── HdfResultsPlot.py
230
- ├── examples
231
- │ ├── 00_Using_RasExamples.ipynb
232
- │ ├── 01_project_initialization.ipynb
233
- │ ├── 02_plan_and_geometry_operations.ipynb
234
- │ ├── 03_unsteady_flow_operations.ipynb
235
- │ ├── 04_multiple_project_operations.ipynb
236
- │ ├── 05_single_plan_execution.ipynb
237
- │ ├── 06_executing_plan_sets.ipynb
238
- │ ├── 07_sequential_plan_execution.ipynb
239
- │ ├── 08_parallel_execution.ipynb
240
- │ └── 09_plan_parameter_operations.ipynb
241
- ├── tests
242
- │ └── ... (test files)
243
278
  ├── .gitignore
244
279
  ├── LICENSE
245
280
  ├── README.md
246
281
  ├── STYLE_GUIDE.md
247
282
  ├── Comprehensive_Library_Guide.md
248
283
  ├── pyproject.toml
249
- ├── setup.cfg
250
284
  ├── setup.py
251
- └── requirements.txt
252
285
  ```
253
286
 
254
287
  ### Accessing HEC Examples through RasExamples
@@ -270,6 +303,8 @@ projects = ras_examples.list_projects("Steady Flow")
270
303
  extracted_paths = ras_examples.extract_project(["Bald Eagle Creek", "Muncie"])
271
304
  ```
272
305
 
306
+ The RasExamples class is used to provide an alternative to traditional unit testing, with example notebooks doubling as tests and in-context examples for the end user. This increases interpretability by LLM's, reducing hallucinations.
307
+
273
308
  ### RasPrj
274
309
 
275
310
  The `RasPrj` class is central to managing HEC-RAS projects within the ras-commander library. It handles project initialization, data loading, and provides access to project components.
@@ -394,18 +429,11 @@ The ras-commander library is an ongoing project. Future plans include:
394
429
  - [GPT-Commander YouTube Channel](https://www.youtube.com/@GPT_Commander)
395
430
  - [ChatGPT Examples for Water Resources Engineers](https://github.com/gpt-cmdr/HEC-Commander/tree/main/ChatGPT%20Examples)
396
431
 
397
- ## Contributing
398
-
399
- We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
400
432
 
401
433
  ## Style Guide
402
434
 
403
435
  This project follows a specific style guide to maintain consistency across the codebase. Please refer to the [Style Guide](STYLE_GUIDE.md) for details on coding conventions, documentation standards, and best practices.
404
436
 
405
- ## License
406
-
407
- ras-commander is released under the MIT License. See the license file for details.
408
-
409
437
  ## Acknowledgments
410
438
 
411
439
  RAS Commander is based on the HEC-Commander project's "Command Line is All You Need" approach, leveraging the HEC-RAS command-line interface for automation. The initial development of this library was presented in the HEC-Commander Tools repository. In a 2024 Australian Water School webinar, Bill demonstrated the derivation of basic HEC-RAS automation functions from plain language instructions. Leveraging the previously developed code and AI tools, the library was created. The primary tools used for this initial development were Anthropic's Claude, GPT-4, Google's Gemini Experimental models, and the Cursor AI Coding IDE.
@@ -423,7 +451,7 @@ Additionally, we would like to acknowledge the following notable contributions a
423
451
  Xiaofeng Liu, Ph.D., P.E., Associate Professor, Department of Civil and Environmental Engineering
424
452
  Institute of Computational and Data Sciences, Penn State University
425
453
 
426
- 3. Attribution: The[ffrd\rashdf'](https://github.com/fema-ffrd/rashdf) project by FEMA-FFRD (FEMA Future of Flood Risk Data) was incorporated, revised, adapted and extended in rascommander's RasHDF libaries (where noted).
454
+ 3. Attribution: The [ffrd\rashdf'](https://github.com/fema-ffrd/rashdf) project by FEMA-FFRD (FEMA Future of Flood Risk Data) was incorporated, revised, adapted and extended in rascommander's RasHDF libaries (where noted).
427
455
 
428
456
  These acknowledgments recognize the contributions and inspirations that have helped shape RAS Commander, ensuring proper attribution for the ideas and code that have influenced its development.
429
457
 
@@ -434,19 +462,25 @@ These acknowledgments recognize the contributions and inspirations that have hel
434
462
  ## Official RAS Commander AI-Generated Songs:
435
463
 
