qis 3.2.3__tar.gz → 3.2.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (149) hide show
  1. {qis-3.2.3 → qis-3.2.5}/PKG-INFO +1 -1
  2. {qis-3.2.3 → qis-3.2.5}/pyproject.toml +1 -1
  3. {qis-3.2.3 → qis-3.2.5}/qis/examples/core/perf_bbg_prices.py +34 -5
  4. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/ewm.py +2 -1
  5. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/returns_heatmap.py +1 -1
  6. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/config.py +3 -3
  7. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/multi_assets_factsheet.py +6 -3
  8. {qis-3.2.3 → qis-3.2.5}/qis/settings.yaml +0 -1
  9. qis-3.2.3/qis/examples/bond_futures_portfolio.py +0 -49
  10. qis-3.2.3/qis/examples/credit_trackers.py +0 -42
  11. qis-3.2.3/qis/examples/perp_pricing.py +0 -56
  12. {qis-3.2.3 → qis-3.2.5}/LICENSE.txt +0 -0
  13. {qis-3.2.3 → qis-3.2.5}/README.md +0 -0
  14. {qis-3.2.3 → qis-3.2.5}/qis/__init__.py +0 -0
  15. {qis-3.2.3 → qis-3.2.5}/qis/examples/best_returns.py +0 -0
  16. {qis-3.2.3 → qis-3.2.5}/qis/examples/bootstrap_analysis.py +0 -0
  17. {qis-3.2.3 → qis-3.2.5}/qis/examples/boxplot_conditional_returns.py +0 -0
  18. {qis-3.2.3 → qis-3.2.5}/qis/examples/btc_asset_corr.py +0 -0
  19. {qis-3.2.3 → qis-3.2.5}/qis/examples/constant_notional.py +0 -0
  20. {qis-3.2.3 → qis-3.2.5}/qis/examples/constant_weight_portfolios.py +0 -0
  21. {qis-3.2.3 → qis-3.2.5}/qis/examples/core/price_plots.py +0 -0
  22. {qis-3.2.3 → qis-3.2.5}/qis/examples/core/us_election.py +0 -0
  23. {qis-3.2.3 → qis-3.2.5}/qis/examples/credit_spreads.py +0 -0
  24. {qis-3.2.3 → qis-3.2.5}/qis/examples/europe_futures.py +0 -0
  25. {qis-3.2.3 → qis-3.2.5}/qis/examples/factsheets/multi_assets.py +0 -0
  26. {qis-3.2.3 → qis-3.2.5}/qis/examples/factsheets/multi_strategy.py +0 -0
  27. {qis-3.2.3 → qis-3.2.5}/qis/examples/factsheets/pyblogs_reports.py +0 -0
  28. {qis-3.2.3 → qis-3.2.5}/qis/examples/factsheets/strategy.py +0 -0
  29. {qis-3.2.3 → qis-3.2.5}/qis/examples/factsheets/strategy_benchmark.py +0 -0
  30. {qis-3.2.3 → qis-3.2.5}/qis/examples/generate_option_rolls.py +0 -0
  31. {qis-3.2.3 → qis-3.2.5}/qis/examples/interpolation_infrequent_returns.py +0 -0
  32. {qis-3.2.3 → qis-3.2.5}/qis/examples/leveraged_strategies.py +0 -0
  33. {qis-3.2.3 → qis-3.2.5}/qis/examples/long_short.py +0 -0
  34. {qis-3.2.3 → qis-3.2.5}/qis/examples/momentum_indices.py +0 -0
  35. {qis-3.2.3 → qis-3.2.5}/qis/examples/ohlc_vol_analysis.py +0 -0
  36. {qis-3.2.3 → qis-3.2.5}/qis/examples/overnight_returns.py +0 -0
  37. {qis-3.2.3 → qis-3.2.5}/qis/examples/perf_external_assets.py +0 -0
  38. {qis-3.2.3 → qis-3.2.5}/qis/examples/readme_performances.py +0 -0
  39. {qis-3.2.3 → qis-3.2.5}/qis/examples/risk_return_frontier.py +0 -0
  40. {qis-3.2.3 → qis-3.2.5}/qis/examples/rolling_performance.py +0 -0
  41. {qis-3.2.3 → qis-3.2.5}/qis/examples/seasonality.py +0 -0
  42. {qis-3.2.3 → qis-3.2.5}/qis/examples/sharpe_vs_sortino.py +0 -0
  43. {qis-3.2.3 → qis-3.2.5}/qis/examples/simulate_quant_strats.py +0 -0
  44. {qis-3.2.3 → qis-3.2.5}/qis/examples/test_ewm.py +0 -0
  45. {qis-3.2.3 → qis-3.2.5}/qis/examples/test_scatter.py +0 -0
  46. {qis-3.2.3 → qis-3.2.5}/qis/examples/try_pybloqs.py +0 -0
  47. {qis-3.2.3 → qis-3.2.5}/qis/examples/universe_corrs.py +0 -0
  48. {qis-3.2.3 → qis-3.2.5}/qis/examples/vix_beta_to_equities_bonds.py +0 -0
  49. {qis-3.2.3 → qis-3.2.5}/qis/examples/vix_conditional_returns.py +0 -0
  50. {qis-3.2.3 → qis-3.2.5}/qis/examples/vix_spy_by_year.py +0 -0
  51. {qis-3.2.3 → qis-3.2.5}/qis/examples/vix_tenor_analysis.py +0 -0
  52. {qis-3.2.3 → qis-3.2.5}/qis/examples/vol_without_weekends.py +0 -0
  53. {qis-3.2.3 → qis-3.2.5}/qis/file_utils.py +0 -0
  54. {qis-3.2.3 → qis-3.2.5}/qis/local_path.py +0 -0
  55. {qis-3.2.3 → qis-3.2.5}/qis/models/README.md +0 -0
  56. {qis-3.2.3 → qis-3.2.5}/qis/models/__init__.py +0 -0
  57. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/__init__.py +0 -0
  58. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/auto_corr.py +0 -0
  59. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/corr_cov_matrix.py +0 -0
  60. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/ewm_convolution.py +0 -0
  61. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/ewm_factors.py +0 -0
  62. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/ewm_winsor_outliers.py +0 -0
  63. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/pca.py +0 -0
  64. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/plot_correlations.py +0 -0
  65. {qis-3.2.3 → qis-3.2.5}/qis/models/linear/ra_returns.py +0 -0
  66. {qis-3.2.3 → qis-3.2.5}/qis/models/stats/__init__.py +0 -0
  67. {qis-3.2.3 → qis-3.2.5}/qis/models/stats/bootstrap.py +0 -0
  68. {qis-3.2.3 → qis-3.2.5}/qis/models/stats/ohlc_vol.py +0 -0
  69. {qis-3.2.3 → qis-3.2.5}/qis/models/stats/rolling_stats.py +0 -0
  70. {qis-3.2.3 → qis-3.2.5}/qis/models/stats/test_bootstrap.py +0 -0
  71. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/README.md +0 -0
  72. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/__init__.py +0 -0
  73. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/cond_regression.py +0 -0
  74. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/config.py +0 -0
  75. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/desc_table.py +0 -0
  76. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/fx_ops.py +0 -0
  77. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/perf_stats.py +0 -0
  78. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/regime_classifier.py +0 -0
  79. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/returns.py +0 -0
  80. {qis-3.2.3 → qis-3.2.5}/qis/perfstats/timeseries_bfill.py +0 -0
  81. {qis-3.2.3 → qis-3.2.5}/qis/plots/README.md +0 -0
  82. {qis-3.2.3 → qis-3.2.5}/qis/plots/__init__.py +0 -0
  83. {qis-3.2.3 → qis-3.2.5}/qis/plots/bars.py +0 -0
  84. {qis-3.2.3 → qis-3.2.5}/qis/plots/boxplot.py +0 -0
  85. {qis-3.2.3 → qis-3.2.5}/qis/plots/contour.py +0 -0
  86. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/__init__.py +0 -0
  87. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/data_timeseries.py +0 -0
  88. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/desc_table.py +0 -0
  89. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/drawdowns.py +0 -0
  90. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/perf_table.py +0 -0
  91. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/prices.py +0 -0
  92. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/regime_class_table.py +0 -0
  93. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/regime_data.py +0 -0
