ragbits-evaluate 0.17.1__tar.gz → 0.18.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ragbits-evaluate might be problematic. Click here for more details.
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/CHANGELOG.md +12 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/PKG-INFO +2 -2
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/pyproject.toml +2 -2
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/cli.py +2 -2
- ragbits_evaluate-0.18.0/src/ragbits/evaluate/dataloaders/document_search.py +73 -0
- ragbits_evaluate-0.18.0/src/ragbits/evaluate/evaluator.py +224 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/factories/__init__.py +11 -26
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/metrics/base.py +8 -4
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/metrics/document_search.py +13 -2
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/optimizer.py +9 -9
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/pipelines/base.py +2 -1
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/pipelines/document_search.py +25 -15
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/utils.py +48 -14
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/tests/cli/test_run_evaluation.py +4 -4
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/tests/unit/test_evaluator.py +37 -17
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/tests/unit/test_metrics.py +59 -25
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/tests/unit/test_optimizer.py +10 -7
- ragbits_evaluate-0.17.1/src/ragbits/evaluate/dataloaders/document_search.py +0 -45
- ragbits_evaluate-0.17.1/src/ragbits/evaluate/evaluator.py +0 -179
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/.gitignore +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/README.md +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/config.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataloaders/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataloaders/base.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataloaders/exceptions.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/pipeline.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/prompts/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/prompts/corpus_generation.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/prompts/qa.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/corpus_generation.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/filter/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/filter/base.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/filter/dont_know.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/text_generation/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/text_generation/base.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/tasks/text_generation/qa.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/dataset_generator/utils.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/metrics/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/pipelines/__init__.py +0 -0
- {ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/py.typed +0 -0
|
@@ -2,6 +2,18 @@
|
|
|
2
2
|
|
|
3
3
|
## Unreleased
|
|
4
4
|
|
|
5
|
+
## 0.18.0 (2025-05-22)
|
|
6
|
+
|
|
7
|
+
### Changed
|
|
8
|
+
|
|
9
|
+
- ragbits-core updated to version v0.18.0
|
|
10
|
+
|
|
11
|
+
- Add support for custom column names in evaluation dataset (#566)
|
|
12
|
+
- Add support for reference document ids and page numbers in evaluation dataset (#566)
|
|
13
|
+
- BREAKING CHANGE: Adjust eval pipline interface to batch processing (#555)
|
|
14
|
+
- Rename DocumentMeta create_text_document_from_literal to from_literal (#561)
|
|
15
|
+
- Adjust typing for DocumentSearch (#554)
|
|
16
|
+
|
|
5
17
|
## 0.17.1 (2025-05-09)
|
|
6
18
|
|
|
7
19
|
### Changed
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ragbits-evaluate
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.18.0
|
|
4
4
|
Summary: Evaluation module for Ragbits components
|
|
5
5
|
Project-URL: Homepage, https://github.com/deepsense-ai/ragbits
|
|
6
6
|
Project-URL: Bug Reports, https://github.com/deepsense-ai/ragbits/issues
|
|
@@ -27,7 +27,7 @@ Requires-Dist: distilabel<2.0.0,>=1.4.1
|
|
|
27
27
|
Requires-Dist: hydra-core<2.0.0,>=1.3.2
|
|
28
28
|
Requires-Dist: neptune[optuna]<2.0.0,>=1.12.0
|
|
29
29
|
Requires-Dist: optuna<5.0.0,>=4.0.0
|
|
30
|
-
Requires-Dist: ragbits-core==0.
|
|
30
|
+
Requires-Dist: ragbits-core==0.18.0
|
|
31
31
|
Provides-Extra: relari
|
|
32
32
|
Requires-Dist: continuous-eval<1.0.0,>=0.3.12; extra == 'relari'
|
|
33
33
|
Description-Content-Type: text/markdown
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "ragbits-evaluate"
|
|
3
|
-
version = "0.
|
|
3
|
+
version = "0.18.0"
|
|
4
4
|
description = "Evaluation module for Ragbits components"
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
requires-python = ">=3.10"
|
|
@@ -32,7 +32,7 @@ classifiers = [
|
|
|
32
32
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
33
33
|
"Topic :: Software Development :: Libraries :: Python Modules",
|
|
34
34
|
]
|
|
35
|
-
dependencies = ["hydra-core>=1.3.2,<2.0.0", "neptune[optuna]>=1.12.0,<2.0.0", "optuna>=4.0.0,<5.0.0", "distilabel>=1.4.1,<2.0.0", "datasets>=3.0.1,<4.0.0", "ragbits-core==0.
|
|
35
|
+
dependencies = ["hydra-core>=1.3.2,<2.0.0", "neptune[optuna]>=1.12.0,<2.0.0", "optuna>=4.0.0,<5.0.0", "distilabel>=1.4.1,<2.0.0", "datasets>=3.0.1,<4.0.0", "ragbits-core==0.18.0"]
|
|
36
36
|
|
|
37
37
|
[project.urls]
|
|
38
38
|
"Homepage" = "https://github.com/deepsense-ai/ragbits"
|
|
@@ -140,10 +140,10 @@ def run() -> None:
|
|
|
140
140
|
metric_results = await evaluator.compute(
|
|
141
141
|
pipeline=state.pipeline,
|
|
142
142
|
dataloader=state.dataloader,
|
|
143
|
-
|
|
143
|
+
metricset=state.metrics,
|
|
144
144
|
)
|
|
145
145
|
evaluation_results = EvaluationResult(
|
|
146
|
-
metrics={"metrics": metric_results
|
|
146
|
+
metrics={"metrics": metric_results.metrics, "time_perf": metric_results.time_perf}
|
|
147
147
|
)
|
|
148
148
|
print_output(evaluation_results)
|
|
149
149
|
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
from collections.abc import Iterable
|
|
2
|
+
|
|
3
|
+
from datasets import load_dataset
|
|
4
|
+
|
|
5
|
+
from ragbits.core.sources.base import Source
|
|
6
|
+
from ragbits.evaluate.dataloaders.base import DataLoader
|
|
7
|
+
from ragbits.evaluate.dataloaders.exceptions import DataLoaderIncorrectFormatDataError
|
|
8
|
+
from ragbits.evaluate.pipelines.document_search import DocumentSearchData
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class DocumentSearchDataLoader(DataLoader[DocumentSearchData]):
|
|
12
|
+
"""
|
|
13
|
+
Document search evaluation data loader.
|
|
14
|
+
|
|
15
|
+
The source used for this data loader should point to a file that can be loaded by [Hugging Face](https://huggingface.co/docs/datasets/loading#local-and-remote-files)
|
|
16
|
+
and contain the following features: "question, "passages".
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
source: Source,
|
|
22
|
+
question_key: str = "question",
|
|
23
|
+
document_ids_key: str = "document_ids",
|
|
24
|
+
passages_key: str = "passages",
|
|
25
|
+
page_numbers_key: str = "page_numbers",
|
|
26
|
+
) -> None:
|
|
27
|
+
"""
|
|
28
|
+
Initialize the document search data loader.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
source: The source to load the data from.
|
|
32
|
+
question_key: The dataset column name that contains the question.
|
|
33
|
+
document_ids_key: The dataset column name that contains the document ids. Document ids are optional.
|
|
34
|
+
passages_key: The dataset column name that contains the passages. Passages are optional.
|
|
35
|
+
page_numbers_key: The dataset column name that contains the page numbers. Page numbers are optional.
|
|
36
|
+
"""
|
|
37
|
+
super().__init__(source)
|
|
38
|
+
self.question_key = question_key
|
|
39
|
+
self.document_ids_key = document_ids_key
|
|
40
|
+
self.passages_key = passages_key
|
|
41
|
+
self.page_numbers_key = page_numbers_key
|
|
42
|
+
|
|
43
|
+
async def load(self) -> Iterable[DocumentSearchData]:
|
|
44
|
+
"""
|
|
45
|
+
Load the data from source and format them.
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
The document search evaluation data.
|
|
49
|
+
|
|
50
|
+
Raises:
|
|
51
|
+
DataLoaderIncorrectFormatDataError: If evaluation dataset is incorrectly formatted.
|
|
52
|
+
"""
|
|
53
|
+
data_path = await self.source.fetch()
|
|
54
|
+
dataset = load_dataset(
|
|
55
|
+
path=str(data_path.parent),
|
|
56
|
+
split="train",
|
|
57
|
+
data_files={"train": str(data_path.name)},
|
|
58
|
+
)
|
|
59
|
+
if self.question_key not in dataset.features:
|
|
60
|
+
raise DataLoaderIncorrectFormatDataError(
|
|
61
|
+
required_features=[self.question_key],
|
|
62
|
+
data_path=data_path,
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
return [
|
|
66
|
+
DocumentSearchData(
|
|
67
|
+
question=data.get(self.question_key),
|
|
68
|
+
reference_document_ids=data.get(self.document_ids_key),
|
|
69
|
+
reference_passages=data.get(self.passages_key),
|
|
70
|
+
reference_page_numbers=data.get(self.page_numbers_key),
|
|
71
|
+
)
|
|
72
|
+
for data in dataset
|
|
73
|
+
]
|
|
@@ -0,0 +1,224 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
import random
|
|
3
|
+
import time
|
|
4
|
+
from collections.abc import Awaitable, Callable, Iterable
|
|
5
|
+
from dataclasses import dataclass
|
|
6
|
+
from typing import Generic, ParamSpec, TypeVar
|
|
7
|
+
|
|
8
|
+
from pydantic import BaseModel
|
|
9
|
+
from tqdm import tqdm
|
|
10
|
+
|
|
11
|
+
from ragbits.core.utils.config_handling import ObjectConstructionConfig, WithConstructionConfig
|
|
12
|
+
from ragbits.core.utils.helpers import batched
|
|
13
|
+
from ragbits.evaluate.dataloaders.base import DataLoader
|
|
14
|
+
from ragbits.evaluate.metrics.base import MetricSet
|
|
15
|
+
from ragbits.evaluate.pipelines.base import EvaluationDataT, EvaluationPipeline, EvaluationResultT, EvaluationTargetT
|
|
16
|
+
|
|
17
|
+
_CallP = ParamSpec("_CallP")
|
|
18
|
+
_CallReturnT = TypeVar("_CallReturnT")
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@dataclass
|
|
22
|
+
class EvaluationTimePerf:
|
|
23
|
+
"""
|
|
24
|
+
Container for evaluation time performance metrics.
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
total_time_in_seconds: float
|
|
28
|
+
samples_per_second: float
|
|
29
|
+
latency_in_seconds: float
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@dataclass
|
|
33
|
+
class EvaluatorResult(Generic[EvaluationResultT]):
|
|
34
|
+
"""
|
|
35
|
+
Container for evaluation results.
|
|
36
|
+
"""
|
|
37
|
+
|
|
38
|
+
metrics: dict[str, int | float]
|
|
39
|
+
results: list[EvaluationResultT]
|
|
40
|
+
errors: list[Exception]
|
|
41
|
+
time_perf: EvaluationTimePerf
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class EvaluationConfig(BaseModel):
|
|
45
|
+
"""
|
|
46
|
+
Schema for the evaluation run config.
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
pipeline: ObjectConstructionConfig
|
|
50
|
+
dataloader: ObjectConstructionConfig
|
|
51
|
+
metrics: dict[str, ObjectConstructionConfig]
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class EvaluatorConfig(BaseModel):
|
|
55
|
+
"""
|
|
56
|
+
Schema for the evaluator config.
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
evaluation: EvaluationConfig
|
|
60
|
+
evaluator: dict | None = None
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class Evaluator(WithConstructionConfig):
|
|
64
|
+
"""
|
|
65
|
+
Evaluator class.
|
|
66
|
+
"""
|
|
67
|
+
|
|
68
|
+
def __init__(
|
|
69
|
+
self,
|
|
70
|
+
batch_size: int = 10,
|
|
71
|
+
num_retries: int = 3,
|
|
72
|
+
backoff_multiplier: int = 1,
|
|
73
|
+
backoff_max: int = 60,
|
|
74
|
+
) -> None:
|
|
75
|
+
"""
|
|
76
|
+
Initialize the Evaluator instance.
|
|
77
|
+
|
|
78
|
+
Args:
|
|
79
|
+
batch_size: batch size for the evaluation pipeline inference.
|
|
80
|
+
num_retries: The number of retries per evaluation pipeline inference error.
|
|
81
|
+
backoff_multiplier: The base delay multiplier for exponential backoff (in seconds).
|
|
82
|
+
backoff_max: The maximum allowed delay (in seconds) between retries.
|
|
83
|
+
"""
|
|
84
|
+
self.batch_size = batch_size
|
|
85
|
+
self.num_retries = num_retries
|
|
86
|
+
self.backoff_multiplier = backoff_multiplier
|
|
87
|
+
self.backoff_max = backoff_max
|
|
88
|
+
|
|
89
|
+
@classmethod
|
|
90
|
+
async def run_from_config(cls, config: dict) -> EvaluatorResult:
|
|
91
|
+
"""
|
|
92
|
+
Run the evaluation based on configuration.
|
|
93
|
+
|
|
94
|
+
Args:
|
|
95
|
+
config: Evaluation config.
|
|
96
|
+
|
|
97
|
+
Returns:
|
|
98
|
+
The evaluation results.
|
|
99
|
+
"""
|
|
100
|
+
evaluator_config = EvaluatorConfig.model_validate(config)
|
|
101
|
+
evaluation_config = EvaluationConfig.model_validate(evaluator_config.evaluation)
|
|
102
|
+
pipeline: EvaluationPipeline = EvaluationPipeline.subclass_from_config(evaluation_config.pipeline)
|
|
103
|
+
dataloader: DataLoader = DataLoader.subclass_from_config(evaluation_config.dataloader)
|
|
104
|
+
metricset: MetricSet = MetricSet.from_config(evaluation_config.metrics)
|
|
105
|
+
|
|
106
|
+
evaluator = cls.from_config(evaluator_config.evaluator or {})
|
|
107
|
+
return await evaluator.compute(
|
|
108
|
+
pipeline=pipeline,
|
|
109
|
+
dataloader=dataloader,
|
|
110
|
+
metricset=metricset,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
async def compute(
|
|
114
|
+
self,
|
|
115
|
+
pipeline: EvaluationPipeline[EvaluationTargetT, EvaluationDataT, EvaluationResultT],
|
|
116
|
+
dataloader: DataLoader[EvaluationDataT],
|
|
117
|
+
metricset: MetricSet[EvaluationResultT],
|
|
118
|
+
) -> EvaluatorResult[EvaluationResultT]:
|
|
119
|
+
"""
|
|
120
|
+
Compute the evaluation results for the given pipeline and data.
|
|
121
|
+
|
|
122
|
+
Args:
|
|
123
|
+
pipeline: The pipeline to be evaluated.
|
|
124
|
+
dataloader: The dataloader to load the data.
|
|
125
|
+
metricset: The metrics to be computed.
|
|
126
|
+
|
|
127
|
+
Returns:
|
|
128
|
+
The evaluation results.
|
|
129
|
+
"""
|
|
130
|
+
await pipeline.prepare()
|
|
131
|
+
|
|
132
|
+
dataset = await dataloader.load()
|
|
133
|
+
results, errors, time_perf = await self._call_pipeline(pipeline, dataset)
|
|
134
|
+
metrics = await metricset.compute(results)
|
|
135
|
+
|
|
136
|
+
return EvaluatorResult(
|
|
137
|
+
metrics=metrics,
|
|
138
|
+
results=results,
|
|
139
|
+
errors=errors,
|
|
140
|
+
time_perf=time_perf,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
async def _call_pipeline(
|
|
144
|
+
self,
|
|
145
|
+
pipeline: EvaluationPipeline[EvaluationTargetT, EvaluationDataT, EvaluationResultT],
|
|
146
|
+
dataset: Iterable[EvaluationDataT],
|
|
147
|
+
) -> tuple[list[EvaluationResultT], list[Exception], EvaluationTimePerf]:
|
|
148
|
+
"""
|
|
149
|
+
Call the pipeline with the given data.
|
|
150
|
+
|
|
151
|
+
Args:
|
|
152
|
+
pipeline: The pipeline to be called.
|
|
153
|
+
dataset: The dataset to be processed.
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
The evaluation results and performance metrics.
|
|
157
|
+
"""
|
|
158
|
+
start_time = time.perf_counter()
|
|
159
|
+
outputs = [
|
|
160
|
+
await self._call_with_error_handling(pipeline, data)
|
|
161
|
+
for data in tqdm(batched(dataset, self.batch_size), desc="Evaluation")
|
|
162
|
+
]
|
|
163
|
+
end_time = time.perf_counter()
|
|
164
|
+
|
|
165
|
+
errors = [output for output in outputs if isinstance(output, Exception)]
|
|
166
|
+
results = [item for output in outputs if not isinstance(output, Exception) for item in output]
|
|
167
|
+
|
|
168
|
+
return results, errors, self._compute_time_perf(start_time, end_time, len(outputs))
|
|
169
|
+
|
|
170
|
+
async def _call_with_error_handling(
|
|
171
|
+
self,
|
|
172
|
+
executable: Callable[_CallP, Awaitable[_CallReturnT]],
|
|
173
|
+
*executable_args: _CallP.args,
|
|
174
|
+
**executable_kwargs: _CallP.kwargs,
|
|
175
|
+
) -> _CallReturnT | Exception:
|
|
176
|
+
"""
|
|
177
|
+
Call executable with a standarized error handling.
|
|
178
|
+
If an error occurs, the executable is retried `num_retries` times using randomized exponential backoff.
|
|
179
|
+
|
|
180
|
+
Args:
|
|
181
|
+
executable: The callable function to execute.
|
|
182
|
+
executable_args: Positional arguments to pass to the executable.
|
|
183
|
+
executable_kwargs: Keyword arguments to pass to the executable.
|
|
184
|
+
|
|
185
|
+
Returns:
|
|
186
|
+
The result of the executable if successful.
|
|
187
|
+
|
|
188
|
+
Raises:
|
|
189
|
+
Exception: The last encountered exception after all retries are exhausted.
