qdesc 0.1.8.1__tar.gz → 0.1.8.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qdesc might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qdesc
3
- Version: 0.1.8.1
3
+ Version: 0.1.8.2
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -58,29 +58,24 @@ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric va
58
58
  create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
59
59
 
60
60
 
61
- Later versions will include data visualizations handy for exploring the distribution of the data set.
62
-
63
61
  ## Installation
64
62
  pip install qdesc
65
63
 
66
64
  ## Sample use of qdesc functions
67
- # Creating a sample dataframe
65
+ ###Creating a sample dataframe
68
66
  import pandas as pd
69
67
  import numpy as np
70
-
71
- # Set seed for reproducibility
68
+ ### Set seed for reproducibility
72
69
  np.random.seed(21)
73
-
74
- # Create two continuous variables
70
+ ### Create two continuous variables
75
71
  var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
76
72
  var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
77
-
78
- # Create DataFrame
73
+ ### Create DataFrame
79
74
  df = pd.DataFrame({
80
75
  'Normal_Variable': var1,
81
76
  'Uniform_Variable': var2
82
77
  })
83
- # Using the qdesc function
78
+ ## Using the qdesc function
84
79
  import qdesc as qd
85
80
  qd.desc(df)
86
81
 
@@ -49,29 +49,24 @@ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric va
49
49
  create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
50
50
 
51
51
 
52
- Later versions will include data visualizations handy for exploring the distribution of the data set.
53
-
54
52
  ## Installation
55
53
  pip install qdesc
56
54
 
57
55
  ## Sample use of qdesc functions
58
- # Creating a sample dataframe
56
+ ###Creating a sample dataframe
59
57
  import pandas as pd
60
58
  import numpy as np
61
-
62
- # Set seed for reproducibility
59
+ ### Set seed for reproducibility
63
60
  np.random.seed(21)
64
-
65
- # Create two continuous variables
61
+ ### Create two continuous variables
66
62
  var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
67
63
  var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
68
-
69
- # Create DataFrame
64
+ ### Create DataFrame
70
65
  df = pd.DataFrame({
71
66
  'Normal_Variable': var1,
72
67
  'Uniform_Variable': var2
73
68
  })
74
- # Using the qdesc function
69
+ ## Using the qdesc function
75
70
  import qdesc as qd
76
71
  qd.desc(df)
77
72
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: qdesc
3
- Version: 0.1.8.1
3
+ Version: 0.1.8.2
4
4
  Summary: Quick and Easy way to do descriptive analysis.
5
5
  Author: Paolo Hilado
6
6
  Author-email: datasciencepgh@proton.me
@@ -58,29 +58,24 @@ Run the function qd.normcheck_dashboard(df) to efficiently check each numeric va
58
58
  create visualizations (i.e., qq-plot, histogram, and boxplots) for checking whether the distribution is approximately normal.
59
59
 
60
60
 
61
- Later versions will include data visualizations handy for exploring the distribution of the data set.
62
-
63
61
  ## Installation
64
62
  pip install qdesc
65
63
 
66
64
  ## Sample use of qdesc functions
67
- # Creating a sample dataframe
65
+ ###Creating a sample dataframe
68
66
  import pandas as pd
69
67
  import numpy as np
70
-
71
- # Set seed for reproducibility
68
+ ### Set seed for reproducibility
72
69
  np.random.seed(21)
73
-
74
- # Create two continuous variables
70
+ ### Create two continuous variables
75
71
  var1 = np.random.normal(loc=0, scale=1, size=1000) # Normal distribution
76
72
  var2 = np.random.uniform(low=10, high=50, size=1000) # Uniform distribution
77
-
78
- # Create DataFrame
73
+ ### Create DataFrame
79
74
  df = pd.DataFrame({
80
75
  'Normal_Variable': var1,
81
76
  'Uniform_Variable': var2
82
77
  })
83
- # Using the qdesc function
78
+ ## Using the qdesc function
84
79
  import qdesc as qd
85
80
  qd.desc(df)
86
81
 
@@ -7,7 +7,7 @@ long_description = (this_directory / "README.md").read_text()
7
7
 
8
8
  setup(
9
9
  name='qdesc',
10
- version='0.1.8.1',
10
+ version='0.1.8.2',
11
11
  packages=find_packages(),
12
12
  install_requires=[
13
13
  # List your dependencies here, e.g., pandas if your function requires it
File without changes
File without changes
File without changes