qdesc 0.1.8__tar.gz → 0.1.8.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qdesc might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qdesc
3
- Version: 0.1.8
3
+ Version: 0.1.8.2
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -53,15 +53,31 @@ Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE
53
53
  * Counts - the number of observations
54
54
  * Percentage - percentage of observations from total.
55
55
 
56
+ ## qd.normcheck_dashboard Function
57
+ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric variable for normality of its distribution. It will compute the Anderson-Darling statistic and
58
+ create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
56
59
 
57
- Later versions will include data visualizations handy for exploring the distribution of the data set.
58
60
 
59
61
  ## Installation
60
62
  pip install qdesc
61
63
 
62
- ## Usage - doing descriptive analysis using qdesc
63
- ### import qdesc as qd
64
- ### qd.desc(df)
64
+ ## Sample use of qdesc functions
65
+ ###Creating a sample dataframe
66
+ import pandas as pd
67
+ import numpy as np
68
+ ### Set seed for reproducibility
69
+ np.random.seed(21)
70
+ ### Create two continuous variables
71
+ var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
72
+ var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
73
+ ### Create DataFrame
74
+ df = pd.DataFrame({
75
+ 'Normal_Variable': var1,
76
+ 'Uniform_Variable': var2
77
+ })
78
+ ## Using the qdesc function
79
+ import qdesc as qd
80
+ qd.desc(df)
65
81
 
66
82
  ## License
67
83
  This project is licensed under the GPL-3 License. See the LICENSE file for more details.
@@ -44,15 +44,31 @@ Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE
44
44
  * Counts - the number of observations
45
45
  * Percentage - percentage of observations from total.
46
46
 
47
+ ## qd.normcheck_dashboard Function
48
+ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric variable for normality of its distribution. It will compute the Anderson-Darling statistic and
49
+ create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
47
50
 
48
- Later versions will include data visualizations handy for exploring the distribution of the data set.
49
51
 
50
52
  ## Installation
51
53
  pip install qdesc
52
54
 
53
- ## Usage - doing descriptive analysis using qdesc
54
- ### import qdesc as qd
55
- ### qd.desc(df)
55
+ ## Sample use of qdesc functions
56
+ ###Creating a sample dataframe
57
+ import pandas as pd
58
+ import numpy as np
59
+ ### Set seed for reproducibility
60
+ np.random.seed(21)
61
+ ### Create two continuous variables
62
+ var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
63
+ var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
64
+ ### Create DataFrame
65
+ df = pd.DataFrame({
66
+ 'Normal_Variable': var1,
67
+ 'Uniform_Variable': var2
68
+ })
69
+ ## Using the qdesc function
70
+ import qdesc as qd
71
+ qd.desc(df)
56
72
 
57
73
  ## License
58
74
  This project is licensed under the GPL-3 License. See the LICENSE file for more details.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qdesc
3
- Version: 0.1.8
3
+ Version: 0.1.8.2
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -53,15 +53,31 @@ Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE
53
53
  * Counts - the number of observations
54
54
  * Percentage - percentage of observations from total.
55
55
 
56
+ ## qd.normcheck_dashboard Function
57
+ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric variable for normality of its distribution. It will compute the Anderson-Darling statistic and
58
+ create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
56
59
 
57
- Later versions will include data visualizations handy for exploring the distribution of the data set.
58
60
 
59
61
  ## Installation
60
62
  pip install qdesc
61
63
 
62
- ## Usage - doing descriptive analysis using qdesc
63
- ### import qdesc as qd
64
- ### qd.desc(df)
64
+ ## Sample use of qdesc functions
65
+ ###Creating a sample dataframe
66
+ import pandas as pd
67
+ import numpy as np
68
+ ### Set seed for reproducibility
69
+ np.random.seed(21)
70
+ ### Create two continuous variables
71
+ var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
72
+ var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
73
+ ### Create DataFrame
74
+ df = pd.DataFrame({
75
+ 'Normal_Variable': var1,
76
+ 'Uniform_Variable': var2
77
+ })
78
+ ## Using the qdesc function
79
+ import qdesc as qd
80
+ qd.desc(df)
65
81
 
66
82
  ## License
67
83
  This project is licensed under the GPL-3 License. See the LICENSE file for more details.
@@ -7,7 +7,7 @@ long_description = (this_directory / "README.md").read_text()
7
7
 
8
8
  setup(
9
9
  name='qdesc',
10
- version='0.1.8',
10
+ version='0.1.8.2',
11
11
  packages=find_packages(),
12
12
  install_requires=[
13
13
  # List your dependencies here, e.g., pandas if your function requires it
File without changes
File without changes
File without changes