436
464
  [No More Wait and See (Bluegrass)](https://suno.com/song/16889f3e-50f1-4afe-b779-a41738d7617a)
437
-
465
+
466
+
438
467
  [No More Wait and See (Cajun Zydeco)](https://suno.com/song/4441c45d-f6cd-47b9-8fbc-1f7b277ee8ed)
439
-
468
+
440
469
  ## Other Resources
441
470
 
442
- Notebook version of RAS-Commander: [RAS-Commander Notebook in the HEC-Commander Tools Repository](https://github.com/gpt-cmdr/HEC-Commander/tree/main/RAS-Commander)
471
+ Notebook version of RAS-Commander: [RAS-Commander Notebook in the HEC-Commander Tools Repository](https://github.com/gpt-cmdr/HEC-Commander/tree/main/RAS-Commander)
472
+
443
473
  Youtube Tutorials for HEC-Commander Tools and RAS-Commander: [GPT-Commander on YouTube](https://www.youtube.com/@GPT_Commander/videos)
444
474
 
475
+ ## Contributing
476
+
477
+ We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
478
+
445
479
  ## LICENSE
446
480
 
447
481
  This software is released under the MIT license.
448
482
 
449
483
  ## Contact
450
484
 
451
- For questions, suggestions, or support, please contact:
452
- William Katzenmeyer, P.E., C.F.M. - heccommander@gmail.com
485
+ For questions, suggestions, or support, please contact:
486
+ William Katzenmeyer, P.E., C.F.M. - heccommander@gmail.com
@@ -85,20 +85,24 @@ def standardize_input(file_type: str = 'plan_hdf'):
85
85
  if Path(hdf_input).is_file():
86
86
  hdf_path = Path(hdf_input)
87
87
  # Check if it's a number (with or without 'p' prefix)
88
- elif hdf_input.isdigit() or (len(hdf_input) == 3 and hdf_input[0] == 'p' and hdf_input[1:].isdigit()):
88
+ elif hdf_input.isdigit() or (len(hdf_input) > 1 and hdf_input[0] == 'p' and hdf_input[1:].isdigit()):
89
89
  try:
90
90
  ras_obj.check_initialized()
91
91
  except Exception as e:
92
92
  raise ValueError(f"RAS object is not initialized: {str(e)}")
93
93
 
94
- number = hdf_input if hdf_input.isdigit() else hdf_input[1:]
94
+ # Extract the numeric part and convert to integer for comparison
95
+ number_str = hdf_input if hdf_input.isdigit() else hdf_input[1:]
96
+ number_int = int(number_str)
95
97
 
96
98
  if file_type == 'plan_hdf':
97
- plan_info = ras_obj.plan_df[ras_obj.plan_df['plan_number'] == number]
99
+ # Convert plan_number column to integers for comparison
100
+ plan_info = ras_obj.plan_df[ras_obj.plan_df['plan_number'].astype(int) == number_int]
98
101
  if not plan_info.empty:
99
102
  hdf_path = Path(plan_info.iloc[0]['HDF_Results_Path'])
100
103
  elif file_type == 'geom_hdf':
101
- geom_info = ras_obj.geom_df[ras_obj.geom_df['geom_number'] == number]
104
+ # Convert geom_number column to integers for comparison
105
+ geom_info = ras_obj.geom_df[ras_obj.geom_df['geom_number'].astype(int) == number_int]
102
106
  if not geom_info.empty:
103
107
  hdf_path = Path(geom_info.iloc[0]['HDF_Path'])
104
108
  else:
@@ -110,14 +114,16 @@ def standardize_input(file_type: str = 'plan_hdf'):
110
114
  except Exception as e:
111
115
  raise ValueError(f"RAS object is not initialized: {str(e)}")
112
116
 
113
- number = f"{hdf_input:02d}"
117
+ number_int = hdf_input
114
118
 
115
119
  if file_type == 'plan_hdf':
116
- plan_info = ras_obj.plan_df[ras_obj.plan_df['plan_number'] == number]
120
+ # Convert plan_number column to integers for comparison
121
+ plan_info = ras_obj.plan_df[ras_obj.plan_df['plan_number'].astype(int) == number_int]
117
122
  if not plan_info.empty:
118
123
  hdf_path = Path(plan_info.iloc[0]['HDF_Results_Path'])
119
124
  elif file_type == 'geom_hdf':
120
- geom_info = ras_obj.geom_df[ras_obj.geom_df['geom_number'] == number]
125
+ # Convert geom_number column to integers for comparison
126
+ geom_info = ras_obj.geom_df[ras_obj.geom_df['geom_number'].astype(int) == number_int]
121
127
  if not geom_info.empty:
122
128
  hdf_path = Path(geom_info.iloc[0]['HDF_Path'])
123
129
  else: