qdrant-haystack 3.3.0__tar.gz → 3.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (22) hide show
  1. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/PKG-INFO +1 -1
  2. qdrant_haystack-3.4.0/examples/embedding_retrieval.py +52 -0
  3. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/pydoc/config.yml +1 -2
  4. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/pyproject.toml +2 -0
  5. qdrant_haystack-3.4.0/src/haystack_integrations/components/retrievers/qdrant/__init__.py +7 -0
  6. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/src/haystack_integrations/components/retrievers/qdrant/retriever.py +4 -4
  7. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/src/haystack_integrations/document_stores/qdrant/__init__.py +2 -1
  8. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/src/haystack_integrations/document_stores/qdrant/document_store.py +3 -1
  9. qdrant_haystack-3.4.0/src/haystack_integrations/document_stores/qdrant/migrate_to_sparse.py +127 -0
  10. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/test_retriever.py +8 -8
  11. qdrant_haystack-3.3.0/src/haystack_integrations/components/retrievers/qdrant/__init__.py +0 -7
  12. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/.gitignore +0 -0
  13. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/LICENSE.txt +0 -0
  14. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/README.md +0 -0
  15. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/src/haystack_integrations/document_stores/qdrant/converters.py +0 -0
  16. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/src/haystack_integrations/document_stores/qdrant/filters.py +0 -0
  17. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/__init__.py +0 -0
  18. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/test_converters.py +0 -0
  19. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/test_dict_converters.py +0 -0
  20. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/test_document_store.py +0 -0
  21. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/test_filters.py +0 -0
  22. {qdrant_haystack-3.3.0 → qdrant_haystack-3.4.0}/tests/test_legacy_filters.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: qdrant-haystack
3
- Version: 3.3.0
3
+ Version: 3.4.0
4
4
  Summary: An integration of Qdrant ANN vector database backend with Haystack
5
5
  Project-URL: Source, https://github.com/deepset-ai/haystack-core-integrations
6
6
  Project-URL: Documentation, https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/qdrant/README.md
@@ -0,0 +1,52 @@
1
+ # Install required packages for this example, including qdrant-haystack and other libraries needed
2
+ # for Markdown conversion and embeddings generation. Use the following command:
3
+ # pip install qdrant-haystack markdown-it-py mdit_plain sentence-transformers
4
+
5
+ # Download some Markdown files to index.
6
+ # git clone https://github.com/anakin87/neural-search-pills
7
+
8
+ import glob
9
+
10
+ from haystack import Pipeline
11
+ from haystack.components.converters import MarkdownToDocument
12
+ from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
13
+ from haystack.components.preprocessors import DocumentSplitter
14
+ from haystack.components.writers import DocumentWriter
15
+ from haystack_integrations.components.retrievers.qdrant import QdrantEmbeddingRetriever
16
+ from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
17
+
18
+ # Initialize QdrantDocumentStore: for simplicity, we use an in-memory store here.
19
+ # You can also run a Qdrant instance using Docker or use Qdrant Cloud.
20
+ document_store = QdrantDocumentStore(
21
+ ":memory:",
22
+ index="Document",
23
+ embedding_dim=768,
24
+ recreate_index=True,
25
+ )
26
+
27
+ # Create the indexing Pipeline and index some documents
28
+ file_paths = glob.glob("neural-search-pills/pills/*.md")
29
+
30
+
31
+ indexing = Pipeline()
32
+ indexing.add_component("converter", MarkdownToDocument())
33
+ indexing.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=2))
34
+ indexing.add_component("embedder", SentenceTransformersDocumentEmbedder())
35
+ indexing.add_component("writer", DocumentWriter(document_store))
36
+ indexing.connect("converter", "splitter")
37
+ indexing.connect("splitter", "embedder")
38
+ indexing.connect("embedder", "writer")
39
+
40
+ indexing.run({"converter": {"sources": file_paths}})
41
+
42
+ # Create the querying Pipeline and try a query
43
+ querying = Pipeline()
44
+ querying.add_component("embedder", SentenceTransformersTextEmbedder())
45
+ querying.add_component("retriever", QdrantEmbeddingRetriever(document_store=document_store, top_k=3))
46
+ querying.connect("embedder", "retriever")
47
+
48
+ results = querying.run({"embedder": {"text": "What is a cross-encoder?"}})
49
+
50
+ for doc in results["retriever"]["documents"]:
51
+ print(doc)
52
+ print("-" * 10)
@@ -5,8 +5,7 @@ loaders:
5
5
  [
6
6
  "haystack_integrations.components.retrievers.qdrant.retriever",
7
7
  "haystack_integrations.document_stores.qdrant.document_store",
8
- "haystack_integrations.document_stores.qdrant.converters",
9
- "haystack_integrations.document_stores.qdrant.filters",
8
+ "haystack_integrations.document_stores.qdrant.migrate_to_sparse",
10
9
  ]
11
10
  ignore_when_discovered: ["__init__"]
12
11
  processors:
@@ -127,6 +127,8 @@ ban-relative-imports = "parents"
127
127
  [tool.ruff.per-file-ignores]
128
128
  # Tests can use magic values, assertions, and relative imports
129
129
  "tests/**/*" = ["PLR2004", "S101", "TID252"]
130
+ # examples can contain "print" commands
131
+ "examples/**/*" = ["T201"]
130
132
 
131
133
 
132
134
  [tool.coverage.run]
@@ -0,0 +1,7 @@
1
+ # SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+
5
+ from .retriever import QdrantEmbeddingRetriever, QdrantSparseEmbeddingRetriever
6
+
7
+ __all__ = ("QdrantEmbeddingRetriever", "QdrantSparseEmbeddingRetriever")
@@ -124,13 +124,13 @@ class QdrantEmbeddingRetriever:
124
124
 
125
125
 
126
126
  @component
127
- class QdrantSparseRetriever:
127
+ class QdrantSparseEmbeddingRetriever:
128
128
  """
129
129
  A component for retrieving documents from an QdrantDocumentStore using sparse vectors.
130
130
 
131
131
  Usage example:
132
132
  ```python
133
- from haystack_integrations.components.retrievers.qdrant import QdrantSparseRetriever
133
+ from haystack_integrations.components.retrievers.qdrant import QdrantSparseEmbeddingRetriever
134
134
  from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
135
135
  from haystack.dataclasses.sparse_embedding import SparseEmbedding
136
136
 
@@ -140,7 +140,7 @@ class QdrantSparseRetriever:
140
140
  return_embedding=True,
141
141
  wait_result_from_api=True,
142
142
  )
143
- retriever = QdrantSparseRetriever(document_store=document_store)
143
+ retriever = QdrantSparseEmbeddingRetriever(document_store=document_store)
144
144
  sparse_embedding = SparseEmbedding(indices=[0, 1, 2, 3], values=[0.1, 0.8, 0.05, 0.33])
145
145
  retriever.run(query_sparse_embedding=sparse_embedding)
146
146
  ```
@@ -155,7 +155,7 @@ class QdrantSparseRetriever:
155
155
  return_embedding: bool = False,
156
156
  ):
157
157
  """
158
- Create a QdrantSparseRetriever component.
158
+ Create a QdrantSparseEmbeddingRetriever component.
159
159
 
160
160
  :param document_store: An instance of QdrantDocumentStore.
161
161
  :param filters: A dictionary with filters to narrow down the search space. Default is None.
@@ -3,5 +3,6 @@
3
3
  # SPDX-License-Identifier: Apache-2.0
4
4
 
5
5
  from .document_store import QdrantDocumentStore
6
+ from .migrate_to_sparse import migrate_to_sparse_embeddings_support
6
7
 
7
- __all__ = ("QdrantDocumentStore",)
8
+ __all__ = ("QdrantDocumentStore", "migrate_to_sparse_embeddings_support")
@@ -453,7 +453,9 @@ class QdrantDocumentStore:
453
453
  f"Collection '{collection_name}' already exists in Qdrant, "
454
454
  f"but it has been originally created without sparse embedding vectors. "
455
455
  f"If you want to use that collection, you can set `use_sparse_embeddings=False`. "
456
- f"To use sparse embeddings, you need to recreate the collection or migrate the existing one."
456
+ f"To use sparse embeddings, you need to recreate the collection or migrate the existing one. "
457
+ f"See `migrate_to_sparse_embeddings_support` function in "
458
+ f"`haystack_integrations.document_stores.qdrant`."
457
459
  )
458
460
  raise QdrantStoreError(msg)
459
461
 
