qdesc 0.1.8__tar.gz → 0.1.8.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of qdesc might be problematic. Click here for more details.
- {qdesc-0.1.8 → qdesc-0.1.8.2}/PKG-INFO +21 -5
- {qdesc-0.1.8 → qdesc-0.1.8.2}/README.md +20 -4
- {qdesc-0.1.8 → qdesc-0.1.8.2}/qdesc.egg-info/PKG-INFO +21 -5
- {qdesc-0.1.8 → qdesc-0.1.8.2}/setup.py +1 -1
- {qdesc-0.1.8 → qdesc-0.1.8.2}/LICENCE.txt +0 -0
- {qdesc-0.1.8 → qdesc-0.1.8.2}/qdesc/__init__.py +0 -0
- {qdesc-0.1.8 → qdesc-0.1.8.2}/qdesc.egg-info/SOURCES.txt +0 -0
- {qdesc-0.1.8 → qdesc-0.1.8.2}/qdesc.egg-info/dependency_links.txt +0 -0
- {qdesc-0.1.8 → qdesc-0.1.8.2}/qdesc.egg-info/top_level.txt +0 -0
- {qdesc-0.1.8 → qdesc-0.1.8.2}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: qdesc
|
|
3
|
-
Version: 0.1.8
|
|
3
|
+
Version: 0.1.8.2
|
|
4
4
|
Summary: Quick and Easy way to do descriptive analysis.
|
|
5
5
|
Author: Paolo Hilado
|
|
6
6
|
Author-email: datasciencepgh@proton.me
|
|
@@ -53,15 +53,31 @@ Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE
|
|
|
53
53
|
* Counts - the number of observations
|
|
54
54
|
* Percentage - percentage of observations from total.
|
|
55
55
|
|
|
56
|
+
## qd.normcheck_dashboard Function
|
|
57
|
+
Run the function qd.normcheck_dashboard(df) to efficiently check each numeric variable for normality of its distribution. It will compute the Anderson-Darling statistic and
|
|
58
|
+
create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
|
|
56
59
|
|
|
57
|
-
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
58
60
|
|
|
59
61
|
## Installation
|
|
60
62
|
pip install qdesc
|
|
61
63
|
|
|
62
|
-
##
|
|
63
|
-
###
|
|
64
|
-
|
|
64
|
+
## Sample use of qdesc functions
|
|
65
|
+
###Creating a sample dataframe
|
|
66
|
+
import pandas as pd
|
|
67
|
+
import numpy as np
|
|
68
|
+
### Set seed for reproducibility
|
|
69
|
+
np.random.seed(21)
|
|
70
|
+
### Create two continuous variables
|
|
71
|
+
var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
|
|
72
|
+
var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
|
|
73
|
+
### Create DataFrame
|
|
74
|
+
df = pd.DataFrame({
|
|
75
|
+
'Normal_Variable': var1,
|
|
76
|
+
'Uniform_Variable': var2
|
|
77
|
+
})
|
|
78
|
+
## Using the qdesc function
|
|
79
|
+
import qdesc as qd
|
|
80
|
+
qd.desc(df)
|
|
65
81
|
|
|
66
82
|
## License
|
|
67
83
|
This project is licensed under the GPL-3 License. See the LICENSE file for more details.
|
|
@@ -44,15 +44,31 @@ Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE
|
|
|
44
44
|
* Counts - the number of observations
|
|
45
45
|
* Percentage - percentage of observations from total.
|
|
46
46
|
|
|
47
|
+
## qd.normcheck_dashboard Function
|
|
48
|
+
Run the function qd.normcheck_dashboard(df) to efficiently check each numeric variable for normality of its distribution. It will compute the Anderson-Darling statistic and
|
|
49
|
+
create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
|
|
47
50
|
|
|
48
|
-
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
49
51
|
|
|
50
52
|
## Installation
|
|
51
53
|
pip install qdesc
|
|
52
54
|
|
|
53
|
-
##
|
|
54
|
-
###
|
|
55
|
-
|
|
55
|
+
## Sample use of qdesc functions
|
|
56
|
+
###Creating a sample dataframe
|
|
57
|
+
import pandas as pd
|
|
58
|
+
import numpy as np
|
|
59
|
+
### Set seed for reproducibility
|
|
60
|
+
np.random.seed(21)
|
|
61
|
+
### Create two continuous variables
|
|
62
|
+
var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
|
|
63
|
+
var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
|
|
64
|
+
### Create DataFrame
|
|
65
|
+
df = pd.DataFrame({
|
|
66
|
+
'Normal_Variable': var1,
|
|
67
|
+
'Uniform_Variable': var2
|
|
68
|
+
})
|
|
69
|
+
## Using the qdesc function
|
|
70
|
+
import qdesc as qd
|
|
71
|
+
qd.desc(df)
|
|
56
72
|
|
|
57
73
|
## License
|
|
58
74
|
This project is licensed under the GPL-3 License. See the LICENSE file for more details.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: qdesc
|
|
3
|
-
Version: 0.1.8
|
|
3
|
+
Version: 0.1.8.2
|
|
4
4
|
Summary: Quick and Easy way to do descriptive analysis.
|
|
5
5
|
Author: Paolo Hilado
|
|
6
6
|
Author-email: datasciencepgh@proton.me
|
|
@@ -53,15 +53,31 @@ Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE
|
|
|
53
53
|
* Counts - the number of observations
|
|
54
54
|
* Percentage - percentage of observations from total.
|
|
55
55
|
|
|
56
|
+
## qd.normcheck_dashboard Function
|
|
57
|
+
Run the function qd.normcheck_dashboard(df) to efficiently check each numeric variable for normality of its distribution. It will compute the Anderson-Darling statistic and
|
|
58
|
+
create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
|
|
56
59
|
|
|
57
|
-
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
58
60
|
|
|
59
61
|
## Installation
|
|
60
62
|
pip install qdesc
|
|
61
63
|
|
|
62
|
-
##
|
|
63
|
-
###
|
|
64
|
-
|
|
64
|
+
## Sample use of qdesc functions
|
|
65
|
+
###Creating a sample dataframe
|
|
66
|
+
import pandas as pd
|
|
67
|
+
import numpy as np
|
|
68
|
+
### Set seed for reproducibility
|
|
69
|
+
np.random.seed(21)
|
|
70
|
+
### Create two continuous variables
|
|
71
|
+
var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
|
|
72
|
+
var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
|
|
73
|
+
### Create DataFrame
|
|
74
|
+
df = pd.DataFrame({
|
|
75
|
+
'Normal_Variable': var1,
|
|
76
|
+
'Uniform_Variable': var2
|
|
77
|
+
})
|
|
78
|
+
## Using the qdesc function
|
|
79
|
+
import qdesc as qd
|
|
80
|
+
qd.desc(df)
|
|
65
81
|
|
|
66
82
|
## License
|
|
67
83
|
This project is licensed under the GPL-3 License. See the LICENSE file for more details.
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|