ras-commander 0.23.0.dev0__tar.gz → 0.33.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ras_commander-0.33.0/PKG-INFO +4 -0
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/README.md +58 -78
- ras_commander-0.33.0/pyproject.toml +3 -0
- ras_commander-0.23.0.dev0/ras_commander/RasCommander.py → ras_commander-0.33.0/ras_commander/RasCmdr.py +449 -465
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/RasExamples.py +304 -304
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/RasGeo.py +88 -88
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/RasPlan.py +1266 -1266
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/RasPrj.py +399 -399
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/RasUnsteady.py +73 -64
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/RasUtils.py +310 -310
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/__init__.py +6 -6
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander/_version.py +16 -16
- ras_commander-0.33.0/ras_commander.egg-info/PKG-INFO +4 -0
- ras_commander-0.33.0/ras_commander.egg-info/SOURCES.txt +17 -0
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/setup.cfg +4 -7
- ras_commander-0.33.0/setup.py +8 -0
- ras_commander-0.23.0.dev0/.cursorrules +0 -118
- ras_commander-0.23.0.dev0/.github/workflows/publish-to-pypi.yml +0 -58
- ras_commander-0.23.0.dev0/.gitignore/.gitignore +0 -8
- ras_commander-0.23.0.dev0/Comprehensive_Library_Guide.md +0 -278
- ras_commander-0.23.0.dev0/PKG-INFO +0 -218
- ras_commander-0.23.0.dev0/STYLE_GUIDE.md +0 -184
- ras_commander-0.23.0.dev0/ai_tools/README.md +0 -3
- ras_commander-0.23.0.dev0/ai_tools/llm_summary/ras_commander.txt +0 -7371
- ras_commander-0.23.0.dev0/ai_tools/llmsummarize 1. full repo.py +0 -66
- ras_commander-0.23.0.dev0/ai_tools/llmsummarize 2. docs and code only.py +0 -66
- ras_commander-0.23.0.dev0/ai_tools/llmsummarize 3. documentation and docstrings.py +0 -80
- ras_commander-0.23.0.dev0/ai_tools/rascommander_code_assistant.ipynb +0 -760
- ras_commander-0.23.0.dev0/examples/01_project_initialization.py +0 -138
- ras_commander-0.23.0.dev0/examples/02_plan_operations.py +0 -152
- ras_commander-0.23.0.dev0/examples/03_geometry_operations.py +0 -112
- ras_commander-0.23.0.dev0/examples/04_unsteady_flow_operations.py +0 -103
- ras_commander-0.23.0.dev0/examples/05_utility_functions.py +0 -74
- ras_commander-0.23.0.dev0/examples/06_single_plan_execution.py +0 -80
- ras_commander-0.23.0.dev0/examples/07_sequential_plan_execution.py +0 -105
- ras_commander-0.23.0.dev0/examples/08_parallel_execution.py +0 -97
- ras_commander-0.23.0.dev0/examples/09_specifying_plans.py +0 -108
- ras_commander-0.23.0.dev0/examples/10_arguments_for_compute.py +0 -102
- ras_commander-0.23.0.dev0/examples/11_Using_RasExamples.ipynb +0 -456
- ras_commander-0.23.0.dev0/examples/12_plan_set_execution.py +0 -95
- ras_commander-0.23.0.dev0/examples/13_multiple_project_operations.py +0 -135
- ras_commander-0.23.0.dev0/examples/example_projects.csv +0 -67
- ras_commander-0.23.0.dev0/examples/example_projects.ipynb +0 -372
- ras_commander-0.23.0.dev0/future_dev_roadmap.ipynb +0 -433
- ras_commander-0.23.0.dev0/misc/Claude Example Error Correct Suggestions.txt +0 -278
- ras_commander-0.23.0.dev0/misc/FunctionList.md +0 -0
- ras_commander-0.23.0.dev0/misc/Gemini Code Review.ipynb +0 -1830
- ras_commander-0.23.0.dev0/misc/Gemini Dev notes.ipynb +0 -75
- ras_commander-0.23.0.dev0/misc/PEP 484.txt +0 -2493
- ras_commander-0.23.0.dev0/misc/Plan Key Notes.txt +0 -161
- ras_commander-0.23.0.dev0/misc/Prompts.txt +0 -370
- ras_commander-0.23.0.dev0/misc/future examples/xx_accessing_hdf_results_1D.py +0 -1
- ras_commander-0.23.0.dev0/misc/future examples/xx_accessing_hdf_results_2D.py +0 -1
- ras_commander-0.23.0.dev0/misc/future examples/xx_changing_2d_infiltration_overrides.ipynb +0 -0
- ras_commander-0.23.0.dev0/misc/future examples/xx_changing_2d_mannings_tables.ipynb +0 -0
- ras_commander-0.23.0.dev0/misc/future examples/xx_changing_common_plan_keys.ipynb +0 -0
- ras_commander-0.23.0.dev0/misc/future examples/xx_changing_common_unsteady_keys.ipynb +0 -0
- ras_commander-0.23.0.dev0/misc/future examples/xx_compute_remote_desktop.py +0 -0
- ras_commander-0.23.0.dev0/misc/future_dev_roadmap.ipynb +0 -433
- ras_commander-0.23.0.dev0/misc/magic example project lines.txt +0 -3
- ras_commander-0.23.0.dev0/misc/pep 8.txt +0 -1647
- ras_commander-0.23.0.dev0/pyproject.toml +0 -28
- ras_commander-0.23.0.dev0/ras_commander/README.md +0 -187
- ras_commander-0.23.0.dev0/ras_commander.egg-info/PKG-INFO +0 -218
- ras_commander-0.23.0.dev0/ras_commander.egg-info/SOURCES.txt +0 -65
- ras_commander-0.23.0.dev0/requirements.txt +0 -32
- ras_commander-0.23.0.dev0/setup.py +0 -19
- ras_commander-0.23.0.dev0/updated_pyproject.toml +0 -25
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/LICENSE +0 -0
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander.egg-info/dependency_links.txt +0 -0
- {ras_commander-0.23.0.dev0 → ras_commander-0.33.0}/ras_commander.egg-info/top_level.txt +0 -0
@@ -1,6 +1,11 @@
|
|
1
|
-
# RAS
|
1
|
+
# RAS Commander (ras-commander)
|
2
2
|
|
3
|
-
|
3
|
+
RAS Commander is a Python library for automating HEC-RAS operations, providing a set of tools to interact with HEC-RAS project files, execute simulations, and manage project data. This library is an evolution of the RASCommander 1.0 Python Notebook Application previously released under HEC-Commander tools.
|
4
|
+
|
5
|
+
Contributors:
|
6
|
+
William Katzenmeyer, P.E., C.F.M. - billk@fenstermaker.com
|
7
|
+
Sean Micek, P.E., C.F.M. - smicek@fenstermaker.com
|
8
|
+
Aaron Nichols, P.E., C.F.M. - anichols@fenstermaker.com
|
4
9
|
|
5
10
|
## Features
|
6
11
|
|
@@ -13,11 +18,12 @@ ras_commander is a Python library for automating HEC-RAS operations, providing a
|
|
13
18
|
|
14
19
|
## Installation
|
15
20
|
|
16
|
-
Install
|
21
|
+
Install ras-commander using pip:
|
22
|
+
|
17
23
|
|
18
|
-
|
24
|
+
pip install pandas requests pathlib # Only 3 requirements for ras-commander, needs to be added to the requirements.txt file so pip install works
|
19
25
|
pip install ras-commander
|
20
|
-
|
26
|
+
|
21
27
|
|
22
28
|
## Requirements
|
23
29
|
|
@@ -28,30 +34,32 @@ For a full list of dependencies, see the `requirements.txt` file.
