ragit 0.5__tar.gz → 0.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ragit
3
- Version: 0.5
3
+ Version: 0.6
4
4
  Home-page: https://github.com/stsfaroz/ragit
5
5
  Author: Salman Faroz
6
6
  License: MIT
@@ -22,7 +22,7 @@ Dynamic: requires-dist
22
22
  # Ragit
23
23
  🚀 Smart, Fast, Scalable Search 🚀
24
24
 
25
- **ragit** is a lightweight Python library that simplifies the management of vector databases. With ragit, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
25
+ **ragit** is a lightweight Python library that simplifies the management of vector databases. With **ragit**, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
26
26
 
27
27
  ## Features
28
28
 
@@ -33,7 +33,7 @@ Dynamic: requires-dist
33
33
  - **Deletion:** Remove single entries or entire collections when needed.
34
34
 
35
35
  ## CSV File Format
36
- ragit expects your CSV file to have exactly two columns: `id` and `text`.
36
+ ragit expects your CSV file to have exactly two columns: `id` and `text`. **Note:** Each `id` must be unique.
37
37
 
38
38
  ## Example CSV (`data.csv`):
39
39
 
@@ -72,7 +72,7 @@ db_manager.create_database(
72
72
  ```
73
73
  ### Reloading Your Database
74
74
 
75
- After creating and populating your vector database, simply load it later by reinitializing with the same persistence directory:
75
+ Once your database is created and your data is added, simply load it for later use by specifying the same folder:
76
76
 
77
77
  ```python
78
78
  from ragit import VectorDBManager
@@ -2,7 +2,7 @@
2
2
  # Ragit
3
3
  🚀 Smart, Fast, Scalable Search 🚀
4
4
 
5
- **ragit** is a lightweight Python library that simplifies the management of vector databases. With ragit, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
5
+ **ragit** is a lightweight Python library that simplifies the management of vector databases. With **ragit**, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
6
6
 
7
7
  ## Features
8
8
 
@@ -13,7 +13,7 @@
13
13
  - **Deletion:** Remove single entries or entire collections when needed.
14
14
 
15
15
  ## CSV File Format
16
- ragit expects your CSV file to have exactly two columns: `id` and `text`.
16
+ ragit expects your CSV file to have exactly two columns: `id` and `text`. **Note:** Each `id` must be unique.
17
17
 
18
18
  ## Example CSV (`data.csv`):
19
19
 
@@ -52,7 +52,7 @@ db_manager.create_database(
52
52
  ```
53
53
  ### Reloading Your Database
54
54
 
55
- After creating and populating your vector database, simply load it later by reinitializing with the same persistence directory:
55
+ Once your database is created and your data is added, simply load it for later use by specifying the same folder:
56
56
 
57
57
  ```python
58
58
  from ragit import VectorDBManager
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ragit
3
- Version: 0.5
3
+ Version: 0.6
4
4
  Home-page: https://github.com/stsfaroz/ragit
5
5
  Author: Salman Faroz
6
6
  License: MIT
@@ -22,7 +22,7 @@ Dynamic: requires-dist
22
22
  # Ragit
23
23
  🚀 Smart, Fast, Scalable Search 🚀
24
24
 
25
- **ragit** is a lightweight Python library that simplifies the management of vector databases. With ragit, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
25
+ **ragit** is a lightweight Python library that simplifies the management of vector databases. With **ragit**, you can easily create, update, query, and manage your vector database, all from CSV files containing text data.
26
26
 
27
27
  ## Features
28
28
 
@@ -33,7 +33,7 @@ Dynamic: requires-dist
33
33
  - **Deletion:** Remove single entries or entire collections when needed.
34
34
 
35
35
  ## CSV File Format
36
- ragit expects your CSV file to have exactly two columns: `id` and `text`.
36
+ ragit expects your CSV file to have exactly two columns: `id` and `text`. **Note:** Each `id` must be unique.
37
37
 
38
38
  ## Example CSV (`data.csv`):
39
39
 
@@ -72,7 +72,7 @@ db_manager.create_database(
72
72
  ```
73
73
  ### Reloading Your Database
74
74
 
75
- After creating and populating your vector database, simply load it later by reinitializing with the same persistence directory:
75
+ Once your database is created and your data is added, simply load it for later use by specifying the same folder:
76
76
 
77
77
  ```python
78
78
  from ragit import VectorDBManager
@@ -5,7 +5,7 @@ with open("README.md", "r") as f:
5
5
 
6
6
  setup(
7
7
  name="ragit",
8
- version="0.5",
8
+ version="0.6",
9
9
  packages=find_packages(),
10
10
  install_requires = ['sentence-transformers>=3.4.1',
11
11
  'pandas>=2.2.3', 'chromadb>=0.6.3',
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes