qpytorch 0.1__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qpytorch might be problematic. Click here for more details.

Files changed (289) hide show
  1. {qpytorch-0.1 → qpytorch-0.1.1}/.conda/meta.yaml +2 -1
  2. {qpytorch-0.1 → qpytorch-0.1.1}/CONTRIBUTING.md +8 -4
  3. {qpytorch-0.1 → qpytorch-0.1.1}/PKG-INFO +28 -27
  4. {qpytorch-0.1 → qpytorch-0.1.1}/README.md +27 -26
  5. qpytorch-0.1.1/docs/_config.yml +6 -0
  6. qpytorch-0.1.1/docs/index.md +59 -0
  7. qpytorch-0.1/venv_install.yaml → qpytorch-0.1.1/env_install.yaml +1 -2
  8. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/version.py +2 -2
  9. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch.egg-info/PKG-INFO +28 -27
  10. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch.egg-info/SOURCES.txt +3 -1
  11. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch.egg-info/requires.txt +1 -0
  12. {qpytorch-0.1 → qpytorch-0.1.1}/setup.py +2 -1
  13. {qpytorch-0.1 → qpytorch-0.1.1}/.github/workflows/deploy.yml +0 -0
  14. {qpytorch-0.1 → qpytorch-0.1.1}/.github/workflows/run_test_suite.yml +0 -0
  15. {qpytorch-0.1 → qpytorch-0.1.1}/.gitignore +0 -0
  16. {qpytorch-0.1 → qpytorch-0.1.1}/.readthedocs.yaml +0 -0
  17. {qpytorch-0.1 → qpytorch-0.1.1}/LICENSE +0 -0
  18. {qpytorch-0.1 → qpytorch-0.1.1}/docs/Makefile +0 -0
  19. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/.gitignore +0 -0
  20. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/_static/custom.css +0 -0
  21. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/_static/custom.js +0 -0
  22. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/beta_features.rst +0 -0
  23. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/conf.py +0 -0
  24. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/constraints.rst +0 -0
  25. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/distributions.rst +0 -0
  26. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/functions.rst +0 -0
  27. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/index.rst +0 -0
  28. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/keops_kernels.rst +0 -0
  29. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/kernels.rst +0 -0
  30. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/likelihoods.rst +0 -0
  31. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/linear_operator_objects.inv +0 -0
  32. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/marginal_log_likelihoods.rst +0 -0
  33. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/means.rst +0 -0
  34. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/metrics.rst +0 -0
  35. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/models.rst +0 -0
  36. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/module.rst +0 -0
  37. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/optim.rst +0 -0
  38. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/priors.rst +0 -0
  39. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/settings.rst +0 -0
  40. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/utils.rst +0 -0
  41. {qpytorch-0.1 → qpytorch-0.1.1}/docs/source/variational.rst +0 -0
  42. {qpytorch-0.1 → qpytorch-0.1.1}/examples/.gitignore +0 -0
  43. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/Hyperparameters.ipynb +0 -0
  44. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/Implementing_a_custom_Kernel.ipynb +0 -0
  45. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/Introduction_to_QExponential_Process.ipynb +0 -0
  46. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/Metrics.ipynb +0 -0
  47. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/README.rst +0 -0
  48. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/Saving_and_Loading_Models.ipynb +0 -0
  49. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/index.rst +0 -0
  50. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/kernels_with_additive_or_product_structure.ipynb +0 -0
  51. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/satallite_truth_obs.png +0 -0
  52. {qpytorch-0.1 → qpytorch-0.1.1}/examples/00_Basic_Usage/statellite_reconstructions.png +0 -0
  53. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/QEP_Regression_DistributionalKernel.ipynb +0 -0
  54. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/QEP_Regression_Fully_Bayesian.ipynb +0 -0
  55. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/QEP_Regression_on_Classification_Labels.ipynb +0 -0
  56. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/README.rst +0 -0
  57. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/Simple_QEP_Regression.ipynb +0 -0
  58. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/Spectral_Delta_QEP_Regression.ipynb +0 -0
  59. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/Spectral_Mixture_QEP_Regression.ipynb +0 -0
  60. {qpytorch-0.1 → qpytorch-0.1.1}/examples/01_Exact_QEPs/index.rst +0 -0
  61. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/Exact_QEP_Posterior_Sampling_with_CIQ.ipynb +0 -0
  62. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/Grid_QEP_Regression.ipynb +0 -0
  63. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/KISSQEP_Regression.ipynb +0 -0
  64. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/KeOps_QEP_Regression.ipynb +0 -0
  65. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/README.rst +0 -0
  66. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/SQEPR_Regression_CUDA.ipynb +0 -0
  67. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/Scalable_Kernel_Interpolation_for_Products_CUDA.ipynb +0 -0
  68. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/Simple_MultiGPU_QEP_Regression.ipynb +0 -0
  69. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/Simple_QEP_Regression_CUDA.ipynb +0 -0
  70. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/Simple_QEP_Regression_With_LOVE_Fast_Variances_and_Sampling.ipynb +0 -0
  71. {qpytorch-0.1 → qpytorch-0.1.1}/examples/02_Scalable_Exact_QEPs/index.rst +0 -0
  72. {qpytorch-0.1 → qpytorch-0.1.1}/examples/03_Multitask_Exact_QEPs/Batch_Uncorrelated_Multioutput_QEP.ipynb +0 -0
  73. {qpytorch-0.1 → qpytorch-0.1.1}/examples/03_Multitask_Exact_QEPs/Hadamard_Multitask_QEP_Regression.ipynb +0 -0
  74. {qpytorch-0.1 → qpytorch-0.1.1}/examples/03_Multitask_Exact_QEPs/ModelList_QEP_Regression.ipynb +0 -0
  75. {qpytorch-0.1 → qpytorch-0.1.1}/examples/03_Multitask_Exact_QEPs/Multitask_QEP_Regression.ipynb +0 -0
  76. {qpytorch-0.1 → qpytorch-0.1.1}/examples/03_Multitask_Exact_QEPs/README.rst +0 -0
  77. {qpytorch-0.1 → qpytorch-0.1.1}/examples/03_Multitask_Exact_QEPs/index.rst +0 -0
  78. {qpytorch-0.1 → qpytorch-0.1.1}/examples/045_QEPLVM/QEP_LVM_for_Regularizing_Latent_Representations.ipynb +0 -0
  79. {qpytorch-0.1 → qpytorch-0.1.1}/examples/045_QEPLVM/QExponential_Process_Latent_Variable_Models_with_Stochastic_Variational_Inference.ipynb +0 -0
  80. {qpytorch-0.1 → qpytorch-0.1.1}/examples/045_QEPLVM/README.rst +0 -0
  81. {qpytorch-0.1 → qpytorch-0.1.1}/examples/045_QEPLVM/index.rst +0 -0
  82. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/Approximate_QEP_Objective_Functions.ipynb +0 -0
  83. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/Modifying_the_variational_strategy_and_distribution.ipynb +0 -0
  84. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/Natural_Gradient_Descent.ipynb +0 -0
  85. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/Non_Gaussian_Likelihoods.ipynb +0 -0
  86. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/PolyaGamma_Binary_Classification.ipynb +0 -0
  87. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/QEP_Regression_with_Uncertain_Inputs.ipynb +0 -0
  88. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/README.rst +0 -0
  89. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/SVQEP_CIQ.ipynb +0 -0
  90. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/SVQEP_Multitask_QEP_Regression.ipynb +0 -0
  91. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/SVQEP_Regression_CUDA.ipynb +0 -0
  92. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/VNNQEP.ipynb +0 -0
  93. {qpytorch-0.1 → qpytorch-0.1.1}/examples/04_Variational_and_Approximate_QEPs/index.rst +0 -0
  94. {qpytorch-0.1 → qpytorch-0.1.1}/examples/05_Deep_QExponential_Processes/DQEP_Multitask_Regression.ipynb +0 -0
  95. {qpytorch-0.1 → qpytorch-0.1.1}/examples/05_Deep_QExponential_Processes/Deep_QExponential_Processes.ipynb +0 -0
  96. {qpytorch-0.1 → qpytorch-0.1.1}/examples/05_Deep_QExponential_Processes/Deep_Sigma_Point_Processes.ipynb +0 -0
  97. {qpytorch-0.1 → qpytorch-0.1.1}/examples/05_Deep_QExponential_Processes/README.rst +0 -0
  98. {qpytorch-0.1 → qpytorch-0.1.1}/examples/05_Deep_QExponential_Processes/index.rst +0 -0
  99. {qpytorch-0.1 → qpytorch-0.1.1}/examples/06_PyTorch_NN_Integration_DKL/.gitignore +0 -0
  100. {qpytorch-0.1 → qpytorch-0.1.1}/examples/06_PyTorch_NN_Integration_DKL/Deep_Kernel_Learning_DenseNet_CIFAR_Tutorial.ipynb +0 -0
  101. {qpytorch-0.1 → qpytorch-0.1.1}/examples/06_PyTorch_NN_Integration_DKL/KISSQEP_Deep_Kernel_Regression_CUDA.ipynb +0 -0
  102. {qpytorch-0.1 → qpytorch-0.1.1}/examples/06_PyTorch_NN_Integration_DKL/README.rst +0 -0
  103. {qpytorch-0.1 → qpytorch-0.1.1}/examples/06_PyTorch_NN_Integration_DKL/densenet.py +0 -0
  104. {qpytorch-0.1 → qpytorch-0.1.1}/examples/06_PyTorch_NN_Integration_DKL/index.rst +0 -0
  105. {qpytorch-0.1 → qpytorch-0.1.1}/examples/07_QEP_Modeling_with_Derivatives/README.rst +0 -0
  106. {qpytorch-0.1 → qpytorch-0.1.1}/examples/07_QEP_Modeling_with_Derivatives/SVQEP_Regression_Derivative_Information_2d.ipynb +0 -0
  107. {qpytorch-0.1 → qpytorch-0.1.1}/examples/07_QEP_Modeling_with_Derivatives/Simple_QEP_Regression_Derivative_Information_1d.ipynb +0 -0
  108. {qpytorch-0.1 → qpytorch-0.1.1}/examples/07_QEP_Modeling_with_Derivatives/Simple_QEP_Regression_Derivative_Information_2d.ipynb +0 -0
  109. {qpytorch-0.1 → qpytorch-0.1.1}/examples/07_QEP_Modeling_with_Derivatives/index.rst +0 -0
  110. {qpytorch-0.1 → qpytorch-0.1.1}/examples/LBFGS.py +0 -0
  111. {qpytorch-0.1 → qpytorch-0.1.1}/examples/README.rst +0 -0
  112. {qpytorch-0.1 → qpytorch-0.1.1}/examples/index.rst +0 -0
  113. {qpytorch-0.1 → qpytorch-0.1.1}/pyproject.toml +0 -0
  114. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/__init__.py +0 -0
  115. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/constraints/__init__.py +0 -0
  116. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/distributions/__init__.py +0 -0
  117. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/distributions/delta.py +0 -0
  118. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/distributions/multitask_multivariate_qexponential.py +0 -0
  119. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/distributions/multivariate_qexponential.py +0 -0
  120. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/distributions/power.py +0 -0
  121. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/distributions/qexponential.py +0 -0
  122. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/functions/__init__.py +0 -0
  123. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/__init__.py +0 -0
  124. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/grid_interpolation_kernel.py +0 -0
  125. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/inducing_point_kernel.py +0 -0
  126. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/kernel.py +0 -0
  127. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/matern32_kernel_grad.py +0 -0
  128. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/matern52_kernel_grad.py +0 -0
  129. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/matern52_kernel_gradgrad.py +0 -0
  130. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/polynomial_kernel_grad.py +0 -0
  131. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/qexponential_symmetrized_kl_kernel.py +0 -0
  132. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/rbf_kernel_grad.py +0 -0
  133. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/rbf_kernel_gradgrad.py +0 -0
  134. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/kernels/rff_kernel.py +0 -0
  135. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/lazy/__init__.py +0 -0
  136. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/__init__.py +0 -0
  137. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/bernoulli_likelihood.py +0 -0
  138. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/beta_likelihood.py +0 -0
  139. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/gaussian_likelihood.py +0 -0
  140. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/laplace_likelihood.py +0 -0
  141. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/likelihood.py +0 -0
  142. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/likelihood_list.py +0 -0
  143. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/multitask_gaussian_likelihood.py +0 -0
  144. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/multitask_qexponential_likelihood.py +0 -0
  145. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/noise_models.py +0 -0
  146. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/qexponential_likelihood.py +0 -0
  147. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/softmax_likelihood.py +0 -0
  148. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/likelihoods/student_t_likelihood.py +0 -0
  149. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/means/__init__.py +0 -0
  150. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/metrics/__init__.py +0 -0
  151. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/__init__.py +0 -0
  152. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/_approximate_mll.py +0 -0
  153. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/deep_approximate_mll.py +0 -0
  154. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/deep_predictive_log_likelihood.py +0 -0
  155. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/exact_marginal_log_likelihood.py +0 -0
  156. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/gamma_robust_variational_elbo.py +0 -0
  157. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/inducing_point_kernel_added_loss_term.py +0 -0
  158. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/kl_qexponential_added_loss_term.py +0 -0
  159. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/leave_one_out_pseudo_likelihood.py +0 -0
  160. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/marginal_log_likelihood.py +0 -0
  161. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/predictive_log_likelihood.py +0 -0
  162. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/sum_marginal_log_likelihood.py +0 -0
  163. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/mlls/variational_elbo.py +0 -0
  164. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/__init__.py +0 -0
  165. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/approximate_qep.py +0 -0
  166. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/deep_qeps/__init__.py +0 -0
  167. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/deep_qeps/deep_qep.py +0 -0
  168. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/deep_qeps/dspp.py +0 -0
  169. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/exact_prediction_strategies.py +0 -0
  170. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/exact_qep.py +0 -0
  171. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/model_list.py +0 -0
  172. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/pyro/__init__.py +0 -0
  173. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/pyro/_pyro_mixin.py +0 -0
  174. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/pyro/distributions/__init__.py +0 -0
  175. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/pyro/pyro_qep.py +0 -0
  176. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/qep.py +0 -0
  177. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/qeplvm/__init__.py +0 -0
  178. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/qeplvm/bayesian_qeplvm.py +0 -0
  179. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/models/qeplvm/latent_variable.py +0 -0
  180. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/module.py +0 -0
  181. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/optim/__init__.py +0 -0
  182. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/priors/__init__.py +0 -0
  183. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/priors/qep_priors.py +0 -0
  184. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/test/__init__.py +0 -0
  185. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/test/base_likelihood_test_case.py +0 -0
  186. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/test/model_test_case.py +0 -0
  187. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/test/variational_test_case.py +0 -0
  188. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/utils/__init__.py +0 -0
  189. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/utils/warnings.py +0 -0
  190. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/__init__.py +0 -0
  191. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/_variational_distribution.py +0 -0
  192. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/_variational_strategy.py +0 -0
  193. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/additive_grid_interpolation_variational_strategy.py +0 -0
  194. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/batch_decoupled_variational_strategy.py +0 -0
  195. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/cholesky_variational_distribution.py +0 -0
  196. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/ciq_variational_strategy.py +0 -0
  197. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/delta_variational_distribution.py +0 -0
  198. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/grid_interpolation_variational_strategy.py +0 -0
  199. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/independent_multitask_variational_strategy.py +0 -0
  200. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/lmc_variational_strategy.py +0 -0
  201. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/mean_field_variational_distribution.py +0 -0
  202. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/multitask_variational_strategy.py +0 -0
  203. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/natural_variational_distribution.py +0 -0
  204. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/nearest_neighbor_variational_strategy.py +0 -0
  205. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/orthogonally_decoupled_variational_strategy.py +0 -0
  206. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/tril_natural_variational_distribution.py +0 -0
  207. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/uncorrelated_multitask_variational_strategy.py +0 -0
  208. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/unwhitened_variational_strategy.py +0 -0
  209. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch/variational/variational_strategy.py +0 -0
  210. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch.egg-info/dependency_links.txt +0 -0
  211. {qpytorch-0.1 → qpytorch-0.1.1}/qpytorch.egg-info/top_level.txt +0 -0
  212. {qpytorch-0.1 → qpytorch-0.1.1}/setup.cfg +0 -0
  213. {qpytorch-0.1 → qpytorch-0.1.1}/test/__init__.py +0 -0
  214. {qpytorch-0.1 → qpytorch-0.1.1}/test/distributions/__init__.py +0 -0
  215. {qpytorch-0.1 → qpytorch-0.1.1}/test/distributions/test_multitask_multivariate_qexponential.py +0 -0
  216. {qpytorch-0.1 → qpytorch-0.1.1}/test/distributions/test_multivariate_qexponential.py +0 -0
  217. {qpytorch-0.1 → qpytorch-0.1.1}/test/distributions/test_qexponential.py +0 -0
  218. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/__init__.py +0 -0
  219. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/old_variational_strategy_model.pth +0 -0
  220. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_batch_decoupled_ppqepr_regression.py +0 -0
  221. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_batch_multitask_qep_regression.py +0 -0
  222. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_batch_qep_regression.py +0 -0
  223. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_batch_svqep_qep_regression.py +0 -0
  224. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_decoupled_svqep_regression.py +0 -0
  225. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_derivative_qep_fantasy.py +0 -0
  226. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_fixed_noise_fanatasy_updates.py +0 -0
  227. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_grid_qep_regression.py +0 -0
  228. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_hadamard_multitask_qep_regression.py +0 -0
  229. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_keops_qep_regression.py +0 -0
  230. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_additive_classification.py +0 -0
  231. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_additive_regression.py +0 -0
  232. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_dkl_regression.py +0 -0
  233. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_kronecker_product_classification.py +0 -0
  234. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_kronecker_product_regression.py +0 -0
  235. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_multiplicative_regression.py +0 -0
  236. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_qep_classification.py +0 -0
  237. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_qep_regression.py +0 -0
  238. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_variational_regression.py +0 -0
  239. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kissqep_white_noise_regression.py +0 -0
  240. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kronecker_multitask_qep_regression.py +0 -0
  241. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kronecker_multitask_ski_qep_regression.py +0 -0
  242. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_kronecker_multitask_sqepr_regression.py +0 -0
  243. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_lcm_kernel_regression.py +0 -0
  244. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_lmc_svqep_regression.py +0 -0
  245. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_missing_data.py +0 -0
  246. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_model_list_qep_regression.py +0 -0
  247. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_rff_qep_regression.py +0 -0
  248. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_simple_qep_classification.py +0 -0
  249. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_simple_qep_regression.py +0 -0
  250. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_spectral_mixture_qep_regression.py +0 -0
  251. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_sqepr_regression.py +0 -0
  252. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_svqep_qep_classification.py +0 -0
  253. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_svqep_qep_regression.py +0 -0
  254. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_uncorrelated_multitask_qep_regression.py +0 -0
  255. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_unwhitened_svqep_regression.py +0 -0
  256. {qpytorch-0.1 → qpytorch-0.1.1}/test/examples/test_white_noise_regression.py +0 -0
  257. {qpytorch-0.1 → qpytorch-0.1.1}/test/kernels/__init__.py +0 -0
  258. {qpytorch-0.1 → qpytorch-0.1.1}/test/kernels/test_matern52_kernel_grad.py +0 -0
  259. {qpytorch-0.1 → qpytorch-0.1.1}/test/kernels/test_polynomial_kernel_grad.py +0 -0
  260. {qpytorch-0.1 → qpytorch-0.1.1}/test/kernels/test_rbf_kernel_grad.py +0 -0
  261. {qpytorch-0.1 → qpytorch-0.1.1}/test/kernels/test_rbf_kernel_gradgrad.py +0 -0
  262. {qpytorch-0.1 → qpytorch-0.1.1}/test/likelihoods/__init__.py +0 -0
  263. {qpytorch-0.1 → qpytorch-0.1.1}/test/likelihoods/test_general_multitask_qexponential_likelihood.py +0 -0
  264. {qpytorch-0.1 → qpytorch-0.1.1}/test/likelihoods/test_multitask_qexponential_likelihood.py +0 -0
  265. {qpytorch-0.1 → qpytorch-0.1.1}/test/likelihoods/test_qexponential_likelihood.py +0 -0
  266. {qpytorch-0.1 → qpytorch-0.1.1}/test/mlls/__init__.py +0 -0
  267. {qpytorch-0.1 → qpytorch-0.1.1}/test/mlls/test_exact_marginal_log_likelihood.py +0 -0
  268. {qpytorch-0.1 → qpytorch-0.1.1}/test/mlls/test_inducing_point_kernel_added_loss_term.py +0 -0
  269. {qpytorch-0.1 → qpytorch-0.1.1}/test/mlls/test_leave_one_out_pseudo_likelihood.py +0 -0
  270. {qpytorch-0.1 → qpytorch-0.1.1}/test/models/__init__.py +0 -0
  271. {qpytorch-0.1 → qpytorch-0.1.1}/test/models/test_exact_qep.py +0 -0
  272. {qpytorch-0.1 → qpytorch-0.1.1}/test/models/test_model_list.py +0 -0
  273. {qpytorch-0.1 → qpytorch-0.1.1}/test/models/test_variational_qep.py +0 -0
  274. {qpytorch-0.1 → qpytorch-0.1.1}/test/priors/__init__.py +0 -0
  275. {qpytorch-0.1 → qpytorch-0.1.1}/test/priors/test_multivariate_qexponential_prior.py +0 -0
  276. {qpytorch-0.1 → qpytorch-0.1.1}/test/priors/test_qexponential_prior.py +0 -0
  277. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/__init__.py +0 -0
  278. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_batch_decoupled_variational_strategy.py +0 -0
  279. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_ciq_variational_strategy.py +0 -0
  280. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_grid_interpolation_variational_strategy.py +0 -0
  281. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_independent_multitask_variational_strategy.py +0 -0
  282. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_indunc_multitask_variational_strategy.py +0 -0
  283. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_lmc_variational_strategy.py +0 -0
  284. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_natural_variational_distribution.py +0 -0
  285. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_nearest_neighbor_variational_strategy.py +0 -0
  286. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_orthogonally_decoupled_variational_strategy.py +0 -0
  287. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_uncorrelated_multitask_variational_strategy.py +0 -0
  288. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_unwhitened_variational_strategy.py +0 -0
  289. {qpytorch-0.1 → qpytorch-0.1.1}/test/variational/test_variational_strategy.py +0 -0
@@ -24,9 +24,10 @@ requirements:
24
24
  - jaxtyping
25
25
  - linear_operator>=0.6
26
26
  - mpmath>=0.19,<=1.3
27
- - pytorch>=2.2
27
+ - pytorch>=2.0
28
28
  - scikit-learn
29
29
  - gpytorch>=1.13
30
+ - numpy<2
30
31
 
31
32
  test:
32
33
  imports:
@@ -6,9 +6,10 @@ Thanks for contributing!
6
6
 
7
7
  To get the development installation with all the necessary dependencies for
8
8
  linting, testing, and building the documentation, run the following:
9
+
9
10
  ```bash
10
11
  git clone https://github.com/lanzithinking/qepytorch.git
11
- cd qpytorch
12
+ cd qepytorch
12
13
  pip install -e .[dev,docs,examples,keops,pyro,test] # keops and pyro are optional
13
14
  pre-commit install
14
15
  ```
@@ -25,6 +26,7 @@ The [development installation instructions](#development-installation) should in
25
26
 
26
27
  `flake8` and `pre-commit` are both run every time you make a local commit.
27
28
  To run both commands independent of making a commit:
29
+
28
30
  ```bash
29
31
  SKIP=flake8 pre-commit run --files test/**/*.py qpytorch/**/*.py
30
32
  flake8
@@ -36,7 +38,7 @@ We use [standard sphinx docstrings](https://sphinx-rtd-tutorial.readthedocs.io/e
36
38
 
37
39
  ### Type Hints
38
40
 
39
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch aims to be fully typed using Python 3.8+
41
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch aims to be fully typed using Python 3.10+
40
42
  [type hints](https://www.python.org/dev/peps/pep-0484/).
41
43
 
42
44
  We recognize that we have a long way to go towards fully typing the library,
@@ -54,7 +56,7 @@ python -m unittest
54
56
  ```
55
57
 
56
58
  - To run tests within a specific directory, run (e.g.) `python -m unittest discover -s test/kernels`.
57
- - To run a specific unit test, run (e.g.) `python -m unittest test.operators.test_rbf_kernel.TestRBFKernel.test_active_dims_range`.
59
+ - To run a specific unit test, run (e.g.) `python -m unittest test.distributions.test_qexponential.TestQExponential.test_batch_log_prob`.
58
60
 
59
61
 
60
62
  ### Documentation
@@ -121,8 +123,10 @@ We accept the following types of issues:
121
123
  - Opportuntities to refactor code
122
124
  - Performance issues (speed, memory, etc.)
123
125
 
126
+ <!--
124
127
  Please refrain from using the issue tracker for questions or debugging personal code.
125
- Instead please use the [Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch discussions forum](https://github.com/lanzithinking/qepytorch/discussions).
128
+ Instead please use the [QePyTorch discussions forum](https://github.com/lanzithinking/qepytorch/discussions).
129
+ -->
126
130
 
127
131
  ## License
128
132
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qpytorch
3
- Version: 0.1
3
+ Version: 0.1.1
4
4
  Summary: An implementation of Q-Exponential Processes in Pytorch based on GPyTorch
5
5
  Home-page: https://lanzithinking.github.io/qepytorch/
6
6
  Author: Shiwei Lan
@@ -28,60 +28,61 @@ License-File: LICENSE
28
28
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
29
29
 
30
30
  [![Python Version](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
31
- [![Conda](https://img.shields.io/conda/v/conda-forge/qpytorch.svg)](https://anaconda.org/conda-forge/qpytorch)
31
+ [![Conda](https://img.shields.io/conda/v/qpytorch.svg)](https://anaconda.org/qpytorch)
32
32
  [![PyPI](https://img.shields.io/pypi/v/qpytorch.svg)](https://pypi.org/project/qpytorch)
33
33
 
34
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Q-exponential process library implemented using PyTorch built on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed for creating scalable, flexible, and modular Q-exponential process models with ease.
34
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Python package for Q-exponential process ([QEP](https://papers.nips.cc/paper_files/paper/2023/file/e6bfdd58f1326ff821a1b92743963bdf-Paper-Conference.pdf)) implemented using PyTorch and built up on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed to facilitate creating scalable, flexible, and modular QPE models.
35
35
 
36
- Internally, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch differs from many existing approaches to QEP inference by performing most inference operations using numerical linear algebra techniques like preconditioned conjugate gradients.
37
- Implementing a scalable QEP method is as simple as providing a matrix multiplication routine with the kernel matrix and its derivative via our [LinearOperator](https://github.com/cornellius-gp/linear_operator) interface,
38
- or by composing many of our already existing `LinearOperators`.
39
- This allows not only for easy implementation of popular scalable QEP techniques,
40
- but often also for significantly improved utilization of GPU computing compared to solvers based on the Cholesky decomposition.
36
+ Different from GPyTorch for Gaussian process (GP) models, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch focuses on QEP, which generalizes GP by allowing flexible regularization on function spaces through a parameter $q>0$ and embraces GP as a special case with $q=2$. QEP is proven to be superior than GP in modeling inhomogeneous objects with abrupt changes or sharp contrast for $q<2$ [[Li et al (2023)]](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html).
37
+ Inherited from GPyTorch, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch has an efficient and scalable implementation by taking advantage of numerical linear algebra library [LinearOperator](https://github.com/cornellius-gp/linear_operator) and improved GPU utilization.
41
38
 
42
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch provides (1) significant GPU acceleration (through MVM based inference);
43
- (2) state-of-the-art implementations of the latest algorithmic advances for scalability and flexibility ([SKI/KISS-GP](http://proceedings.mlr.press/v37/wilson15.pdf), [stochastic Lanczos expansions](https://arxiv.org/abs/1711.03481), [LOVE](https://arxiv.org/pdf/1803.06058.pdf), [SKIP](https://arxiv.org/pdf/1802.08903.pdf), [stochastic variational](https://arxiv.org/pdf/1611.00336.pdf) [deep kernel learning](http://proceedings.mlr.press/v51/wilson16.pdf), ...);
44
- (3) easy integration with deep learning frameworks.
45
39
 
40
+ <!--
41
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch features ...
42
+ -->
46
43
 
47
- ## Examples, Tutorials, and Documentation
48
44
 
49
- See our [**documentation, examples, tutorials**](https://qepytorch.readthedocs.io/en/stable/) on how to construct all sorts of models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
45
+ ## Tutorials, Examples, and Documentation
46
+
47
+ See [**documentation**](https://qepytorch.readthedocs.io/en/stable/) on how to construct various QEP models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
50
48
 
51
49
  ## Installation
52
50
 
53
51
  **Requirements**:
54
52
  - Python >= 3.10
55
- - PyTorch >= 2.2
53
+ - PyTorch >= 2.0
56
54
  - GPyTorch >= 1.13
57
55
 
56
+ #### Stable Version
57
+
58
58
  Install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch using pip or conda:
59
59
 
60
60
  ```bash
61
61
  pip install qpytorch
62
- conda install qpytorch -c qpytorch
62
+ conda install qpytorch
63
63
  ```
64
64
 
65
65
  (To use packages globally but install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch as a user-only package, use `pip install --user` above.)
66
66
 
67
- #### Latest (Unstable) Version
67
+ #### Latest Version
68
68
 
69
- To upgrade to the latest (unstable) version, run
69
+ To upgrade to the latest version, run
70
70
 
71
71
  ```bash
72
- pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
73
- pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
74
72
  pip install --upgrade git+https://github.com/lanzithinking/qepytorch.git
75
73
  ```
76
74
 
77
- #### Development version
75
+ #### from source (for development)
78
76
 
79
77
  If you are contributing a pull request, it is best to perform a manual installation:
80
78
 
81
79
  ```sh
82
- git clone https://github.com/lanzithinking/qepytorch.git qpytorch
83
- cd qpytorch
80
+ git clone https://github.com/lanzithinking/qepytorch.git
81
+ cd qepytorch
82
+ # either
84
83
  pip install -e .[dev,docs,examples,keops,pyro,test] # keops and pyro are optional
84
+ # or
85
+ conda env create -f env_install.yaml # installed in the environment qpytorch
85
86
  ```
86
87
 
87
88
  <!--
@@ -102,7 +103,7 @@ To discuss any issues related to this AUR package refer to the comments section
102
103
 
103
104
  ## Citing Us
104
105
 
105
- If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following papers:
106
+ If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following paper:
106
107
  > [Li, Shuyi, Michael O'Connor, and Shiwei Lan. "Bayesian Learning via Q-Exponential Process." In Advances in Neural Information Processing Systems (2023).](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html)
107
108
  ```
108
109
  @inproceedings{li2023QEP,
@@ -124,18 +125,18 @@ for information on submitting issues and pull requests.
124
125
  Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is primarily maintained by:
125
126
  - [Shiwei Lan](https://math.la.asu.edu/~slan) (Arizona State University)
126
127
 
127
- We would like to thank our other contributors including (but not limited to)
128
- Shuyi Li,
128
+ Thanks to the following contributors including (but not limited to)
129
+ - Shuyi Li,
129
130
  Guangting Yu,
130
131
  Zhi Chang,
131
132
  Chukwudi Paul Obite,
132
133
  Keyan Wu,
133
134
  and many more!
134
135
 
135
-
136
+ <!--
136
137
  ## Acknowledgements
137
138
  Development of Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is supported by.
138
-
139
+ -->
139
140
 
140
141
  ## License
141
142
 
@@ -6,60 +6,61 @@
6
6
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
7
7
 
8
8
  [![Python Version](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
9
- [![Conda](https://img.shields.io/conda/v/conda-forge/qpytorch.svg)](https://anaconda.org/conda-forge/qpytorch)
9
+ [![Conda](https://img.shields.io/conda/v/qpytorch.svg)](https://anaconda.org/qpytorch)
10
10
  [![PyPI](https://img.shields.io/pypi/v/qpytorch.svg)](https://pypi.org/project/qpytorch)
11
11
 
12
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Q-exponential process library implemented using PyTorch built on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed for creating scalable, flexible, and modular Q-exponential process models with ease.
12
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Python package for Q-exponential process ([QEP](https://papers.nips.cc/paper_files/paper/2023/file/e6bfdd58f1326ff821a1b92743963bdf-Paper-Conference.pdf)) implemented using PyTorch and built up on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed to facilitate creating scalable, flexible, and modular QPE models.
13
13
 
14
- Internally, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch differs from many existing approaches to QEP inference by performing most inference operations using numerical linear algebra techniques like preconditioned conjugate gradients.
15
- Implementing a scalable QEP method is as simple as providing a matrix multiplication routine with the kernel matrix and its derivative via our [LinearOperator](https://github.com/cornellius-gp/linear_operator) interface,
16
- or by composing many of our already existing `LinearOperators`.
17
- This allows not only for easy implementation of popular scalable QEP techniques,
18
- but often also for significantly improved utilization of GPU computing compared to solvers based on the Cholesky decomposition.
14
+ Different from GPyTorch for Gaussian process (GP) models, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch focuses on QEP, which generalizes GP by allowing flexible regularization on function spaces through a parameter $q>0$ and embraces GP as a special case with $q=2$. QEP is proven to be superior than GP in modeling inhomogeneous objects with abrupt changes or sharp contrast for $q<2$ [[Li et al (2023)]](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html).
15
+ Inherited from GPyTorch, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch has an efficient and scalable implementation by taking advantage of numerical linear algebra library [LinearOperator](https://github.com/cornellius-gp/linear_operator) and improved GPU utilization.
19
16
 
20
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch provides (1) significant GPU acceleration (through MVM based inference);
21
- (2) state-of-the-art implementations of the latest algorithmic advances for scalability and flexibility ([SKI/KISS-GP](http://proceedings.mlr.press/v37/wilson15.pdf), [stochastic Lanczos expansions](https://arxiv.org/abs/1711.03481), [LOVE](https://arxiv.org/pdf/1803.06058.pdf), [SKIP](https://arxiv.org/pdf/1802.08903.pdf), [stochastic variational](https://arxiv.org/pdf/1611.00336.pdf) [deep kernel learning](http://proceedings.mlr.press/v51/wilson16.pdf), ...);
22
- (3) easy integration with deep learning frameworks.
23
17
 
18
+ <!--
19
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch features ...
20
+ -->
24
21
 
25
- ## Examples, Tutorials, and Documentation
26
22
 
27
- See our [**documentation, examples, tutorials**](https://qepytorch.readthedocs.io/en/stable/) on how to construct all sorts of models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
23
+ ## Tutorials, Examples, and Documentation
24
+
25
+ See [**documentation**](https://qepytorch.readthedocs.io/en/stable/) on how to construct various QEP models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
28
26
 
29
27
  ## Installation
30
28
 
31
29
  **Requirements**:
32
30
  - Python >= 3.10
33
- - PyTorch >= 2.2
31
+ - PyTorch >= 2.0
34
32
  - GPyTorch >= 1.13
35
33
 
34
+ #### Stable Version
35
+
36
36
  Install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch using pip or conda:
37
37
 
38
38
  ```bash
39
39
  pip install qpytorch
40
- conda install qpytorch -c qpytorch
40
+ conda install qpytorch
41
41
  ```
42
42
 
43
43
  (To use packages globally but install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch as a user-only package, use `pip install --user` above.)
44
44
 
45
- #### Latest (Unstable) Version
45
+ #### Latest Version
46
46
 
47
- To upgrade to the latest (unstable) version, run
47
+ To upgrade to the latest version, run
48
48
 
49
49
  ```bash
50
- pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
51
- pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
52
50
  pip install --upgrade git+https://github.com/lanzithinking/qepytorch.git
53
51
  ```
54
52
 
55
- #### Development version
53
+ #### from source (for development)
56
54
 
57
55
  If you are contributing a pull request, it is best to perform a manual installation:
58
56
 
59
57
  ```sh
60
- git clone https://github.com/lanzithinking/qepytorch.git qpytorch
61
- cd qpytorch
58
+ git clone https://github.com/lanzithinking/qepytorch.git
59
+ cd qepytorch
60
+ # either
62
61
  pip install -e .[dev,docs,examples,keops,pyro,test] # keops and pyro are optional
62
+ # or
63
+ conda env create -f env_install.yaml # installed in the environment qpytorch
63
64
  ```
64
65
 
65
66
  <!--
@@ -80,7 +81,7 @@ To discuss any issues related to this AUR package refer to the comments section
80
81
 
81
82
  ## Citing Us
82
83
 
83
- If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following papers:
84
+ If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following paper:
84
85
  > [Li, Shuyi, Michael O'Connor, and Shiwei Lan. "Bayesian Learning via Q-Exponential Process." In Advances in Neural Information Processing Systems (2023).](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html)
85
86
  ```
86
87
  @inproceedings{li2023QEP,
@@ -102,18 +103,18 @@ for information on submitting issues and pull requests.
102
103
  Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is primarily maintained by:
103
104
  - [Shiwei Lan](https://math.la.asu.edu/~slan) (Arizona State University)
104
105
 
105
- We would like to thank our other contributors including (but not limited to)
106
- Shuyi Li,
106
+ Thanks to the following contributors including (but not limited to)
107
+ - Shuyi Li,
107
108
  Guangting Yu,
108
109
  Zhi Chang,
109
110
  Chukwudi Paul Obite,
110
111
  Keyan Wu,
111
112
  and many more!
112
113
 
113
-
114
+ <!--
114
115
  ## Acknowledgements
115
116
  Development of Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is supported by.
116
-
117
+ -->
117
118
 
118
119
  ## License
119
120
 
@@ -0,0 +1,6 @@
1
+ title: QePyTorch
2
+ description: Q-Exponential Process Library built on PyTorch and GPyTorch
3
+ show_downloads: true
4
+ remote_theme: pages-themes/leap-day@v0.2.0
5
+ plugins:
6
+ - jekyll-remote-theme # add this line to the plugins list if you already have one
@@ -0,0 +1,59 @@
1
+ ---
2
+ layout: default
3
+ ---
4
+
5
+ *A highly efficient implementation of Q-Exponential Processes in [PyTorch](https://pytorch.org) based on [GPyTorch](https://gpytorch.ai).*
6
+
7
+ * * *
8
+
9
+ # Example
10
+
11
+ Check out the [`examples`](https://github.com/lanzithinking/QePyTorch/tree/main/examples).
12
+
13
+ # Documentation
14
+
15
+ Here is the [`documentation`](https://qepytorch.readthedocs.io/en/stable/).
16
+
17
+ * * *
18
+
19
+ # Installation
20
+
21
+ ## pip
22
+
23
+ ```
24
+ pip install qpytorch
25
+ ```
26
+
27
+ ## conda
28
+
29
+ ```
30
+ conda install -c conda-forge qpytorch
31
+ ```
32
+
33
+ ## from source
34
+
35
+ ```
36
+ git clone https://github.com/lanzithinking/qepytorch.git
37
+ cd qepytorch
38
+ conda env create -f env_install.yaml
39
+ ```
40
+
41
+ * * *
42
+
43
+ # Team
44
+
45
+ * Maintain: [Shiwei Lan](https://math.la.asu.edu/~slan) (Arizona State University)
46
+ * Contribute: Shuyi Li, Guangting Yu, Zhi Chang, Chukwudi Paul Obite, Keyan Wu, and many more!
47
+
48
+ # Citing Us
49
+
50
+ > [Li, Shuyi, Michael O'Connor, and Shiwei Lan. "Bayesian Learning via Q-Exponential Process." In Advances in Neural Information Processing Systems (2023).](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html)
51
+
52
+ ```
53
+ @inproceedings{li2023QEP,
54
+ title={Bayesian Learning via Q-Exponential Process},
55
+ author={Li, Shuyi, Michael O'Connor, and Shiwei Lan},
56
+ booktitle={Advances in Neural Information Processing Systems},
57
+ year={2023}
58
+ }
59
+ ```
@@ -7,6 +7,5 @@ dependencies:
7
7
  - pip
8
8
  - pip:
9
9
  - -e .[dev,docs,examples,keops,pyro,test]
10
- - numpy<2.0 # Numpy 2.0 is not fully supported
11
10
 
12
- # conda env create -f venv_install.yaml
11
+ # conda env create -f env_install.yaml
@@ -1,4 +1,4 @@
1
1
  # file generated by setuptools_scm
2
2
  # don't change, don't track in version control
3
- __version__ = version = '0.1'
4
- __version_tuple__ = version_tuple = (0, 1)
3
+ __version__ = version = '0.1.1'
4
+ __version_tuple__ = version_tuple = (0, 1, 1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qpytorch
3
- Version: 0.1
3
+ Version: 0.1.1
4
4
  Summary: An implementation of Q-Exponential Processes in Pytorch based on GPyTorch
5
5
  Home-page: https://lanzithinking.github.io/qepytorch/
6
6
  Author: Shiwei Lan
@@ -28,60 +28,61 @@ License-File: LICENSE
28
28
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
29
29
 
30
30
  [![Python Version](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
31
- [![Conda](https://img.shields.io/conda/v/conda-forge/qpytorch.svg)](https://anaconda.org/conda-forge/qpytorch)
31
+ [![Conda](https://img.shields.io/conda/v/qpytorch.svg)](https://anaconda.org/qpytorch)
32
32
  [![PyPI](https://img.shields.io/pypi/v/qpytorch.svg)](https://pypi.org/project/qpytorch)
33
33
 
34
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Q-exponential process library implemented using PyTorch built on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed for creating scalable, flexible, and modular Q-exponential process models with ease.
34
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is a Python package for Q-exponential process ([QEP](https://papers.nips.cc/paper_files/paper/2023/file/e6bfdd58f1326ff821a1b92743963bdf-Paper-Conference.pdf)) implemented using PyTorch and built up on [GPyTorch](https://gpytorch.ai). Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is designed to facilitate creating scalable, flexible, and modular QPE models.
35
35
 
36
- Internally, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch differs from many existing approaches to QEP inference by performing most inference operations using numerical linear algebra techniques like preconditioned conjugate gradients.
37
- Implementing a scalable QEP method is as simple as providing a matrix multiplication routine with the kernel matrix and its derivative via our [LinearOperator](https://github.com/cornellius-gp/linear_operator) interface,
38
- or by composing many of our already existing `LinearOperators`.
39
- This allows not only for easy implementation of popular scalable QEP techniques,
40
- but often also for significantly improved utilization of GPU computing compared to solvers based on the Cholesky decomposition.
36
+ Different from GPyTorch for Gaussian process (GP) models, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch focuses on QEP, which generalizes GP by allowing flexible regularization on function spaces through a parameter $q>0$ and embraces GP as a special case with $q=2$. QEP is proven to be superior than GP in modeling inhomogeneous objects with abrupt changes or sharp contrast for $q<2$ [[Li et al (2023)]](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html).
37
+ Inherited from GPyTorch, Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch has an efficient and scalable implementation by taking advantage of numerical linear algebra library [LinearOperator](https://github.com/cornellius-gp/linear_operator) and improved GPU utilization.
41
38
 
42
- Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch provides (1) significant GPU acceleration (through MVM based inference);
43
- (2) state-of-the-art implementations of the latest algorithmic advances for scalability and flexibility ([SKI/KISS-GP](http://proceedings.mlr.press/v37/wilson15.pdf), [stochastic Lanczos expansions](https://arxiv.org/abs/1711.03481), [LOVE](https://arxiv.org/pdf/1803.06058.pdf), [SKIP](https://arxiv.org/pdf/1802.08903.pdf), [stochastic variational](https://arxiv.org/pdf/1611.00336.pdf) [deep kernel learning](http://proceedings.mlr.press/v51/wilson16.pdf), ...);
44
- (3) easy integration with deep learning frameworks.
45
39
 
40
+ <!--
41
+ Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch features ...
42
+ -->
46
43
 
47
- ## Examples, Tutorials, and Documentation
48
44
 
49
- See our [**documentation, examples, tutorials**](https://qepytorch.readthedocs.io/en/stable/) on how to construct all sorts of models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
45
+ ## Tutorials, Examples, and Documentation
46
+
47
+ See [**documentation**](https://qepytorch.readthedocs.io/en/stable/) on how to construct various QEP models in Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch.
50
48
 
51
49
  ## Installation
52
50
 
53
51
  **Requirements**:
54
52
  - Python >= 3.10
55
- - PyTorch >= 2.2
53
+ - PyTorch >= 2.0
56
54
  - GPyTorch >= 1.13
57
55
 
56
+ #### Stable Version
57
+
58
58
  Install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch using pip or conda:
59
59
 
60
60
  ```bash
61
61
  pip install qpytorch
62
- conda install qpytorch -c qpytorch
62
+ conda install qpytorch
63
63
  ```
64
64
 
65
65
  (To use packages globally but install Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch as a user-only package, use `pip install --user` above.)
66
66
 
67
- #### Latest (Unstable) Version
67
+ #### Latest Version
68
68
 
69
- To upgrade to the latest (unstable) version, run
69
+ To upgrade to the latest version, run
70
70
 
71
71
  ```bash
72
- pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
73
- pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
74
72
  pip install --upgrade git+https://github.com/lanzithinking/qepytorch.git
75
73
  ```
76
74
 
77
- #### Development version
75
+ #### from source (for development)
78
76
 
79
77
  If you are contributing a pull request, it is best to perform a manual installation:
80
78
 
81
79
  ```sh
82
- git clone https://github.com/lanzithinking/qepytorch.git qpytorch
83
- cd qpytorch
80
+ git clone https://github.com/lanzithinking/qepytorch.git
81
+ cd qepytorch
82
+ # either
84
83
  pip install -e .[dev,docs,examples,keops,pyro,test] # keops and pyro are optional
84
+ # or
85
+ conda env create -f env_install.yaml # installed in the environment qpytorch
85
86
  ```
86
87
 
87
88
  <!--
@@ -102,7 +103,7 @@ To discuss any issues related to this AUR package refer to the comments section
102
103
 
103
104
  ## Citing Us
104
105
 
105
- If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following papers:
106
+ If you use Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch, please cite the following paper:
106
107
  > [Li, Shuyi, Michael O'Connor, and Shiwei Lan. "Bayesian Learning via Q-Exponential Process." In Advances in Neural Information Processing Systems (2023).](https://papers.nips.cc/paper_files/paper/2023/hash/e6bfdd58f1326ff821a1b92743963bdf-Abstract-Conference.html)
107
108
  ```
108
109
  @inproceedings{li2023QEP,
@@ -124,18 +125,18 @@ for information on submitting issues and pull requests.
124
125
  Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is primarily maintained by:
125
126
  - [Shiwei Lan](https://math.la.asu.edu/~slan) (Arizona State University)
126
127
 
127
- We would like to thank our other contributors including (but not limited to)
128
- Shuyi Li,
128
+ Thanks to the following contributors including (but not limited to)
129
+ - Shuyi Li,
129
130
  Guangting Yu,
130
131
  Zhi Chang,
131
132
  Chukwudi Paul Obite,
132
133
  Keyan Wu,
133
134
  and many more!
134
135
 
135
-
136
+ <!--
136
137
  ## Acknowledgements
137
138
  Development of Q<sup style="font-size: 0.5em;">&#9428;</sup>PyTorch is supported by.
138
-
139
+ -->
139
140
 
140
141
  ## License
141
142
 
@@ -3,14 +3,16 @@
3
3
  CONTRIBUTING.md
4
4
  LICENSE
5
5
  README.md
6
+ env_install.yaml
6
7
  pyproject.toml
7
8
  setup.cfg
8
9
  setup.py
9
- venv_install.yaml
10
10
  .conda/meta.yaml
11
11
  .github/workflows/deploy.yml
12
12
  .github/workflows/run_test_suite.yml
13
13
  docs/Makefile
14
+ docs/_config.yml
15
+ docs/index.md
14
16
  docs/source/.gitignore
15
17
  docs/source/beta_features.rst
16
18
  docs/source/conf.py
@@ -4,6 +4,7 @@ scikit-learn
4
4
  scipy>=1.6.0
5
5
  linear_operator>=0.6
6
6
  gpytorch>=1.13
7
+ numpy<2
7
8
 
8
9
  [dev]
9
10
  pre-commit
@@ -37,7 +37,7 @@ def find_version(*file_paths):
37
37
  readme = open("README.md").read()
38
38
 
39
39
 
40
- torch_min = "2.2"
40
+ torch_min = "2.0"
41
41
  install_requires = [
42
42
  "jaxtyping",
43
43
  "mpmath>=0.19,<=1.3", # avoid incompatibiltiy with torch+sympy with mpmath 1.4
@@ -45,6 +45,7 @@ install_requires = [
45
45
  "scipy>=1.6.0",
46
46
  "linear_operator>=0.6",
47
47
  "gpytorch>=1.13",
48
+ "numpy<2", # avoid incompatibility of torch with numpy 2 (the minimum supporting (numpy 2) version of pytorch is 2.3)
48
49
  ]
49
50
  # if recent dev version of PyTorch is installed, no need to install stable
50
51
  try:
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes