qdesc 0.1.8.1__tar.gz → 0.1.8.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qdesc might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qdesc
3
- Version: 0.1.8.1
3
+ Version: 0.1.8.3
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -58,29 +58,29 @@ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric va
58
58
  create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
59
59
 
60
60
 
61
- Later versions will include data visualizations handy for exploring the distribution of the data set.
62
-
63
61
  ## Installation
64
62
  pip install qdesc
65
63
 
66
64
  ## Sample use of qdesc functions
67
- # Creating a sample dataframe
65
+
66
+ ## Creating a sample dataframe
68
67
  import pandas as pd
69
68
  import numpy as np
70
69
 
71
- # Set seed for reproducibility
70
+ ## Set seed for reproducibility
72
71
  np.random.seed(21)
73
72
 
74
- # Create two continuous variables
75
- var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
76
- var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
73
+ ## Create two continuous variables
74
+ var1 = np.random.normal(loc=0, scale=1, size=1000)
75
+ var2 = np.random.uniform(low=10, high=50, size=1000)
77
76
 
78
- # Create DataFrame
77
+ ## Create DataFrame
79
78
  df = pd.DataFrame({
80
79
  'Normal_Variable': var1,
81
80
  'Uniform_Variable': var2
82
81
  })
83
- # Using the qdesc function
82
+
83
+ ## Using the qdesc function
84
84
  import qdesc as qd
85
85
  qd.desc(df)
86
86
 
@@ -49,29 +49,29 @@ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric va
49
49
  create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
50
50
 
51
51
 
52
- Later versions will include data visualizations handy for exploring the distribution of the data set.
53
-
54
52
  ## Installation
55
53
  pip install qdesc
56
54
 
57
55
  ## Sample use of qdesc functions
58
- # Creating a sample dataframe
56
+
57
+ ## Creating a sample dataframe
59
58
  import pandas as pd
60
59
  import numpy as np
61
60
 
62
- # Set seed for reproducibility
61
+ ## Set seed for reproducibility
63
62
  np.random.seed(21)
64
63
 
65
- # Create two continuous variables
66
- var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
67
- var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
64
+ ## Create two continuous variables
65
+ var1 = np.random.normal(loc=0, scale=1, size=1000)
66
+ var2 = np.random.uniform(low=10, high=50, size=1000)
68
67
 
69
- # Create DataFrame
68
+ ## Create DataFrame
70
69
  df = pd.DataFrame({
71
70
  'Normal_Variable': var1,
72
71
  'Uniform_Variable': var2
73
72
  })
74
- # Using the qdesc function
73
+
74
+ ## Using the qdesc function
75
75
  import qdesc as qd
76
76
  qd.desc(df)
77
77
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qdesc
3
- Version: 0.1.8.1
3
+ Version: 0.1.8.3
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -58,29 +58,29 @@ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric va
58
58
  create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
59
59
 
60
60
 
61
- Later versions will include data visualizations handy for exploring the distribution of the data set.
62
-
63
61
  ## Installation
64
62
  pip install qdesc
65
63
 
66
64
  ## Sample use of qdesc functions
67
- # Creating a sample dataframe
65
+
66
+ ## Creating a sample dataframe
68
67
  import pandas as pd
69
68
  import numpy as np
70
69
 
71
- # Set seed for reproducibility
70
+ ## Set seed for reproducibility
72
71
  np.random.seed(21)
73
72
 
74
- # Create two continuous variables
75
- var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
76
- var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
73
+ ## Create two continuous variables
74
+ var1 = np.random.normal(loc=0, scale=1, size=1000)
75
+ var2 = np.random.uniform(low=10, high=50, size=1000)
77
76
 
78
- # Create DataFrame
77
+ ## Create DataFrame
79
78
  df = pd.DataFrame({
80
79
  'Normal_Variable': var1,
81
80
  'Uniform_Variable': var2
82
81
  })
83
- # Using the qdesc function
82
+
83
+ ## Using the qdesc function
84
84
  import qdesc as qd
85
85
  qd.desc(df)
86
86
 
@@ -7,7 +7,7 @@ long_description = (this_directory / "README.md").read_text()
7
7
 
8
8
  setup(
9
9
  name='qdesc',
10
- version='0.1.8.1',
10
+ version='0.1.8.3',
11
11
  packages=find_packages(),
12
12
  install_requires=[
13
13
  # List your dependencies here, e.g., pandas if your function requires it
File without changes
File without changes
File without changes