|
|
28
34
|
|
29
35
|
## Quick Start
|
30
36
|
|
31
|
-
|
32
|
-
from ras_commander import init_ras_project,
|
37
|
+
|
38
|
+
from ras_commander import init_ras_project, RasCmdr, RasPlan
|
33
39
|
|
34
40
|
# Initialize a project
|
35
|
-
init_ras_project("/path/to/project", "6.5")
|
41
|
+
init_ras_project(r"/path/to/project", "6.5")
|
36
42
|
|
37
43
|
# Execute a single plan
|
38
|
-
|
44
|
+
RasCmdr.compute_plan("01", dest_folder=r"/path/to/results", overwrite_dest=True)
|
39
45
|
|
40
46
|
# Execute plans in parallel
|
41
|
-
results =
|
47
|
+
results = RasCmdr.compute_parallel(
|
42
48
|
plan_numbers=["01", "02"],
|
43
49
|
max_workers=2,
|
44
|
-
cores_per_run=2
|
50
|
+
cores_per_run=2,
|
51
|
+
dest_folder=r"/path/to/results",
|
52
|
+
overwrite_dest=True
|
45
53
|
)
|
46
54
|
|
47
55
|
# Modify a plan
|
48
56
|
RasPlan.set_geom("01", "02")
|
49
|
-
|
57
|
+
|
50
58
|
|
51
59
|
## Key Components
|
52
60
|
|
53
61
|
- `RasPrj`: Manages HEC-RAS projects
|
54
|
-
- `
|
62
|
+
- `RasCmdr`: Handles execution of HEC-RAS simulations
|
55
63
|
- `RasPlan`: Provides functions for modifying and updating plan files
|
56
64
|
- `RasGeo`: Handles operations related to geometry files
|
57
65
|
- `RasUnsteady`: Manages unsteady flow file operations
|
@@ -64,38 +72,18 @@ For detailed usage instructions and API documentation, please refer to the [Comp
|
|
64
72
|
|
65
73
|
## Examples
|
66
74
|
|
67
|
-
Check out the `examples/` directory for sample scripts demonstrating various features of
|
68
|
-
|
69
|
-
## Development
|
70
|
-
|
71
|
-
### Setting up the development environment
|
72
|
-
|
73
|
-
1. Clone the repository:
|
74
|
-
```
|
75
|
-
git clone https://github.com/yourusername/ras_commander.git
|
76
|
-
```
|
77
|
-
2. Create a virtual environment and activate it:
|
78
|
-
```
|
79
|
-
python -m venv venv
|
80
|
-
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
|
81
|
-
```
|
82
|
-
3. Install the development dependencies:
|
83
|
-
```
|
84
|
-
pip install -r requirements.txt
|
85
|
-
```
|
86
|
-
Certainly! I'll provide an updated Project Organization Diagram based on the current structure of the ras_commander library. Here's the updated diagram:
|
87
|
-
|
75
|
+
Check out the `examples/` directory for sample scripts demonstrating various features of ras-commander.
|
88
76
|
|
89
77
|
## Project Organization Diagram
|
90
78
|
|
91
|
-
|
79
|
+
|
92
80
|
ras_commander
|
93
81
|
├── .github
|
94
82
|
│ └── workflows
|
95
83
|
│ └── python-package.yml
|
96
84
|
├── ras_commander
|
97
85
|
│ ├── __init__.py
|
98
|
-
│ ├──
|
86
|
+
│ ├── RasCmdr.py
|
99
87
|
│ ├── RasExamples.py
|
100
88
|
│ ├── RasGeo.py
|
101
89
|
│ ├── RasPlan.py
|
@@ -127,12 +115,11 @@ ras_commander
|
|
127
115
|
├── setup.cfg
|
128
116
|
├── setup.py
|
129
117
|
└── requirements.txt
|
130
|
-
```
|
131
118
|
|
132
119
|
|
133
120
|
## Inclusion of .cursorrules and ai_tools for AI-driven Coding Experience
|
134
121
|
|
135
|
-
Open the ras_commander folder in the Cursor IDE, and it will automatically include the .cursorrules file in your instructions. Additionally, two other provided methods for interacting with the library
|
122
|
+
Open the ras_commander folder in the Cursor IDE, and it will automatically include the .cursorrules file in your instructions. Additionally, two other provided methods for interacting with the library through your current AI subscriptions:
|
136
123
|
|
137
124
|
- ChatGPT: ras_commander GPT Assistant (LINK HERE)
|
138
125
|
- Latest LLM summaries of the code base:
|
@@ -143,63 +130,56 @@ Open the ras_commander folder in the Cursor IDE, and it will automatically inclu
|
|
143
130
|
|
144
131
|
There are a series of scripts provided in the "llm_summaries" folder that provide summaries of the code base, and the docstrings of the functions. They can be run in your local environment, or provided to ChatGPT's code interpreter for execution.
|
145
132
|
|
146
|
-
## RAS-
|
147
|
-
|
148
|
-
The ras_commander GPT assistant has access the entire code base, and can be a helpful tool for understanding the library and its capabilities. However, it is subject to the same context window limitations and file retrieval limtations as I have covered in ADD BLOG LINK HERE. For best results, use the llm summaries above to provide robust context to the model before asking to generate complex workflows.
|
149
|
-
|
150
|
-
## Contributing
|
151
|
-
|
152
|
-
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
|
153
|
-
|
154
|
-
## Style Guide
|
155
|
-
|
156
|
-
This project follows a specific style guide to maintain consistency across the codebase. Please refer to the [Style Guide](STYLE_GUIDE.md) for details on coding conventions, documentation standards, and best practices.
|
157
|
-
|
133
|
+
## RAS-Cmdr GPT Assistant
|
158
134
|
|
159
|
-
|
135
|
+
The RAS Commander GPT assistant has access to the entire code base, and can be a helpful tool for understanding the library and its capabilities. However, it is subject to the same context window limitations and file retrieval limitations as I have covered in ADD BLOG LINK HERE. For best results, use the llm summaries above to provide robust context to the model before asking to generate complex workflows.
|
160
136
|
|
161
|
-
|
162
|
-
|
163
|
-
## Acknowledgments
|
137
|
+
## Current Uses and Roadmap Items
|
164
138
|
|
165
|
-
|
139
|
+
### Potential Uses (Roadmap Items) of HEC-RAS Automation Functions
|
166
140
|
|
141
|
+
This set of functions provides a powerful foundation for automating various aspects of HEC-RAS modeling workflows. Here are some potential applications:
|
167
142
|
|
143
|
+
1. **Calibration and Sensitivity Analysis:**
|
144
|
+
- **Automated Parameter Variation:** Users can create multiple simulation scenarios with varying parameters (e.g., Manning's n values, boundary conditions, initial conditions) to calibrate their model against observed data.
|
145
|
+
- **Sensitivity Testing:** Evaluate the impact of different input parameters on model outputs by generating a range of scenarios and analyzing the results. This helps identify critical parameters that require more attention during calibration.
|
168
146
|
|
169
|
-
|
147
|
+
2. **Real-time Forecasting:**
|
148
|
+
- **Dynamic Model Updates:** Integrate with external data sources (e.g., weather forecasts, streamflow observations) to automatically update boundary conditions and initial conditions in unsteady flow files before running the simulation.
|
149
|
+
- **Ensemble Forecasting:** Generate multiple forecasts by incorporating uncertainty in input data and model parameters. This provides a more comprehensive understanding of potential future flow conditions.
|
170
150
|
|
171
|
-
|
172
|
-
|
151
|
+
3. **Scenario Analysis:**
|
152
|
+
- **Land Use Change Impacts:** Evaluate the effects of land use changes on flood risk by modifying Manning's n values using `extract_2d_mannings_tables`, `modify_2d_mannings_table`, and `write_2d_mannings_tables` and running simulations with updated geometry files.
|
153
|
+
- **Climate Change Impacts:** Analyze the potential impacts of projected climate changes on flood risk by adjusting precipitation patterns and other relevant parameters in unsteady flow files.
|
173
154
|
|
155
|
+
4. **Batch Processing and High-Performance Computing:**
|
156
|
+
- **Large-scale Model Runs:** Utilize `run_plans_parallel` to execute multiple simulations concurrently on a multi-core system, significantly reducing processing time for large-scale models or complex scenarios.
|
157
|
+
- **Automated Report Generation:** Integrate with Python libraries like matplotlib and bokeh to automatically generate customized reports summarizing simulation results, including tables, figures, and maps.
|
174
158
|
|
159
|
+
5. **Model Development and Testing:**
|
160
|
+
- **Rapid Prototyping:** Quickly set up and run new model configurations using template files and automated workflows, facilitating rapid model development and testing.
|
161
|
+
- **Regression Testing:** Ensure model integrity and consistency after code changes or updates by automatically running a predefined set of simulations and comparing results with expected outputs.
|
175
162
|
|
163
|
+
6. **User-Friendly Interfaces:**
|
164
|
+
- **GUI Development:** Integrate with Python GUI libraries like Tkinter or PyQt to create user-friendly interfaces for automating HEC-RAS workflows, allowing non-programmers to access the power of automation.
|
176
165
|
|
166
|
+
## Contributing
|
177
167
|
|
168
|
+
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on how to submit pull requests, report issues, and suggest improvements.
|
178
169
|
|
170
|
+
## Style Guide
|
179
171
|
|
172
|
+
This project follows a specific style guide to maintain consistency across the codebase. Please refer to the [Style Guide](STYLE_GUIDE.md) for details on coding conventions, documentation standards, and best practices.
|
180
173
|
|
174
|
+
## License
|
181
175
|
|
182
|
-
|
176
|
+
ras-commander is released under the MIT License. See the license file for details.
|
183
177
|
|
178
|
+
## Acknowledgments
|
184
179
|
|
185
|
-
|
186
|
-
This set of functions provides a powerful foundation for automating various aspects of HEC-RAS modeling workflows. Here are some potential applications:
|
187
|
-
1. Calibration and Sensitivity Analysis:
|
188
|
-
Automated Parameter Variation: Users can create multiple simulation scenarios with varying parameters (e.g., Manning's n values, boundary conditions, initial conditions) to calibrate their model against observed data.
|
189
|
-
Sensitivity Testing: Evaluate the impact of different input parameters on model outputs by generating a range of scenarios and analyzing the results. This helps identify critical parameters that require more attention during calibration.
|
190
|
-
2. Real-time Forecasting:
|
191
|
-
Dynamic Model Updates: Integrate with external data sources (e.g., weather forecasts, streamflow observations) to automatically update boundary conditions and initial conditions in unsteady flow files before running the simulation.
|
192
|
-
Ensemble Forecasting: Generate multiple forecasts by incorporating uncertainty in input data and model parameters. This provides a more comprehensive understanding of potential future flow conditions.
|
193
|
-
3. Scenario Analysis:
|
194
|
-
Land Use Change Impacts: Evaluate the effects of land use changes on flood risk by modifying Manning's n values using extract_2d_mannings_tables, modify_2d_mannings_table, and write_2d_mannings_tables and running simulations with updated geometry files.
|
195
|
-
Climate Change Impacts: Analyze the potential impacts of projected climate changes on flood risk by adjusting precipitation patterns and other relevant parameters in unsteady flow files.
|
196
|
-
4. Batch Processing and High-Performance Computing:
|
197
|
-
Large-scale Model Runs: Utilize run_plans_parallel to execute multiple simulations concurrently on a multi-core system, significantly reducing processing time for large-scale models or complex scenarios.
|
198
|
-
Automated Report Generation: Integrate with Python libraries like matplotlib and bokeh to automatically generate customized reports summarizing simulation results, including tables, figures, and maps.
|
199
|
-
5. Model Development and Testing:
|
200
|
-
Rapid Prototyping: Quickly set up and run new model configurations using template files and automated workflows, facilitating rapid model development and testing.
|
201
|
-
Regression Testing: Ensure model integrity and consistency after code changes or updates by automatically running a predefined set of simulations and comparing results with expected outputs.
|
202
|
-
6. User-Friendly Interfaces:
|
203
|
-
GUI Development: Integrate with Python GUI libraries like Tkinter or PyQt to create user-friendly interfaces for automating HEC-RAS workflows, allowing non-programmers to access the power of automation.
|
180
|
+
RAS Commander is based on the HEC-Commander project's "Command Line is All You Need" approach, leveraging the HEC-RAS command-line interface for automation. The initial development of this library was presented in the HEC-Commander Tools repository. In a 2024 Australian Water School webinar, Bill demonstrated the derivation of basic HEC-RAS automation functions from plain language instructions. Leveraging the previously developed code and AI tools, the library was created. The primary tools used for this initial development were Anthropic's Claude, GPT-4o, Google's Gemini Experimental models, and the Cursor AI Coding IDE.
|
204
181
|
|
182
|
+
## Contact
|
205
183
|
|
184
|
+
For questions, suggestions, or support, please contact:
|
185
|
+
William Katzenmeyer, P.E., C.F.M. - billk@fenstermaker.com
|