@@ -0,0 +1,127 @@
1
+ import logging
2
+ import time
3
+
4
+ from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
5
+ from qdrant_client.http import models
6
+
7
+ logger = logging.getLogger(__name__)
8
+ logger.addHandler(logging.StreamHandler())
9
+ logger.setLevel(logging.INFO)
10
+
11
+
12
+ def migrate_to_sparse_embeddings_support(old_document_store: QdrantDocumentStore, new_index: str):
13
+ """
14
+ Utility function to migrate an existing `QdrantDocumentStore` to a new one with support for sparse embeddings.
15
+
16
+ With qdrant-hasytack v3.3.0, support for sparse embeddings has been added to `QdrantDocumentStore`.
17
+ This feature is disabled by default and can be enabled by setting `use_sparse_embeddings=True` in the init
18
+ parameters. To store sparse embeddings, Document stores/collections created with this feature disabled must be
19
+ migrated to a new collection with the feature enabled.
20
+
21
+ This utility function applies to on-premise and cloud instances of Qdrant.
22
+ It does not work for local in-memory/disk-persisted instances.
23
+
24
+ The utility function merely migrates the existing documents so that they are ready to store sparse embeddings.
25
+ It does not compute sparse embeddings. To do this, you need to use a Sparse Embedder component.
26
+
27
+ Example usage:
28
+ ```python
29
+ from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
30
+ from haystack_integrations.document_stores.qdrant import migrate_to_sparse_embeddings_support
31
+
32
+ old_document_store = QdrantDocumentStore(url="http://localhost:6333",
33
+ index="Document",
34
+ use_sparse_embeddings=False)
35
+ new_index = "Document_sparse"
36
+
37
+ migrate_to_sparse_embeddings_support(old_document_store, new_index)
38
+
39
+ # now you can use the new document store with sparse embeddings support
40
+ new_document_store = QdrantDocumentStore(url="http://localhost:6333",
41
+ index=new_index,
42
+ use_sparse_embeddings=True)
43
+ ```
44
+
45
+
46
+ :param old_document_store: The existing QdrantDocumentStore instance to migrate from.
47
+ :param new_index: The name of the new index/collection to create with sparse embeddings support.
48
+ """
49
+
50
+ start = time.time()
51
+
52
+ old_collection_name = old_document_store.index
53
+ total_points = old_document_store.count_documents()
54
+
55
+ # copy the init parameters of the old document to create a new document store
56
+ init_parameters = old_document_store.to_dict()["init_parameters"]
57
+ init_parameters["index"] = new_index
58
+ init_parameters["use_sparse_embeddings"] = True
59
+ init_parameters["recreate_index"] = True
60
+
61
+ new_document_store = QdrantDocumentStore(**init_parameters)
62
+
63
+ client = new_document_store.client
64
+
65
+ original_indexing_threshold = client.get_collection(
66
+ collection_name=new_index
67
+ ).config.optimizer_config.indexing_threshold
68
+
69
+ # disable indexing while adding points so it's faster
70
+ # https://qdrant.tech/documentation/concepts/collections/#update-collection-parameters
71
+ client.update_collection(
72
+ collection_name=new_index,
73
+ optimizer_config=models.OptimizersConfigDiff(indexing_threshold=0),
74
+ )
75
+
76
+ # migration loop
77
+ next_page_offset = "first"
78
+ offset = None
79
+ points_transmitted = 0
80
+
81
+ while next_page_offset:
82
+ if next_page_offset != "first":
83
+ offset = next_page_offset
84
+
85
+ # get the records
86
+ records = client.scroll(
87
+ collection_name=old_collection_name,
88
+ limit=100,
89
+ with_payload=True,
90
+ with_vectors=True,
91
+ offset=offset,
92
+ )
93
+
94
+ next_page_offset = records[1]
95
+ current_records = records[0]
96
+
97
+ points = []
98
+
99
+ for record in current_records:
100
+ vector = {}
101
+
102
+ vector["text-dense"] = record.vector
103
+
104
+ point = {"id": record.id, "payload": record.payload, "vector": vector}
105
+
106
+ embedding_point = models.PointStruct(**point)
107
+ points.append(embedding_point)
108
+
109
+ client.upsert(collection_name=new_index, points=points)
110
+
111
+ points_transmitted += len(points)
112
+ points_remaining = total_points - points_transmitted
113
+
114
+ message = (
115
+ f"Points transmitted: {points_transmitted}/{total_points}\n"
116
+ f"Percent done {points_transmitted/total_points*100:.2f}%\n"
117
+ f"Time elapsed: {time.time() - start:.2f} seconds\n"
118
+ f"Time remaining: {(((time.time() - start) / points_transmitted) * points_remaining) / 60:.2f} minutes\n"
119
+ f"Current offset: {next_page_offset}\n"
120
+ )
121
+ logger.info(message)
122
+
123
+ # restore the original indexing threshold (re-enable indexing)
124
+ client.update_collection(
125
+ collection_name=new_index,
126
+ optimizer_config=models.OptimizersConfigDiff(indexing_threshold=original_indexing_threshold),
127
+ )
@@ -8,7 +8,7 @@ from haystack.testing.document_store import (
8
8
  )
9
9
  from haystack_integrations.components.retrievers.qdrant import (
10
10
  QdrantEmbeddingRetriever,
11
- QdrantSparseRetriever,
11
+ QdrantSparseEmbeddingRetriever,
12
12
  )
13
13
  from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
14
14
 
@@ -135,10 +135,10 @@ class TestQdrantRetriever(FilterableDocsFixtureMixin):
135
135
  assert document.embedding is None
136
136
 
137
137
 
138
- class TestQdrantSparseRetriever(FilterableDocsFixtureMixin):
138
+ class TestQdrantSparseEmbeddingRetriever(FilterableDocsFixtureMixin):
139
139
  def test_init_default(self):
140
140
  document_store = QdrantDocumentStore(location=":memory:", index="test")
141
- retriever = QdrantSparseRetriever(document_store=document_store)
141
+ retriever = QdrantSparseEmbeddingRetriever(document_store=document_store)
142
142
  assert retriever._document_store == document_store
143
143
  assert retriever._filters is None
144
144
  assert retriever._top_k == 10
@@ -146,10 +146,10 @@ class TestQdrantSparseRetriever(FilterableDocsFixtureMixin):
146
146
 
147
147
  def test_to_dict(self):
148
148
  document_store = QdrantDocumentStore(location=":memory:", index="test")
149
- retriever = QdrantSparseRetriever(document_store=document_store)
149
+ retriever = QdrantSparseEmbeddingRetriever(document_store=document_store)
150
150
  res = retriever.to_dict()
151
151
  assert res == {
152
- "type": "haystack_integrations.components.retrievers.qdrant.retriever.QdrantSparseRetriever",
152
+ "type": "haystack_integrations.components.retrievers.qdrant.retriever.QdrantSparseEmbeddingRetriever",
153
153
  "init_parameters": {
154
154
  "document_store": {
155
155
  "type": "haystack_integrations.document_stores.qdrant.document_store.QdrantDocumentStore",
@@ -202,7 +202,7 @@ class TestQdrantSparseRetriever(FilterableDocsFixtureMixin):
202
202
 
203
203
  def test_from_dict(self):
204
204
  data = {
205
- "type": "haystack_integrations.components.retrievers.qdrant.retriever.QdrantSparseRetriever",
205
+ "type": "haystack_integrations.components.retrievers.qdrant.retriever.QdrantSparseEmbeddingRetriever",
206
206
  "init_parameters": {
207
207
  "document_store": {
208
208
  "init_parameters": {"location": ":memory:", "index": "test"},
@@ -214,7 +214,7 @@ class TestQdrantSparseRetriever(FilterableDocsFixtureMixin):
214
214
  "return_embedding": True,
215
215
  },
216
216
  }
217
- retriever = QdrantSparseRetriever.from_dict(data)
217
+ retriever = QdrantSparseEmbeddingRetriever.from_dict(data)
218
218
  assert isinstance(retriever._document_store, QdrantDocumentStore)
219
219
  assert retriever._document_store.index == "test"
220
220
  assert retriever._filters is None
@@ -241,7 +241,7 @@ class TestQdrantSparseRetriever(FilterableDocsFixtureMixin):
241
241
  doc.sparse_embedding = SparseEmbedding.from_dict(self._generate_mocked_sparse_embedding(1)[0])
242
242
 
243
243
  document_store.write_documents(filterable_docs)
244
- retriever = QdrantSparseRetriever(document_store=document_store)
244
+ retriever = QdrantSparseEmbeddingRetriever(document_store=document_store)
245
245
  sparse_embedding = SparseEmbedding(indices=[0, 1, 2, 3], values=[0.1, 0.8, 0.05, 0.33])
246
246
 
247
247
  results: List[Document] = retriever.run(query_sparse_embedding=sparse_embedding)["documents"]
@@ -1,7 +0,0 @@
1
- # SPDX-FileCopyrightText: 2023-present deepset GmbH <info@deepset.ai>
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
-
5
- from .retriever import QdrantEmbeddingRetriever, QdrantSparseRetriever
6
-
7
- __all__ = ("QdrantEmbeddingRetriever", "QdrantSparseRetriever")