|
|
190
|
+
"""
|
|
191
|
+
for i in range(max(0, self.num_retries) + 1):
|
|
192
|
+
try:
|
|
193
|
+
return await executable(*executable_args, **executable_kwargs)
|
|
194
|
+
except Exception as exc:
|
|
195
|
+
if i == self.num_retries:
|
|
196
|
+
return exc
|
|
197
|
+
|
|
198
|
+
delay = random.uniform(0, min(2**i * self.backoff_multiplier, self.backoff_max)) # noqa: S311
|
|
199
|
+
await asyncio.sleep(delay)
|
|
200
|
+
|
|
201
|
+
raise RuntimeError("Unreachable code reached") # mypy quirk
|
|
202
|
+
|
|
203
|
+
@staticmethod
|
|
204
|
+
def _compute_time_perf(start_time: float, end_time: float, num_samples: int) -> EvaluationTimePerf:
|
|
205
|
+
"""
|
|
206
|
+
Compute the performance metrics.
|
|
207
|
+
|
|
208
|
+
Args:
|
|
209
|
+
start_time: The start time.
|
|
210
|
+
end_time: The end time.
|
|
211
|
+
num_samples: The number of samples.
|
|
212
|
+
|
|
213
|
+
Returns:
|
|
214
|
+
The performance metrics.
|
|
215
|
+
"""
|
|
216
|
+
latency = end_time - start_time
|
|
217
|
+
throughput = num_samples / latency
|
|
218
|
+
latency_sample = 1.0 / throughput if throughput > 0 else 0.0
|
|
219
|
+
|
|
220
|
+
return EvaluationTimePerf(
|
|
221
|
+
total_time_in_seconds=latency,
|
|
222
|
+
samples_per_second=throughput,
|
|
223
|
+
latency_in_seconds=latency_sample,
|
|
224
|
+
)
|
{ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/factories/__init__.py
RENAMED
|
@@ -1,43 +1,21 @@
|
|
|
1
1
|
import asyncio
|
|
2
2
|
|
|
3
|
+
from continuous_eval.metrics.retrieval.matching_strategy import RougeChunkMatch
|
|
3
4
|
from datasets import load_dataset
|
|
4
5
|
|
|
5
6
|
from ragbits.core.embeddings.dense import LiteLLMEmbedder
|
|
6
7
|
from ragbits.core.sources.hf import HuggingFaceSource
|
|
7
|
-
from ragbits.core.utils.config_handling import ObjectConstructionConfig
|
|
8
8
|
from ragbits.core.vector_stores.in_memory import InMemoryVectorStore
|
|
9
9
|
from ragbits.document_search import DocumentSearch
|
|
10
10
|
from ragbits.document_search.documents.document import DocumentMeta
|
|
11
11
|
from ragbits.evaluate.dataloaders.document_search import DocumentSearchDataLoader
|
|
12
12
|
from ragbits.evaluate.metrics import MetricSet
|
|
13
|
-
|
|
14
|
-
DS_PRECISION_RECALL_F1 = {
|
|
15
|
-
"precision_recall_f1": ObjectConstructionConfig.model_validate(
|
|
16
|
-
{
|
|
17
|
-
"type": "ragbits.evaluate.metrics.document_search:DocumentSearchPrecisionRecallF1",
|
|
18
|
-
"config": {
|
|
19
|
-
"matching_strategy": {
|
|
20
|
-
"type": "RougeChunkMatch",
|
|
21
|
-
"config": {
|
|
22
|
-
"threshold": 0.5,
|
|
23
|
-
},
|
|
24
|
-
},
|
|
25
|
-
},
|
|
26
|
-
}
|
|
27
|
-
),
|
|
28
|
-
}
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
def precision_recall_f1() -> MetricSet:
|
|
32
|
-
"""
|
|
33
|
-
Factory of precision recall f1 metric set for retrival evaluation.
|
|
34
|
-
"""
|
|
35
|
-
return MetricSet.from_config(config=DS_PRECISION_RECALL_F1)
|
|
13
|
+
from ragbits.evaluate.metrics.document_search import DocumentSearchPrecisionRecallF1
|
|
36
14
|
|
|
37
15
|
|
|
38
16
|
async def _add_example_documents(document_search: DocumentSearch) -> None:
|
|
39
17
|
dataset = load_dataset(path="deepsense-ai/synthetic-rag-dataset_v1.0", split="train")
|
|
40
|
-
documents = [DocumentMeta.
|
|
18
|
+
documents = [DocumentMeta.from_literal(doc) for chunks in dataset["chunks"] for doc in chunks]
|
|
41
19
|
await document_search.ingest(documents)
|
|
42
20
|
|
|
43
21
|
|
|
@@ -45,7 +23,7 @@ def basic_document_search_factory() -> DocumentSearch:
|
|
|
45
23
|
"""
|
|
46
24
|
Factory for basic example document search instance.
|
|
47
25
|
"""
|
|
48
|
-
document_search = DocumentSearch(vector_store=InMemoryVectorStore(embedder=LiteLLMEmbedder()))
|
|
26
|
+
document_search: DocumentSearch = DocumentSearch(vector_store=InMemoryVectorStore(embedder=LiteLLMEmbedder()))
|
|
49
27
|
asyncio.run(_add_example_documents(document_search))
|
|
50
28
|
return document_search
|
|
51
29
|
|
|
@@ -55,3 +33,10 @@ def synthetic_rag_dataset() -> DocumentSearchDataLoader:
|
|
|
55
33
|
Factory for synthetic RAG dataset.
|
|
56
34
|
"""
|
|
57
35
|
return DocumentSearchDataLoader(source=HuggingFaceSource(path="deepsense-ai/synthetic-rag-dataset_v1.0"))
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def precision_recall_f1() -> MetricSet:
|
|
39
|
+
"""
|
|
40
|
+
Factory of precision recall f1 metric set for retrival evaluation.
|
|
41
|
+
"""
|
|
42
|
+
return MetricSet(DocumentSearchPrecisionRecallF1(matching_strategy=RougeChunkMatch()))
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import asyncio
|
|
1
2
|
from abc import ABC, abstractmethod
|
|
2
3
|
from types import ModuleType
|
|
3
4
|
from typing import ClassVar, Generic
|
|
@@ -19,7 +20,7 @@ class Metric(WithConstructionConfig, Generic[EvaluationResultT], ABC):
|
|
|
19
20
|
|
|
20
21
|
def __init__(self, weight: float = 1.0) -> None:
|
|
21
22
|
"""
|
|
22
|
-
|
|
23
|
+
Initialize the metric.
|
|
23
24
|
|
|
24
25
|
Args:
|
|
25
26
|
weight: Metric value weight in the final score, used during optimization.
|
|
@@ -28,7 +29,7 @@ class Metric(WithConstructionConfig, Generic[EvaluationResultT], ABC):
|
|
|
28
29
|
self.weight = weight
|
|
29
30
|
|
|
30
31
|
@abstractmethod
|
|
31
|
-
def compute(self, results: list[EvaluationResultT]) -> dict:
|
|
32
|
+
async def compute(self, results: list[EvaluationResultT]) -> dict:
|
|
32
33
|
"""
|
|
33
34
|
Compute the metric.
|
|
34
35
|
|
|
@@ -70,7 +71,7 @@ class MetricSet(WithConstructionConfig, Generic[EvaluationResultT]):
|
|
|
70
71
|
"""
|
|
71
72
|
return cls(*[Metric.subclass_from_config(metric_config) for metric_config in config.values()])
|
|
72
73
|
|
|
73
|
-
def compute(self, results: list[EvaluationResultT]) -> dict:
|
|
74
|
+
async def compute(self, results: list[EvaluationResultT]) -> dict:
|
|
74
75
|
"""
|
|
75
76
|
Compute the metrics.
|
|
76
77
|
|
|
@@ -80,6 +81,9 @@ class MetricSet(WithConstructionConfig, Generic[EvaluationResultT]):
|
|
|
80
81
|
Returns:
|
|
81
82
|
The computed metrics.
|
|
82
83
|
"""
|
|
84
|
+
metric_results = await asyncio.gather(*[metric.compute(results) for metric in self.metrics])
|
|
83
85
|
return {
|
|
84
|
-
name: metric.weight * value
|
|
86
|
+
name: metric.weight * value
|
|
87
|
+
for metric, result in zip(self.metrics, metric_results, strict=False)
|
|
88
|
+
for name, value in result.items()
|
|
85
89
|
}
|
{ragbits_evaluate-0.17.1 → ragbits_evaluate-0.18.0}/src/ragbits/evaluate/metrics/document_search.py
RENAMED
|
@@ -46,7 +46,7 @@ class DocumentSearchMetric(Metric[DocumentSearchResult], ABC):
|
|
|
46
46
|
matching_strategy = matching_strategy_cls(**config["matching_strategy"]["config"])
|
|
47
47
|
return cls(matching_strategy=matching_strategy, weight=config.get("weight", 1.0))
|
|
48
48
|
|
|
49
|
-
def compute(self, results: list[DocumentSearchResult]) -> dict:
|
|
49
|
+
async def compute(self, results: list[DocumentSearchResult]) -> dict:
|
|
50
50
|
"""
|
|
51
51
|
Compute the metric.
|
|
52
52
|
|
|
@@ -57,7 +57,18 @@ class DocumentSearchMetric(Metric[DocumentSearchResult], ABC):
|
|
|
57
57
|
The computed metric.