  94. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/regime_pdf.py +0 -0
  95. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/regime_scatter.py +0 -0
  96. {qis-3.2.3 → qis-3.2.5}/qis/plots/derived/returns_scatter.py +0 -0
  97. {qis-3.2.3 → qis-3.2.5}/qis/plots/errorbar.py +0 -0
  98. {qis-3.2.3 → qis-3.2.5}/qis/plots/heatmap.py +0 -0
  99. {qis-3.2.3 → qis-3.2.5}/qis/plots/histogram.py +0 -0
  100. {qis-3.2.3 → qis-3.2.5}/qis/plots/histplot2d.py +0 -0
  101. {qis-3.2.3 → qis-3.2.5}/qis/plots/lineplot.py +0 -0
  102. {qis-3.2.3 → qis-3.2.5}/qis/plots/pie.py +0 -0
  103. {qis-3.2.3 → qis-3.2.5}/qis/plots/qqplot.py +0 -0
  104. {qis-3.2.3 → qis-3.2.5}/qis/plots/reports/__init__.py +0 -0
  105. {qis-3.2.3 → qis-3.2.5}/qis/plots/reports/econ_data_single.py +0 -0
  106. {qis-3.2.3 → qis-3.2.5}/qis/plots/reports/gantt_data_history.py +0 -0
  107. {qis-3.2.3 → qis-3.2.5}/qis/plots/reports/price_history.py +0 -0
  108. {qis-3.2.3 → qis-3.2.5}/qis/plots/reports/utils.py +0 -0
  109. {qis-3.2.3 → qis-3.2.5}/qis/plots/scatter.py +0 -0
  110. {qis-3.2.3 → qis-3.2.5}/qis/plots/stackplot.py +0 -0
  111. {qis-3.2.3 → qis-3.2.5}/qis/plots/table.py +0 -0
  112. {qis-3.2.3 → qis-3.2.5}/qis/plots/time_series.py +0 -0
  113. {qis-3.2.3 → qis-3.2.5}/qis/plots/utils.py +0 -0
  114. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/README.md +0 -0
  115. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/__init__.py +0 -0
  116. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/backtester.py +0 -0
  117. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/ewm_portfolio_risk.py +0 -0
  118. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/multi_portfolio_data.py +0 -0
  119. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/portfolio_data.py +0 -0
  120. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/__init__.py +0 -0
  121. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/brinson_attribution.py +0 -0
  122. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/multi_strategy_factseet_pybloqs.py +0 -0
  123. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/multi_strategy_factsheet.py +0 -0
  124. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/strategy_benchmark_factsheet.py +0 -0
  125. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/strategy_benchmark_factsheet_pybloqs.py +0 -0
  126. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/strategy_factsheet.py +0 -0
  127. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/reports/strategy_signal_factsheet.py +0 -0
  128. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/strats/__init__.py +0 -0
  129. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/strats/quant_strats_delta1.py +0 -0
  130. {qis-3.2.3 → qis-3.2.5}/qis/portfolio/strats/seasonal_strats.py +0 -0
  131. {qis-3.2.3 → qis-3.2.5}/qis/sql_engine.py +0 -0
  132. {qis-3.2.3 → qis-3.2.5}/qis/test_data.py +0 -0
  133. {qis-3.2.3 → qis-3.2.5}/qis/utils/README.md +0 -0
  134. {qis-3.2.3 → qis-3.2.5}/qis/utils/__init__.py +0 -0
  135. {qis-3.2.3 → qis-3.2.5}/qis/utils/dates.py +0 -0
  136. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_agg.py +0 -0
  137. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_cut.py +0 -0
  138. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_freq.py +0 -0
  139. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_groups.py +0 -0
  140. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_melt.py +0 -0
  141. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_ops.py +0 -0
  142. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_str.py +0 -0
  143. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_to_scores.py +0 -0
  144. {qis-3.2.3 → qis-3.2.5}/qis/utils/df_to_weights.py +0 -0
  145. {qis-3.2.3 → qis-3.2.5}/qis/utils/generic.py +0 -0
  146. {qis-3.2.3 → qis-3.2.5}/qis/utils/np_ops.py +0 -0
  147. {qis-3.2.3 → qis-3.2.5}/qis/utils/ols.py +0 -0
  148. {qis-3.2.3 → qis-3.2.5}/qis/utils/sampling.py +0 -0
  149. {qis-3.2.3 → qis-3.2.5}/qis/utils/struct_ops.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: qis
3
- Version: 3.2.3
3
+ Version: 3.2.5
4
4
  Summary: Implementation of visualisation and reporting analytics for Quantitative Investment Strategies
5
5
  License: LICENSE.txt
6
6
  Keywords: quantitative,investing,portfolio optimization,systematic strategies,volatility
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "qis"
3
- version = "3.2.3"
3
+ version = "3.2.5"
4
4
  description = "Implementation of visualisation and reporting analytics for Quantitative Investment Strategies"
5
5
  license = "LICENSE.txt"
6
6
  authors = ["Artur Sepp <artursepp@gmail.com>"]
@@ -22,15 +22,44 @@ def run_report():
22
22
  'BNPXOV3U Index': 'BNP 3M Long DHhedged Puts'
23
23
  }
24
24
 
25
+ benchmark = 'SPTR Index'
26
+ tickers = {
27
+ benchmark: benchmark,
28
+ 'BNPIV1EE Index': 'BNP Europe 1Y Volatility',
29
+ 'BNPIV1UE Index': 'BNP US 1Y Volatility',
30
+ 'BNPXVO3A Index': 'BNP VOLA 3 Index',
31
+ 'AIJPVT1U Index': 'JPM Volatility Trend Following',
32
+ 'JPOSLVUS Index': 'JPM US Long Variance',
33
+ 'JPOSPRU2 Index': 'JPM US Put Ratio',
34
+ 'JPOSTUDN Index': 'JPM US Equity Tail Hedge',
35
+ 'JPRC85BE Index': 'JPM Dynamic 85% Rolling Collar EU',
36
+ 'JPRC85BU Index': 'JPM Dynamic 85% Rolling Collar US',
37
+ 'JPUSVXCR Index': 'JPM US Volatility Call Ratio'
38
+ }
39
+
40
+ benchmark = 'HYG US Equity'
41
+ tickers = {
42
+ benchmark: benchmark,
43
+ 'NMVVR1EL Index': 'IRVING1 EUR',
44
+ 'NMVVR1UL Index': 'IRVING1 USD',
45
+ 'NMVVR1L Index': 'IRVING1',
46
+ 'BNPXLVRE Index': 'BNP Long Rates Vol EUR',
47
+ 'BNPXLVRU Index': 'BNP Long Rates Vol USD',
48
+ 'BXIIULSV Index': 'Barclays Long Rates Vol',
49
+ 'BXIIUGNT Index': 'Barclays Gamma Neutral Vol',
50
+ 'BXIIUENT Index': 'Barclays Triangle Vol'
51
+ }
52
+
25
53
  prices = fetch_field_timeseries_per_tickers(tickers=tickers, freq='B', field='PX_LAST').ffill()
26
54
  print(prices)
27
- qis.save_df_to_csv(df=prices, file_name='qis_vol_indices', local_path=qis.get_output_path())
55
+ # qis.save_df_to_csv(df=prices, file_name='qis_vol_indices', local_path=qis.get_output_path())
28
56
 
29
- time_period = qis.TimePeriod('31Dec2019', '15Nov2024')
30
- kwargs = qis.fetch_default_report_kwargs(time_period=time_period, add_rates_data=False)
57
+ time_period = qis.TimePeriod('31Dec2024', '07Apr2025')
58
+ #kwargs = qis.fetch_default_report_kwargs(time_period=time_period, add_rates_data=False)
59
+ kwargs = qis.fetch_factsheet_config_kwargs(factsheet_config=qis.FACTSHEET_CONFIG_DAILY_DATA_SHORT_PERIOD)
31
60
 
32
61
  fig = qis.generate_multi_asset_factsheet(prices=prices,
33
- benchmark='SPTR Index',
62
+ benchmark=benchmark,
34
63
  time_period=time_period,
35
64
  **kwargs)
36
65
  qis.save_figs_to_pdf(figs=[fig],
@@ -70,7 +99,7 @@ def run_unit_test(unit_test: UnitTests):
70
99
 
71
100
  if __name__ == '__main__':
72
101
 
73
- unit_test = UnitTests.PRICE
102
+ unit_test = UnitTests.REPORT
74
103
 
75
104
  is_run_all_tests = False
76
105
  if is_run_all_tests:
@@ -690,6 +690,7 @@ def compute_ewm_newey_west_vol(data: Union[pd.DataFrame, pd.Series, np.ndarray],
690
690
  if mean_adj_type != MeanAdjType.NONE:
691
691
  a = compute_rolling_mean_adj(data=a,
692
692
  mean_adj_type=mean_adj_type,
693
+ span=span,
693
694
  ewm_lambda=ewm_lambda,
694
695
  init_type=init_type,
695
696
  nan_backfill=nan_backfill)
@@ -819,7 +820,7 @@ def compute_rolling_mean_adj(data: Union[pd.DataFrame, pd.Series, np.ndarray],
819
820
  mean_adj_type: MeanAdjType = MeanAdjType.EWMA,
820
821
  span: Union[float, np.ndarray] = None,
821
822
  ewm_lambda: Union[float, np.ndarray] = 0.94,
822
- init_type: InitType = InitType.MEAN,
823
+ init_type: InitType = InitType.X0,
823
824
  init_value: Union[float, np.ndarray, None] = None,
824
825
  nan_backfill: NanBackfill = NanBackfill.FFILL
825
826
  ) -> Union[pd.DataFrame, pd.Series, np.ndarray]:
@@ -223,7 +223,7 @@ def compute_periodic_returns(prices: pd.DataFrame,
223
223
 
224
224
  if add_total:
225
225
  if freq == 'ME':
226
- total_name = total_name or 'last 12m'
226
+ total_name = total_name or 'YTD'
227
227
  elif freq == 'YE':
228
228
  total_name = total_name or 'Total'
229
229
  else:
@@ -82,9 +82,9 @@ class FactsheetConfig(NamedTuple):
82
82
  # create enumerations
83
83
  FACTSHEET_CONFIG_DAILY_DATA_LONG_PERIOD = FactsheetConfig()
84
84
 
85
- FACTSHEET_CONFIG_DAILY_DATA_SHORT_PERIOD = FactsheetConfig(heatmap_freq='YE',
86
- x_date_freq='QE',
87
- freq_regime='ME',
85
+ FACTSHEET_CONFIG_DAILY_DATA_SHORT_PERIOD = FactsheetConfig(heatmap_freq='ME',
86
+ x_date_freq='ME',
87
+ freq_regime='W-WED',
88
88
  freq_reg='W-WED',
89
89
  alpha_an_factor=52
90
90
  )
@@ -60,6 +60,8 @@ class MultiAssetsReport:
60
60
  prices = pd.concat([self.benchmark_prices[benchmark], self.prices], axis=1)
61
61
  else:
62
62
  prices = self.prices
63
+ # check in case
64
+ prices = prices.loc[:, ~prices.columns.duplicated(keep='first')]
63
65
  if time_period is not None:
64
66
  prices = time_period.locate(prices)
65
67
  return prices
@@ -68,7 +70,7 @@ class MultiAssetsReport:
68
70
  regime_benchmark: str,
69
71
  data_df: pd.DataFrame,
70
72
  time_period: TimePeriod = None,
71
- regime_params: BenchmarkReturnsQuantileRegimeSpecs = REGIME_PARAMS
73
+ regime_params: BenchmarkReturnsQuantileRegimeSpecs = None
72
74
  ) -> None:
73
75
  if isinstance(self.benchmark_prices, pd.Series):
74
76
  pivot_prices = self.benchmark_prices
@@ -83,7 +85,7 @@ class MultiAssetsReport:
83
85
  data_df=data_df,
84
86
  pivot_prices=pivot_prices,
85
87
  benchmark=regime_benchmark,
86
- regime_params=regime_params)
88
+ regime_params=regime_params or self.regime_params)
87
89
 
88
90
  def plot_ra_perf_table(self,
89
91
  benchmark: str,
@@ -334,6 +336,7 @@ class MultiAssetsReport:
334
336
  roll_freq=freq_sharpe,
335
337
  legend_stats=legend_stats,
336
338
  regime_benchmark=regime_benchmark,
339
+ regime_params=self.regime_params,
337
340
  ax=ax,
338
341
  **kwargs)
339
342
  return fig
@@ -417,7 +420,7 @@ def generate_multi_asset_factsheet(prices: pd.DataFrame,
417
420
  heatmap_freq: str = 'YE',
418
421
  time_period: TimePeriod = None, # time period for reporting
419
422
  figsize: Tuple[float, float] = (8.3, 11.7), # A4 for portrait
420
- fontsize: int = 3,
423
+ fontsize: int = 4,
421
424
  factsheet_name: str = None,
422
425
  performance_bars: Tuple[PerfStat, PerfStat] = (PerfStat.SHARPE_RF0, PerfStat.MAX_DD),
423
426
  drop_1y_ra_perf_table: bool = True,
@@ -18,4 +18,3 @@ OUTPUT_PATH:
18
18
 
19
19
  AWS_POSTGRES:
20
20
  ""
21
-
@@ -1,49 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- import matplotlib.pyplot as plt
4
- from enum import Enum
5
- import qis as qis
6
-
7
- import futures_strats.local_path as lp
8
-
9
- output_path = lp.OUTPUT_PATH
10
- local_path = lp.LOCAL_PATH
11
- # futures_strats
12
- from futures_strats import (compute_strategy_portfolio_data_with_costs,
13
- compute_multi_strategy_data_from_blocks,
14
- compute_marginal_perfs_for_strategy)
15
- from futures_strats.data.universes.futures.bbg_futures import Universes
16
- from futures_strats.data.providers.bloomberg.assets_bbg import AssetsBBG
17
- from futures_strats.research.cross_trend import (CSTF_RB_TRACKER,
18
- CSTF_EXACT_TRACKER,
19
- CSTF_RB_AC_TRACKER)
20
- from futures_strats.research.trackers import (CSTF_GOLDMAN_TRACKER_AC,
21
- GOLDMAN_UNIVERSE)
22
-
23
- strategy_universe = Universes.BBG_FUTURES_INVESTABLE.load_universe_data(local_path=local_path)
24
- prices = strategy_universe.get_prices(freq='B')[['UXY1 Comdty', 'US1 Comdty', 'WN1 Comdty']].ffill().dropna()
25
- prices = prices[prices.columns[::-1]]
26
- qis.plot_prices_with_dd(prices=prices)
27
-
28
- portfolio_data = qis.backtest_model_portfolio(prices=prices,
29
- weights=np.array([-1.0, 2.0, -1.0]),
30
- rebalancing_freq='ME',
31
- ticker='Butterly'
32
- )
33
-
34
- time_period = qis.TimePeriod('31Dec2015', None)
35
- figs = qis.generate_strategy_factsheet(portfolio_data=portfolio_data,
36
- benchmark_prices=prices.iloc[:, -1],
37
- is_grouped=False,
38
- add_current_position_var_risk_sheet=False,
39
- add_weights_turnover_sheet=False,
40
- add_grouped_exposures=False,
41
- add_grouped_cum_pnl=False,
42
- time_period=time_period,
43
- **qis.fetch_default_report_kwargs(time_period=time_period,
44
- add_rates_data=False))
45
-
46
- qis.save_figs_to_pdf(figs=figs, file_name=f"butterfly", orientation='landscape',
47
- local_path=output_path)
48
-
49
- plt.show()
@@ -1,42 +0,0 @@
1
-
2
- import pandas as pd
3
- import matplotlib.pyplot as plt
4
- import seaborn as sns
5
- import qis as qis
6
- from bbg_fetch import fetch_field_timeseries_per_tickers
7
-
8
-
9
- tickers = {'CICMCE5B Index': 'ITRAXX Main 5Y',
10
- 'CICMCE1B Index': 'ITRAXX Main 10Y',
11
- 'CICMCX5B Index': 'ITRAXX Xover 5Y',
12
- 'CICMCI5B Index': 'CDX NA IG 5Y',
13
- 'CICMCI1B Index': 'CDX NA IG 10Y',
14
- 'CICMCH5B Index': 'CDX NA HY 5Y',
15
- 'CICMCG05 Index': 'UK CDS 5Y',
16
- 'CICMCK05 Index': 'South Korea CDS 5Y',
17
- 'CICMCJ05 Index': 'Japan CDS 5Y',
18
- 'CICMCU05 Index': 'US CDS 5Y',
19
- 'CICMCE05 Index': 'Germany CDS 5Y'
20
- }
21
-
22
- tickers = {'UISYMH5S Index': 'UBS_CDX_HY',
23
- 'CICMCH5B Index': 'CITI_CDX_HY',
24
- 'CH5LMER5 Index': 'GS_CDX_HY',
25
- 'UISYMI5S Index': 'UBS_IG_5Y',
26
- 'CICMCI5B Index': 'CITI_IG_5Y',
27
- 'CI5LMER5 Index': 'GS_IG_5Y'}
28
-
29
- prices = fetch_field_timeseries_per_tickers(tickers=tickers, freq='B', field='PX_LAST').ffill()
30
- print(prices)
31
- benchmark_prices = fetch_field_timeseries_per_tickers(tickers={'LGDRTRUU Index': 'Agg IG'}, freq='B', field='PX_LAST').ffill()
32
-
33
- time_period = qis.TimePeriod('01Jan2008', pd.Timestamp.today())
34
- kwargs = qis.fetch_default_report_kwargs(time_period=time_period, add_rates_data=False)
35
-
36
- fig = qis.generate_multi_asset_factsheet(prices=prices,
37
- benchmark_prices=benchmark_prices,
38
- time_period=time_period,
39
- **kwargs)
40
- qis.save_figs_to_pdf(figs=[fig],
41
- file_name=f"credit_trackers_report", orientation='landscape',
42
- local_path=qis.local_path.get_output_path())
@@ -1,56 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- import matplotlib.pyplot as plt
4
- import seaborn as sns
5
- import qis as qis
6
- from bbg_fetch import fetch_field_timeseries_per_tickers, fetch_index_members_weights, fetch_bonds_info
7
-
8
-
9
- index_ticker = 'I31415US Index'
10
-
11
- end_dates = ['20180101', '20190101', '20200101', '20210101', '20220101', '20230101', '20240101', '20250101', '20250106']
12
-
13
- data_out = {}
14
- weighted_resets = []
15
- for idx, end_date in enumerate(end_dates):
16
- if idx > 0:
17
- members = fetch_index_members_weights(index_ticker, END_DATE_OVERRIDE=end_dates[idx-1])
18
- corp_index = [f"{x} corp" for x in members.index]
19
- members.index = corp_index
20
- """
21
- amt_outstanding = fetch_bonds_info(isins=members.index.to_list(), fields=['amt_outstanding'],
22
- END_DATE_OVERRIDE=end_dates[idx-1])['amt_outstanding']
23
- amt_outstanding = amt_outstanding.loc[members.index]
24
- amt_outstanding.index = corp_index
25
- """
26
- prices = fetch_field_timeseries_per_tickers(tickers=corp_index,
27
- start_date=pd.Timestamp(end_dates[idx-1]),
28
- end_date=pd.Timestamp(end_date),
29
- freq='B')
30
- prices = prices.resample('W-WED').last()
31
- # market_value = prices.multiply(amt_outstanding, axis=1)
32
- #market_value.divide(np.nansum(market_value, axis=1, keepdims=True), axis=1)
33
- is_reset = (prices > 100).astype(float)
34
- market_weights = members.iloc[:, 0]
35
- weighted_reset = is_reset.multiply(market_weights, axis=1)
36
- weighted_reset = weighted_reset.sum(1)
37
- weighted_resets.append(weighted_reset)
38
- data_out[f"{end_dates[idx-1]} members"] = members
39
- data_out[f"{end_date} prices"] = prices
40
- data_out[f"{end_date} is_reset"] = is_reset
41
-
42
- weighted_resets = pd.concat(weighted_resets)
43
- weighted_resets = weighted_resets.loc[~weighted_resets.index.duplicated(keep='first')]
44
- weighted_resets = weighted_resets.to_frame('weighted_par_reset %')
45
- print(weighted_resets)
46
-
47
- data_out['weighted_resets'] = weighted_resets
48
- qis.save_df_to_excel(data=data_out, file_name='perp_pricing')
49
-
50
- with sns.axes_style("darkgrid"):
51
- fig, ax = plt.subplots(1, 1, figsize=(15, 8), tight_layout=True)
52
- qis.plot_time_series(weighted_resets,
53
- title='weighted_par_reset',
54
- ax=ax)
55
-
56
- plt.show()
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes