ragmint 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ragmint might be problematic. Click here for more details.
- ragmint-0.1.0/LICENSE +19 -0
- ragmint-0.1.0/PKG-INFO +218 -0
- ragmint-0.1.0/README.md +192 -0
- ragmint-0.1.0/pyproject.toml +43 -0
- ragmint-0.1.0/setup.cfg +4 -0
- ragmint-0.1.0/src/ragmint/__init__.py +0 -0
- ragmint-0.1.0/src/ragmint/__main__.py +28 -0
- ragmint-0.1.0/src/ragmint/core/__init__.py +0 -0
- ragmint-0.1.0/src/ragmint/core/chunking.py +22 -0
- ragmint-0.1.0/src/ragmint/core/embeddings.py +19 -0
- ragmint-0.1.0/src/ragmint/core/evaluation.py +27 -0
- ragmint-0.1.0/src/ragmint/core/pipeline.py +38 -0
- ragmint-0.1.0/src/ragmint/core/reranker.py +62 -0
- ragmint-0.1.0/src/ragmint/core/retriever.py +33 -0
- ragmint-0.1.0/src/ragmint/experiments/__init__.py +0 -0
- ragmint-0.1.0/src/ragmint/optimization/__init__.py +0 -0
- ragmint-0.1.0/src/ragmint/optimization/search.py +48 -0
- ragmint-0.1.0/src/ragmint/tests/__init__.py +0 -0
- ragmint-0.1.0/src/ragmint/tests/test_pipeline.py +19 -0
- ragmint-0.1.0/src/ragmint/tests/test_retriever.py +14 -0
- ragmint-0.1.0/src/ragmint/tests/test_search.py +17 -0
- ragmint-0.1.0/src/ragmint/tests/test_tuner.py +38 -0
- ragmint-0.1.0/src/ragmint/tuner.py +123 -0
- ragmint-0.1.0/src/ragmint/utils/__init__.py +0 -0
- ragmint-0.1.0/src/ragmint/utils/caching.py +37 -0
- ragmint-0.1.0/src/ragmint/utils/data_loader.py +35 -0
- ragmint-0.1.0/src/ragmint/utils/logger.py +36 -0
- ragmint-0.1.0/src/ragmint/utils/metrics.py +27 -0
- ragmint-0.1.0/src/ragmint.egg-info/PKG-INFO +218 -0
- ragmint-0.1.0/src/ragmint.egg-info/SOURCES.txt +31 -0
- ragmint-0.1.0/src/ragmint.egg-info/dependency_links.txt +1 -0
- ragmint-0.1.0/src/ragmint.egg-info/requires.txt +13 -0
- ragmint-0.1.0/src/ragmint.egg-info/top_level.txt +1 -0
ragmint-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
+
|
|
7
|
+
Copyright 2025 AndrΓ© Oliveira
|
|
8
|
+
|
|
9
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
10
|
+
you may not use this file except in compliance with the License.
|
|
11
|
+
You may obtain a copy of the License at
|
|
12
|
+
|
|
13
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
14
|
+
|
|
15
|
+
Unless required by applicable law or agreed to in writing, software
|
|
16
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
17
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
18
|
+
See the License for the specific language governing permissions and
|
|
19
|
+
limitations under the License.
|
ragmint-0.1.0/PKG-INFO
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ragmint
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A modular framework for evaluating and optimizing RAG pipelines.
|
|
5
|
+
Author-email: Andre Oliveira <oandreoliveira@outlook.com>
|
|
6
|
+
License: Apache License 2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/andyolivers/ragmint
|
|
8
|
+
Project-URL: Documentation, https://andyolivers.com
|
|
9
|
+
Project-URL: Issues, https://github.com/andyolivers/ragmint/issues
|
|
10
|
+
Keywords: RAG,LLM,retrieval,optimization,AI,evaluation
|
|
11
|
+
Requires-Python: >=3.9
|
|
12
|
+
Description-Content-Type: text/markdown
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
Requires-Dist: numpy>=1.23
|
|
15
|
+
Requires-Dist: pandas>=2.0
|
|
16
|
+
Requires-Dist: scikit-learn>=1.3
|
|
17
|
+
Requires-Dist: openai>=1.0
|
|
18
|
+
Requires-Dist: tqdm
|
|
19
|
+
Requires-Dist: pyyaml
|
|
20
|
+
Requires-Dist: chromadb>=0.4
|
|
21
|
+
Requires-Dist: faiss-cpu; sys_platform != "darwin"
|
|
22
|
+
Requires-Dist: optuna>=3.0
|
|
23
|
+
Requires-Dist: pytest
|
|
24
|
+
Requires-Dist: colorama
|
|
25
|
+
Dynamic: license-file
|
|
26
|
+
|
|
27
|
+
# Ragmint
|
|
28
|
+
|
|
29
|
+

|
|
30
|
+

|
|
31
|
+

|
|
32
|
+

|
|
33
|
+

|
|
34
|
+
|
|
35
|
+

|
|
36
|
+
|
|
37
|
+
**Ragmint** (Retrieval-Augmented Generation Model Inspection & Tuning) is a modular, developer-friendly Python library for **evaluating, optimizing, and tuning RAG (Retrieval-Augmented Generation) pipelines**.
|
|
38
|
+
|
|
39
|
+
It provides a complete toolkit for **retriever selection**, **embedding model tuning**, and **automated RAG evaluation** with support for **Optuna-based Bayesian optimization**.
|
|
40
|
+
|
|
41
|
+
---
|
|
42
|
+
|
|
43
|
+
## β¨ Features
|
|
44
|
+
|
|
45
|
+
- β
**Automated hyperparameter optimization** (Grid, Random, Bayesian via Optuna)
|
|
46
|
+
- π **Built-in RAG evaluation metrics** β faithfulness, recall, BLEU, ROUGE, latency
|
|
47
|
+
- βοΈ **Retrievers** β FAISS, Chroma, ElasticSearch
|
|
48
|
+
- π§© **Embeddings** β OpenAI, HuggingFace
|
|
49
|
+
- π§ **Rerankers** β MMR, CrossEncoder (extensible via plugin interface)
|
|
50
|
+
- πΎ **Caching, experiment tracking, and reproducibility** out of the box
|
|
51
|
+
- π§° **Clean modular structure** for easy integration in research and production setups
|
|
52
|
+
|
|
53
|
+
---
|
|
54
|
+
|
|
55
|
+
## π Quick Start
|
|
56
|
+
|
|
57
|
+
### 1οΈβ£ Installation
|
|
58
|
+
|
|
59
|
+
```bash
|
|
60
|
+
git clone https://github.com/andyolivers/ragmint.git
|
|
61
|
+
cd ragmint
|
|
62
|
+
pip install -e .
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
> The `-e` flag installs Ragmint in editable (development) mode.
|
|
66
|
+
> Requires **Python β₯ 3.9**.
|
|
67
|
+
|
|
68
|
+
---
|
|
69
|
+
|
|
70
|
+
### 2οΈβ£ Run a RAG Optimization Experiment
|
|
71
|
+
|
|
72
|
+
```bash
|
|
73
|
+
python ragmint/main.py --config configs/default.yaml --search bayesian
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
Example `configs/default.yaml`:
|
|
77
|
+
```yaml
|
|
78
|
+
retriever: faiss
|
|
79
|
+
embedding_model: text-embedding-3-small
|
|
80
|
+
reranker:
|
|
81
|
+
mode: mmr
|
|
82
|
+
lambda_param: 0.5
|
|
83
|
+
optimization:
|
|
84
|
+
search_method: bayesian
|
|
85
|
+
n_trials: 20
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
---
|
|
89
|
+
|
|
90
|
+
### 3οΈβ£ Manual Pipeline Usage
|
|
91
|
+
|
|
92
|
+
```python
|
|
93
|
+
from ragmint.core.pipeline import RAGPipeline
|
|
94
|
+
|
|
95
|
+
pipeline = RAGPipeline({
|
|
96
|
+
"embedding_model": "text-embedding-3-small",
|
|
97
|
+
"retriever": "faiss",
|
|
98
|
+
})
|
|
99
|
+
|
|
100
|
+
result = pipeline.run("What is retrieval-augmented generation?")
|
|
101
|
+
print(result)
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
---
|
|
105
|
+
|
|
106
|
+
## π§© Folder Structure
|
|
107
|
+
|
|
108
|
+
```
|
|
109
|
+
ragmint/
|
|
110
|
+
βββ core/
|
|
111
|
+
β βββ pipeline.py # RAGPipeline implementation
|
|
112
|
+
β βββ retriever.py # Retriever logic (FAISS, Chroma)
|
|
113
|
+
β βββ reranker.py # MMR + CrossEncoder rerankers
|
|
114
|
+
β βββ embedding.py # Embedding backends
|
|
115
|
+
βββ tuner.py # Grid, Random, Bayesian optimization (Optuna)
|
|
116
|
+
βββ utils/ # Metrics, logging, caching helpers
|
|
117
|
+
βββ configs/ # Default experiment configs
|
|
118
|
+
βββ experiments/ # Saved experiment results
|
|
119
|
+
βββ tests/ # Unit tests for all components
|
|
120
|
+
βββ main.py # CLI entrypoint for tuning
|
|
121
|
+
βββ pyproject.toml # Project dependencies & build metadata
|
|
122
|
+
```
|
|
123
|
+
|
|
124
|
+
---
|
|
125
|
+
|
|
126
|
+
## π§ͺ Running Tests
|
|
127
|
+
|
|
128
|
+
To verify your setup:
|
|
129
|
+
|
|
130
|
+
```bash
|
|
131
|
+
pytest -v
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
Or to test a specific component (e.g., reranker):
|
|
135
|
+
|
|
136
|
+
```bash
|
|
137
|
+
pytest tests/test_reranker.py -v
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
All tests are designed for **Pytest** and run with lightweight mock data.
|
|
141
|
+
|
|
142
|
+
---
|
|
143
|
+
|
|
144
|
+
## βοΈ Configuration via `pyproject.toml`
|
|
145
|
+
|
|
146
|
+
Your `pyproject.toml` automatically includes:
|
|
147
|
+
|
|
148
|
+
```toml
|
|
149
|
+
[project]
|
|
150
|
+
name = "ragmint"
|
|
151
|
+
version = "0.1.0"
|
|
152
|
+
dependencies = [
|
|
153
|
+
"numpy",
|
|
154
|
+
"optuna",
|
|
155
|
+
"scikit-learn",
|
|
156
|
+
"faiss-cpu",
|
|
157
|
+
"chromadb",
|
|
158
|
+
"pytest",
|
|
159
|
+
"openai",
|
|
160
|
+
"tqdm",
|
|
161
|
+
]
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
---
|
|
165
|
+
|
|
166
|
+
## π Example Experiment Workflow
|
|
167
|
+
|
|
168
|
+
1. Define your retriever and reranker configuration in YAML
|
|
169
|
+
2. Launch an optimization search (Grid, Random, or Bayesian)
|
|
170
|
+
3. Ragmint evaluates combinations automatically and reports top results
|
|
171
|
+
4. Export best parameters for production pipelines
|
|
172
|
+
|
|
173
|
+
---
|
|
174
|
+
|
|
175
|
+
## 𧬠Architecture Overview
|
|
176
|
+
|
|
177
|
+
```mermaid
|
|
178
|
+
flowchart TD
|
|
179
|
+
A[Query] --> B[Embedder]
|
|
180
|
+
B --> C[Retriever]
|
|
181
|
+
C --> D[Reranker]
|
|
182
|
+
D --> E[Generator]
|
|
183
|
+
E --> F[Evaluation]
|
|
184
|
+
F --> G[Optuna Tuner]
|
|
185
|
+
G -->|Best Params| B
|
|
186
|
+
```
|
|
187
|
+
|
|
188
|
+
---
|
|
189
|
+
|
|
190
|
+
## π Example Output
|
|
191
|
+
|
|
192
|
+
```
|
|
193
|
+
[INFO] Starting Bayesian optimization with Optuna
|
|
194
|
+
[INFO] Trial 7 finished: recall=0.83, latency=0.42s
|
|
195
|
+
[INFO] Best parameters: {'lambda_param': 0.6, 'retriever': 'faiss'}
|
|
196
|
+
```
|
|
197
|
+
|
|
198
|
+
---
|
|
199
|
+
|
|
200
|
+
## π§ Why Ragmint?
|
|
201
|
+
|
|
202
|
+
- Built for **RAG researchers**, **AI engineers**, and **LLM ops**
|
|
203
|
+
- Works with **LangChain**, **LlamaIndex**, or standalone RAG setups
|
|
204
|
+
- Designed for **extensibility** β plug in your own models, retrievers, or metrics
|
|
205
|
+
|
|
206
|
+
---
|
|
207
|
+
|
|
208
|
+
## βοΈ License
|
|
209
|
+
|
|
210
|
+
Licensed under the **Apache License 2.0** β free for personal, research, and commercial use.
|
|
211
|
+
|
|
212
|
+
---
|
|
213
|
+
|
|
214
|
+
## π€ Author
|
|
215
|
+
|
|
216
|
+
**AndrΓ© Oliveira**
|
|
217
|
+
[andyolivers.com](https://andyolivers.com)
|
|
218
|
+
Data Scientist | AI Engineer
|
ragmint-0.1.0/README.md
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
1
|
+
# Ragmint
|
|
2
|
+
|
|
3
|
+

|
|
4
|
+

|
|
5
|
+

|
|
6
|
+

|
|
7
|
+

|
|
8
|
+
|
|
9
|
+

|
|
10
|
+
|
|
11
|
+
**Ragmint** (Retrieval-Augmented Generation Model Inspection & Tuning) is a modular, developer-friendly Python library for **evaluating, optimizing, and tuning RAG (Retrieval-Augmented Generation) pipelines**.
|
|
12
|
+
|
|
13
|
+
It provides a complete toolkit for **retriever selection**, **embedding model tuning**, and **automated RAG evaluation** with support for **Optuna-based Bayesian optimization**.
|
|
14
|
+
|
|
15
|
+
---
|
|
16
|
+
|
|
17
|
+
## β¨ Features
|
|
18
|
+
|
|
19
|
+
- β
**Automated hyperparameter optimization** (Grid, Random, Bayesian via Optuna)
|
|
20
|
+
- π **Built-in RAG evaluation metrics** β faithfulness, recall, BLEU, ROUGE, latency
|
|
21
|
+
- βοΈ **Retrievers** β FAISS, Chroma, ElasticSearch
|
|
22
|
+
- π§© **Embeddings** β OpenAI, HuggingFace
|
|
23
|
+
- π§ **Rerankers** β MMR, CrossEncoder (extensible via plugin interface)
|
|
24
|
+
- πΎ **Caching, experiment tracking, and reproducibility** out of the box
|
|
25
|
+
- π§° **Clean modular structure** for easy integration in research and production setups
|
|
26
|
+
|
|
27
|
+
---
|
|
28
|
+
|
|
29
|
+
## π Quick Start
|
|
30
|
+
|
|
31
|
+
### 1οΈβ£ Installation
|
|
32
|
+
|
|
33
|
+
```bash
|
|
34
|
+
git clone https://github.com/andyolivers/ragmint.git
|
|
35
|
+
cd ragmint
|
|
36
|
+
pip install -e .
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
> The `-e` flag installs Ragmint in editable (development) mode.
|
|
40
|
+
> Requires **Python β₯ 3.9**.
|
|
41
|
+
|
|
42
|
+
---
|
|
43
|
+
|
|
44
|
+
### 2οΈβ£ Run a RAG Optimization Experiment
|
|
45
|
+
|
|
46
|
+
```bash
|
|
47
|
+
python ragmint/main.py --config configs/default.yaml --search bayesian
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
Example `configs/default.yaml`:
|
|
51
|
+
```yaml
|
|
52
|
+
retriever: faiss
|
|
53
|
+
embedding_model: text-embedding-3-small
|
|
54
|
+
reranker:
|
|
55
|
+
mode: mmr
|
|
56
|
+
lambda_param: 0.5
|
|
57
|
+
optimization:
|
|
58
|
+
search_method: bayesian
|
|
59
|
+
n_trials: 20
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
---
|
|
63
|
+
|
|
64
|
+
### 3οΈβ£ Manual Pipeline Usage
|
|
65
|
+
|
|
66
|
+
```python
|
|
67
|
+
from ragmint.core.pipeline import RAGPipeline
|
|
68
|
+
|
|
69
|
+
pipeline = RAGPipeline({
|
|
70
|
+
"embedding_model": "text-embedding-3-small",
|
|
71
|
+
"retriever": "faiss",
|
|
72
|
+
})
|
|
73
|
+
|
|
74
|
+
result = pipeline.run("What is retrieval-augmented generation?")
|
|
75
|
+
print(result)
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
---
|
|
79
|
+
|
|
80
|
+
## π§© Folder Structure
|
|
81
|
+
|
|
82
|
+
```
|
|
83
|
+
ragmint/
|
|
84
|
+
βββ core/
|
|
85
|
+
β βββ pipeline.py # RAGPipeline implementation
|
|
86
|
+
β βββ retriever.py # Retriever logic (FAISS, Chroma)
|
|
87
|
+
β βββ reranker.py # MMR + CrossEncoder rerankers
|
|
88
|
+
β βββ embedding.py # Embedding backends
|
|
89
|
+
βββ tuner.py # Grid, Random, Bayesian optimization (Optuna)
|
|
90
|
+
βββ utils/ # Metrics, logging, caching helpers
|
|
91
|
+
βββ configs/ # Default experiment configs
|
|
92
|
+
βββ experiments/ # Saved experiment results
|
|
93
|
+
βββ tests/ # Unit tests for all components
|
|
94
|
+
βββ main.py # CLI entrypoint for tuning
|
|
95
|
+
βββ pyproject.toml # Project dependencies & build metadata
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
---
|
|
99
|
+
|
|
100
|
+
## π§ͺ Running Tests
|
|
101
|
+
|
|
102
|
+
To verify your setup:
|
|
103
|
+
|
|
104
|
+
```bash
|
|
105
|
+
pytest -v
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
Or to test a specific component (e.g., reranker):
|
|
109
|
+
|
|
110
|
+
```bash
|
|
111
|
+
pytest tests/test_reranker.py -v
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
All tests are designed for **Pytest** and run with lightweight mock data.
|
|
115
|
+
|
|
116
|
+
---
|
|
117
|
+
|
|
118
|
+
## βοΈ Configuration via `pyproject.toml`
|
|
119
|
+
|
|
120
|
+
Your `pyproject.toml` automatically includes:
|
|
121
|
+
|
|
122
|
+
```toml
|
|
123
|
+
[project]
|
|
124
|
+
name = "ragmint"
|
|
125
|
+
version = "0.1.0"
|
|
126
|
+
dependencies = [
|
|
127
|
+
"numpy",
|
|
128
|
+
"optuna",
|
|
129
|
+
"scikit-learn",
|
|
130
|
+
"faiss-cpu",
|
|
131
|
+
"chromadb",
|
|
132
|
+
"pytest",
|
|
133
|
+
"openai",
|
|
134
|
+
"tqdm",
|
|
135
|
+
]
|
|
136
|
+
```
|
|
137
|
+
|
|
138
|
+
---
|
|
139
|
+
|
|
140
|
+
## π Example Experiment Workflow
|
|
141
|
+
|
|
142
|
+
1. Define your retriever and reranker configuration in YAML
|
|
143
|
+
2. Launch an optimization search (Grid, Random, or Bayesian)
|
|
144
|
+
3. Ragmint evaluates combinations automatically and reports top results
|
|
145
|
+
4. Export best parameters for production pipelines
|
|
146
|
+
|
|
147
|
+
---
|
|
148
|
+
|
|
149
|
+
## 𧬠Architecture Overview
|
|
150
|
+
|
|
151
|
+
```mermaid
|
|
152
|
+
flowchart TD
|
|
153
|
+
A[Query] --> B[Embedder]
|
|
154
|
+
B --> C[Retriever]
|
|
155
|
+
C --> D[Reranker]
|
|
156
|
+
D --> E[Generator]
|
|
157
|
+
E --> F[Evaluation]
|
|
158
|
+
F --> G[Optuna Tuner]
|
|
159
|
+
G -->|Best Params| B
|
|
160
|
+
```
|
|
161
|
+
|
|
162
|
+
---
|
|
163
|
+
|
|
164
|
+
## π Example Output
|
|
165
|
+
|
|
166
|
+
```
|
|
167
|
+
[INFO] Starting Bayesian optimization with Optuna
|
|
168
|
+
[INFO] Trial 7 finished: recall=0.83, latency=0.42s
|
|
169
|
+
[INFO] Best parameters: {'lambda_param': 0.6, 'retriever': 'faiss'}
|
|
170
|
+
```
|
|
171
|
+
|
|
172
|
+
---
|
|
173
|
+
|
|
174
|
+
## π§ Why Ragmint?
|
|
175
|
+
|
|
176
|
+
- Built for **RAG researchers**, **AI engineers**, and **LLM ops**
|
|
177
|
+
- Works with **LangChain**, **LlamaIndex**, or standalone RAG setups
|
|
178
|
+
- Designed for **extensibility** β plug in your own models, retrievers, or metrics
|
|
179
|
+
|
|
180
|
+
---
|
|
181
|
+
|
|
182
|
+
## βοΈ License
|
|
183
|
+
|
|
184
|
+
Licensed under the **Apache License 2.0** β free for personal, research, and commercial use.
|
|
185
|
+
|
|
186
|
+
---
|
|
187
|
+
|
|
188
|
+
## π€ Author
|
|
189
|
+
|
|
190
|
+
**AndrΓ© Oliveira**
|
|
191
|
+
[andyolivers.com](https://andyolivers.com)
|
|
192
|
+
Data Scientist | AI Engineer
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0", "wheel"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "ragmint"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
description = "A modular framework for evaluating and optimizing RAG pipelines."
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
license = { text = "Apache License 2.0" }
|
|
11
|
+
authors = [
|
|
12
|
+
{ name = "Andre Oliveira", email = "oandreoliveira@outlook.com" }
|
|
13
|
+
]
|
|
14
|
+
keywords = ["RAG", "LLM", "retrieval", "optimization", "AI", "evaluation"]
|
|
15
|
+
requires-python = ">=3.9"
|
|
16
|
+
dependencies = [
|
|
17
|
+
"numpy>=1.23",
|
|
18
|
+
"pandas>=2.0",
|
|
19
|
+
"scikit-learn>=1.3",
|
|
20
|
+
"openai>=1.0",
|
|
21
|
+
"tqdm",
|
|
22
|
+
"pyyaml",
|
|
23
|
+
"chromadb>=0.4",
|
|
24
|
+
"faiss-cpu; sys_platform != 'darwin'",
|
|
25
|
+
"optuna>=3.0",
|
|
26
|
+
"pytest",
|
|
27
|
+
"colorama"
|
|
28
|
+
]
|
|
29
|
+
|
|
30
|
+
[project.urls]
|
|
31
|
+
Homepage = "https://github.com/andyolivers/ragmint"
|
|
32
|
+
Documentation = "https://andyolivers.com"
|
|
33
|
+
Issues = "https://github.com/andyolivers/ragmint/issues"
|
|
34
|
+
|
|
35
|
+
[tool.setuptools]
|
|
36
|
+
include-package-data = true
|
|
37
|
+
|
|
38
|
+
[tool.setuptools.packages.find]
|
|
39
|
+
where = ["src"]
|
|
40
|
+
|
|
41
|
+
[tool.pytest.ini_options]
|
|
42
|
+
testpaths = ["tests"]
|
|
43
|
+
addopts = "-v"
|
ragmint-0.1.0/setup.cfg
ADDED
|
File without changes
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
from pathlib import Path
|
|
2
|
+
from ragmint.tuner import RAGMint
|
|
3
|
+
|
|
4
|
+
def main():
|
|
5
|
+
# Dynamically resolve the path to the installed ragmint package
|
|
6
|
+
base_dir = Path(__file__).resolve().parent
|
|
7
|
+
|
|
8
|
+
docs_path = base_dir / "experiments" / "corpus"
|
|
9
|
+
validation_file = base_dir / "experiments" / "validation_qa.json"
|
|
10
|
+
|
|
11
|
+
rag = RAGMint(
|
|
12
|
+
docs_path=str(docs_path),
|
|
13
|
+
retrievers=["faiss"],
|
|
14
|
+
embeddings=["openai/text-embedding-3-small"],
|
|
15
|
+
rerankers=["mmr"],
|
|
16
|
+
)
|
|
17
|
+
|
|
18
|
+
best, results = rag.optimize(
|
|
19
|
+
validation_set=str(validation_file),
|
|
20
|
+
metric="faithfulness",
|
|
21
|
+
search_type="bayesian",
|
|
22
|
+
trials=10,
|
|
23
|
+
)
|
|
24
|
+
|
|
25
|
+
print("Best config found:\n", best)
|
|
26
|
+
|
|
27
|
+
if __name__ == "__main__":
|
|
28
|
+
main()
|
|
File without changes
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class Chunker:
|
|
5
|
+
"""
|
|
6
|
+
Handles text chunking and splitting strategies:
|
|
7
|
+
- Fixed size chunks
|
|
8
|
+
- Overlapping windows
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
def __init__(self, chunk_size: int = 500, overlap: int = 100):
|
|
12
|
+
self.chunk_size = chunk_size
|
|
13
|
+
self.overlap = overlap
|
|
14
|
+
|
|
15
|
+
def chunk_text(self, text: str) -> List[str]:
|
|
16
|
+
chunks = []
|
|
17
|
+
start = 0
|
|
18
|
+
while start < len(text):
|
|
19
|
+
end = start + self.chunk_size
|
|
20
|
+
chunks.append(text[start:end])
|
|
21
|
+
start += self.chunk_size - self.overlap
|
|
22
|
+
return chunks
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class EmbeddingModel:
|
|
5
|
+
"""
|
|
6
|
+
Wrapper for embedding backends (OpenAI, HuggingFace, etc.)
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
def __init__(self, backend: str = "dummy"):
|
|
10
|
+
self.backend = backend
|
|
11
|
+
|
|
12
|
+
def encode(self, texts):
|
|
13
|
+
if self.backend == "openai":
|
|
14
|
+
# Example placeholder β integrate with actual OpenAI API
|
|
15
|
+
return [np.random.rand(768) for _ in texts]
|
|
16
|
+
elif self.backend == "huggingface":
|
|
17
|
+
return [np.random.rand(768) for _ in texts]
|
|
18
|
+
else:
|
|
19
|
+
return [np.random.rand(768) for _ in texts]
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
import time
|
|
2
|
+
from typing import Dict, Any
|
|
3
|
+
from difflib import SequenceMatcher
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Evaluator:
|
|
7
|
+
"""
|
|
8
|
+
Simple evaluation of generated answers:
|
|
9
|
+
- Faithfulness (similarity between answer and context)
|
|
10
|
+
- Latency
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
def __init__(self):
|
|
14
|
+
pass
|
|
15
|
+
|
|
16
|
+
def evaluate(self, query: str, answer: str, context: str) -> Dict[str, Any]:
|
|
17
|
+
start = time.time()
|
|
18
|
+
faithfulness = self._similarity(answer, context)
|
|
19
|
+
latency = time.time() - start
|
|
20
|
+
|
|
21
|
+
return {
|
|
22
|
+
"faithfulness": faithfulness,
|
|
23
|
+
"latency": latency,
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
def _similarity(self, a: str, b: str) -> float:
|
|
27
|
+
return SequenceMatcher(None, a, b).ratio()
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
from typing import Any, Dict, List
|
|
2
|
+
from .retriever import Retriever
|
|
3
|
+
from .reranker import Reranker
|
|
4
|
+
from .evaluation import Evaluator
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class RAGPipeline:
|
|
8
|
+
"""
|
|
9
|
+
Core Retrieval-Augmented Generation pipeline.
|
|
10
|
+
Simplified (no generator). It retrieves, reranks, and evaluates.
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
def __init__(self, retriever: Retriever, reranker: Reranker, evaluator: Evaluator):
|
|
14
|
+
self.retriever = retriever
|
|
15
|
+
self.reranker = reranker
|
|
16
|
+
self.evaluator = evaluator
|
|
17
|
+
|
|
18
|
+
def run(self, query: str, top_k: int = 5) -> Dict[str, Any]:
|
|
19
|
+
# Retrieve documents
|
|
20
|
+
retrieved_docs = self.retriever.retrieve(query, top_k=top_k)
|
|
21
|
+
# Rerank
|
|
22
|
+
reranked_docs = self.reranker.rerank(query, retrieved_docs)
|
|
23
|
+
|
|
24
|
+
# Use top document as pseudo-answer
|
|
25
|
+
if reranked_docs:
|
|
26
|
+
answer = reranked_docs[0]["text"]
|
|
27
|
+
else:
|
|
28
|
+
answer = ""
|
|
29
|
+
|
|
30
|
+
context = "\n".join([d["text"] for d in reranked_docs])
|
|
31
|
+
metrics = self.evaluator.evaluate(query, answer, context)
|
|
32
|
+
|
|
33
|
+
return {
|
|
34
|
+
"query": query,
|
|
35
|
+
"answer": answer,
|
|
36
|
+
"docs": reranked_docs,
|
|
37
|
+
"metrics": metrics,
|
|
38
|
+
}
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
from typing import List, Dict, Any
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class Reranker:
|
|
6
|
+
"""
|
|
7
|
+
Supports:
|
|
8
|
+
- MMR (Maximal Marginal Relevance)
|
|
9
|
+
- Dummy CrossEncoder (for demonstration)
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
def __init__(self, mode: str = "mmr", lambda_param: float = 0.5, seed: int = 42):
|
|
13
|
+
self.mode = mode
|
|
14
|
+
self.lambda_param = lambda_param
|
|
15
|
+
np.random.seed(seed)
|
|
16
|
+
|
|
17
|
+
def rerank(self, query: str, docs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
18
|
+
if not docs:
|
|
19
|
+
return []
|
|
20
|
+
|
|
21
|
+
if self.mode == "crossencoder":
|
|
22
|
+
return self._crossencoder_rerank(query, docs)
|
|
23
|
+
return self._mmr_rerank(query, docs)
|
|
24
|
+
|
|
25
|
+
def _mmr_rerank(self, query: str, docs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
26
|
+
"""Perform MMR reranking using dummy similarity scores."""
|
|
27
|
+
selected = []
|
|
28
|
+
remaining = docs.copy()
|
|
29
|
+
|
|
30
|
+
while remaining and len(selected) < len(docs):
|
|
31
|
+
if not selected:
|
|
32
|
+
# pick doc with highest base score
|
|
33
|
+
best = max(remaining, key=lambda d: d["score"])
|
|
34
|
+
else:
|
|
35
|
+
# MMR balancing between relevance and diversity
|
|
36
|
+
mmr_scores = []
|
|
37
|
+
for d in remaining:
|
|
38
|
+
max_div = max(
|
|
39
|
+
[self._similarity(d["text"], s["text"]) for s in selected],
|
|
40
|
+
default=0,
|
|
41
|
+
)
|
|
42
|
+
mmr_score = (
|
|
43
|
+
self.lambda_param * d["score"]
|
|
44
|
+
- (1 - self.lambda_param) * max_div
|
|
45
|
+
)
|
|
46
|
+
mmr_scores.append(mmr_score)
|
|
47
|
+
best = remaining[int(np.argmax(mmr_scores))]
|
|
48
|
+
selected.append(best)
|
|
49
|
+
remaining.remove(best)
|
|
50
|
+
|
|
51
|
+
return selected
|
|
52
|
+
|
|
53
|
+
def _crossencoder_rerank(self, query: str, docs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
54
|
+
"""Adds a small random perturbation to simulate crossencoder reranking."""
|
|
55
|
+
for d in docs:
|
|
56
|
+
d["score"] += np.random.uniform(0, 0.1)
|
|
57
|
+
return sorted(docs, key=lambda d: d["score"], reverse=True)
|
|
58
|
+
|
|
59
|
+
def _similarity(self, a: str, b: str) -> float:
|
|
60
|
+
"""Dummy similarity function between two strings."""
|
|
61
|
+
# Deterministic pseudo-similarity based on hash
|
|
62
|
+
return abs(hash(a + b)) % 100 / 100.0
|