|
|
58
58
|
"""
|
|
59
59
|
return self.metric.aggregate(
|
|
60
|
-
[
|
|
60
|
+
[
|
|
61
|
+
self.metric(
|
|
62
|
+
[
|
|
63
|
+
element.text_representation
|
|
64
|
+
for element in result.predicted_elements
|
|
65
|
+
if element.text_representation
|
|
66
|
+
],
|
|
67
|
+
result.reference_passages,
|
|
68
|
+
)
|
|
69
|
+
for result in results
|
|
70
|
+
if result.reference_passages is not None
|
|
71
|
+
]
|
|
61
72
|
)
|
|
62
73
|
|
|
63
74
|
|
|
@@ -61,7 +61,7 @@ class Optimizer(WithConstructionConfig):
|
|
|
61
61
|
evaluator_config = EvaluatorConfig.model_validate(optimizer_config.evaluator)
|
|
62
62
|
|
|
63
63
|
dataloader: DataLoader = DataLoader.subclass_from_config(evaluator_config.evaluation.dataloader)
|
|
64
|
-
|
|
64
|
+
metricset: MetricSet = MetricSet.from_config(evaluator_config.evaluation.metrics)
|
|
65
65
|
|
|
66
66
|
pipeline_class = import_by_path(evaluator_config.evaluation.pipeline.type)
|
|
67
67
|
pipeline_config = dict(evaluator_config.evaluation.pipeline.config)
|
|
@@ -71,7 +71,7 @@ class Optimizer(WithConstructionConfig):
|
|
|
71
71
|
return optimizer.optimize(
|
|
72
72
|
pipeline_class=pipeline_class,
|
|
73
73
|
pipeline_config=pipeline_config,
|
|
74
|
-
|
|
74
|
+
metricset=metricset,
|
|
75
75
|
dataloader=dataloader,
|
|
76
76
|
callbacks=callbacks,
|
|
77
77
|
)
|
|
@@ -81,7 +81,7 @@ class Optimizer(WithConstructionConfig):
|
|
|
81
81
|
pipeline_class: type[EvaluationPipeline],
|
|
82
82
|
pipeline_config: dict,
|
|
83
83
|
dataloader: DataLoader,
|
|
84
|
-
|
|
84
|
+
metricset: MetricSet,
|
|
85
85
|
callbacks: list[Callable] | None = None,
|
|
86
86
|
) -> list[tuple[dict, float, dict[str, float]]]:
|
|
87
87
|
"""
|
|
@@ -91,7 +91,7 @@ class Optimizer(WithConstructionConfig):
|
|
|
91
91
|
pipeline_class: Pipeline to be optimized.
|
|
92
92
|
pipeline_config: Configuration defining the optimization process.
|
|
93
93
|
dataloader: Data loader.
|
|
94
|
-
|
|
94
|
+
metricset: Metrics to be optimized.
|
|
95
95
|
callbacks: Experiment callbacks.
|
|
96
96
|
|
|
97
97
|
Returns:
|
|
@@ -104,7 +104,7 @@ class Optimizer(WithConstructionConfig):
|
|
|
104
104
|
pipeline_class=pipeline_class,
|
|
105
105
|
pipeline_config=pipeline_config,
|
|
106
106
|
dataloader=dataloader,
|
|
107
|
-
|
|
107
|
+
metricset=metricset,
|
|
108
108
|
)
|
|
109
109
|
|
|
110
110
|
study = optuna.create_study(direction=self.direction)
|
|
@@ -131,7 +131,7 @@ class Optimizer(WithConstructionConfig):
|
|
|
131
131
|
pipeline_class: type[EvaluationPipeline],
|
|
132
132
|
pipeline_config: dict,
|
|
133
133
|
dataloader: DataLoader,
|
|
134
|
-
|
|
134
|
+
metricset: MetricSet,
|
|
135
135
|
) -> float:
|
|
136
136
|
"""
|
|
137
137
|
Run a single experiment.
|
|
@@ -153,11 +153,11 @@ class Optimizer(WithConstructionConfig):
|
|
|
153
153
|
evaluator.compute(
|
|
154
154
|
pipeline=pipeline,
|
|
155
155
|
dataloader=dataloader,
|
|
156
|
-
|
|
156
|
+
metricset=metricset,
|
|
157
157
|
)
|
|
158
158
|
)
|
|
159
|
-
score = sum(results
|
|
160
|
-
metrics_values = results
|
|
159
|
+
score = sum(results.metrics.values())
|
|
160
|
+
metrics_values = results.metrics
|
|
161
161
|
break
|
|
162
162
|
except Exception as exc:
|
|
163
163
|
message = (
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
from abc import ABC, abstractmethod
|
|
2
|
+
from collections.abc import Iterable
|
|
2
3
|
from dataclasses import dataclass
|
|
3
4
|
from types import ModuleType
|
|
4
5
|
from typing import ClassVar, Generic, TypeVar
|
|
@@ -51,7 +52,7 @@ class EvaluationPipeline(WithConstructionConfig, Generic[EvaluationTargetT, Eval
|
|
|
51
52
|
pass
|
|
52
53
|
|
|
53
54
|
@abstractmethod
|
|
54
|
-
async def __call__(self, data: EvaluationDataT) -> EvaluationResultT:
|
|
55
|
+
async def __call__(self, data: Iterable[EvaluationDataT]) -> Iterable[EvaluationResultT]:
|
|
55
56
|
"""
|
|
56
57
|
Run the evaluation pipeline.
|
|
57
58
|
|
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
from collections.abc import Iterable, Sequence
|
|
1
3
|
from dataclasses import dataclass
|
|
2
4
|
from uuid import uuid4
|
|
3
5
|
|
|
@@ -5,6 +7,7 @@ from typing_extensions import Self
|
|
|
5
7
|
|
|
6
8
|
from ragbits.core.sources.hf import HuggingFaceSource
|
|
7
9
|
from ragbits.document_search import DocumentSearch
|
|
10
|
+
from ragbits.document_search.documents.element import Element
|
|
8
11
|
from ragbits.evaluate.pipelines.base import EvaluationData, EvaluationPipeline, EvaluationResult
|
|
9
12
|
|
|
10
13
|
|
|
@@ -14,7 +17,9 @@ class DocumentSearchData(EvaluationData):
|
|
|
14
17
|
"""
|
|
15
18
|
|
|
16
19
|
question: str
|
|
17
|
-
|
|
20
|
+
reference_document_ids: list[str | int] | None = None
|
|
21
|
+
reference_passages: list[str] | None = None
|
|
22
|
+
reference_page_numbers: list[int] | None = None
|
|
18
23
|
|
|
19
24
|
|
|
20
25
|
@dataclass
|
|
@@ -24,8 +29,10 @@ class DocumentSearchResult(EvaluationResult):
|
|
|
24
29
|
"""
|
|
25
30
|
|
|
26
31
|
question: str
|
|
27
|
-
|
|
28
|
-
|
|
32
|
+
predicted_elements: Sequence[Element]
|
|
33
|
+
reference_document_ids: list[str | int] | None = None
|
|
34
|
+
reference_passages: list[str] | None = None
|
|
35
|
+
reference_page_numbers: list[int] | None = None
|
|
29
36
|
|
|
30
37
|
|
|
31
38
|
class DocumentSearchPipeline(EvaluationPipeline[DocumentSearch, DocumentSearchData, DocumentSearchResult]):
|
|
@@ -60,7 +67,7 @@ class DocumentSearchPipeline(EvaluationPipeline[DocumentSearch, DocumentSearchDa
|
|
|
60
67
|
# TODO: optimize this for cases with duplicated document search configs between runs
|
|
61
68
|
if config.get("source"):
|
|
62
69
|
config["vector_store"]["config"]["index_name"] = str(uuid4())
|
|
63
|
-
evaluation_target = DocumentSearch.from_config(config)
|
|
70
|
+
evaluation_target: DocumentSearch = DocumentSearch.from_config(config)
|
|
64
71
|
return cls(evaluation_target=evaluation_target, source=config.get("source"))
|
|
65
72
|
|
|
66
73
|
async def prepare(self) -> None:
|
|
@@ -76,21 +83,24 @@ class DocumentSearchPipeline(EvaluationPipeline[DocumentSearch, DocumentSearchDa
|
|
|
76
83
|
)
|
|
77
84
|
await self.evaluation_target.ingest(sources)
|
|
78
85
|
|
|
79
|
-
async def __call__(self, data: DocumentSearchData) -> DocumentSearchResult:
|
|
86
|
+
async def __call__(self, data: Iterable[DocumentSearchData]) -> Iterable[DocumentSearchResult]:
|
|
80
87
|
"""
|
|
81
88
|
Run the document search evaluation pipeline.
|
|
82
89
|
|
|
83
90
|
Args:
|
|
84
|
-
data: The evaluation data.
|
|
91
|
+
data: The evaluation data batch.
|
|
85
92
|
|
|
86
93
|
Returns:
|
|
87
|
-
The evaluation result.
|
|
94
|
+
The evaluation result batch.
|
|
88
95
|
"""
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
96
|
+
results = await asyncio.gather(*[self.evaluation_target.search(row.question) for row in data])
|
|
97
|
+
return [
|
|
98
|
+
DocumentSearchResult(
|
|
99
|
+
question=row.question,
|
|
100
|
+
predicted_elements=elements,
|
|
101
|
+
reference_document_ids=row.reference_document_ids,
|
|
102
|
+
reference_passages=row.reference_passages,
|
|
103
|
+
reference_page_numbers=row.reference_page_numbers,
|
|
104
|
+
)
|
|
105
|
+
for row, elements in zip(data, results, strict=False)
|
|
106
|
+
]
|