qdesc 0.1.9__tar.gz → 0.1.9.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qdesc might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: qdesc
3
- Version: 0.1.9
3
+ Version: 0.1.9.1
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -22,19 +22,17 @@ def desc(df):
22
22
  result = anderson(df[column])
23
23
  statistic = result.statistic
24
24
  critical_values = result.critical_values
25
- # Only select the 5% and 1% significance levels
25
+ # Only select the 5% levels
26
26
  selected_critical_values = {
27
- '5% crit_value': critical_values[2], # 5% critical value
28
- '1% crit_value': critical_values[4] # 1% critical value
27
+ '5% crit_value': critical_values[2]
29
28
  }
30
29
  # Store the results in a dictionary
31
30
  results[column] = {
32
31
  'AD_stat': statistic,
33
- **selected_critical_values # Add critical values for 5% and 1% levels
32
+ **selected_critical_values # Add critical values for 5%
34
33
  }
35
34
  # Convert the results dictionary into a DataFrame
36
35
  anderson_df = pd.DataFrame.from_dict(results, orient='index')
37
-
38
36
  xl = x.iloc[:, :4]
39
37
  xr = x.iloc[:, 4:]
40
38
  x_df = np.round(pd.concat([xl, mad_df, xr, anderson_df], axis=1),2)
@@ -60,8 +58,7 @@ def grp_desc(df, numeric_col, group_col):
60
58
  'min': np.nan,
61
59
  'max': np.nan,
62
60
  'anderson_stat': np.nan,
63
- 'crit_5%': np.nan,
64
- 'crit_1%': np.nan
61
+ 'crit_5%': np.nan
65
62
  }
66
63
  else:
67
64
  ad_result = anderson(data, dist='norm')
@@ -74,9 +71,8 @@ def grp_desc(df, numeric_col, group_col):
74
71
  'mad': median_abs_deviation(data),
75
72
  'min': data.min(),
76
73
  'max': data.max(),
77
- 'anderson_stat': ad_result.statistic,
74
+ 'AD_stat': ad_result.statistic,
78
75
  'crit_5%': ad_result.critical_values[2], # 5% is the third value
79
- 'crit_1%': ad_result.critical_values[3], # 1% is the fourth value
80
76
  }
81
77
  results.append(stats)
82
78
  return np.round(pd.DataFrame(results),2)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: qdesc
3
- Version: 0.1.9
3
+ Version: 0.1.9.1
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -7,7 +7,7 @@ long_description = (this_directory / "README.md").read_text()
7
7
 
8
8
  setup(
9
9
  name='qdesc',
10
- version='0.1.9',
10
+ version='0.1.9.1',
11
11
  packages=find_packages(),
12
12
  install_requires=[
13
13
  # List your dependencies here, e.g., pandas if your function requires it
File without changes
File without changes
File without changes