qdesc 0.1.5__tar.gz → 0.1.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of qdesc might be problematic. Click here for more details.
- {qdesc-0.1.5/qdesc.egg-info → qdesc-0.1.6}/PKG-INFO +10 -1
- qdesc-0.1.5/PKG-INFO → qdesc-0.1.6/README.md +73 -73
- {qdesc-0.1.5 → qdesc-0.1.6}/qdesc/__init__.py +33 -0
- qdesc-0.1.5/README.md → qdesc-0.1.6/qdesc.egg-info/PKG-INFO +82 -64
- {qdesc-0.1.5 → qdesc-0.1.6}/setup.py +1 -1
- {qdesc-0.1.5 → qdesc-0.1.6}/LICENCE.txt +0 -0
- {qdesc-0.1.5 → qdesc-0.1.6}/qdesc.egg-info/SOURCES.txt +0 -0
- {qdesc-0.1.5 → qdesc-0.1.6}/qdesc.egg-info/dependency_links.txt +0 -0
- {qdesc-0.1.5 → qdesc-0.1.6}/qdesc.egg-info/top_level.txt +0 -0
- {qdesc-0.1.5 → qdesc-0.1.6}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: qdesc
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.6
|
|
4
4
|
Summary: Quick and Easy way to do descriptive analysis.
|
|
5
5
|
Author: Paolo Hilado
|
|
6
6
|
Author-email: datasciencepgh@proton.me
|
|
@@ -21,6 +21,7 @@ Be sure to run the following prior to using the "qd.desc" function:
|
|
|
21
21
|
|
|
22
22
|
The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
|
|
23
23
|
|
|
24
|
+
## qd.desc Function
|
|
24
25
|
Run the function qd.desc(df) to get the following statistics:
|
|
25
26
|
* count - number of observations
|
|
26
27
|
* mean - measure of central tendency for normal distribution
|
|
@@ -33,17 +34,25 @@ Run the function qd.desc(df) to get the following statistics:
|
|
|
33
34
|
* 5% crit_value - critical value for a 5% Significance Level
|
|
34
35
|
* 1% crit_value - critical value for a 1% Significance Level
|
|
35
36
|
|
|
37
|
+
## qd.freqdist Function
|
|
36
38
|
Run the function qd.freqdist(df, "Variable Name") to easily create a frequency distribution for your chosen categorical variable with the following:
|
|
37
39
|
* Variable Levels (i.e., for Sex Variable: Male and Female)
|
|
38
40
|
* Counts - the number of observations
|
|
39
41
|
* Percentage - percentage of observations from total.
|
|
40
42
|
|
|
43
|
+
## qd.freqdist_a Function
|
|
41
44
|
Run the function qd.freqdist_a(df, ascending = FALSE) to easily create frequency distribution tables, arranged in descending manner (default) or ascending (TRUE), for all
|
|
42
45
|
the categorical variables in your data frame. The resulting table will include columns such as:
|
|
43
46
|
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
44
47
|
* Counts - the number of observations
|
|
45
48
|
* Percentage - percentage of observations from total.
|
|
46
49
|
|
|
50
|
+
## qd.freqdist_to_excel Function
|
|
51
|
+
Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE ) to easily create frequency distribution tables, arranged in descending manner (default) or ascending (TRUE), for all the categorical variables in your data frame and SAVED as separate sheets in the .xlsx File. The resulting table will include columns such as:
|
|
52
|
+
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
53
|
+
* Counts - the number of observations
|
|
54
|
+
* Percentage - percentage of observations from total.
|
|
55
|
+
|
|
47
56
|
|
|
48
57
|
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
49
58
|
|
|
@@ -1,73 +1,73 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
-
|
|
18
|
-
-
|
|
19
|
-
-
|
|
20
|
-
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
*
|
|
26
|
-
*
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
*
|
|
31
|
-
*
|
|
32
|
-
*
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
* Variable
|
|
38
|
-
* Counts - the number of observations
|
|
39
|
-
* Percentage - percentage of observations from total.
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
the categorical variables in your data frame. The resulting table will include columns such as:
|
|
43
|
-
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
44
|
-
* Counts - the number of observations
|
|
45
|
-
* Percentage - percentage of observations from total.
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
49
|
-
|
|
50
|
-
## Installation
|
|
51
|
-
pip install qdesc
|
|
52
|
-
|
|
53
|
-
## Usage - doing descriptive analysis using qdesc
|
|
54
|
-
### import qdesc as qd
|
|
55
|
-
### qd.desc(df)
|
|
56
|
-
|
|
57
|
-
## License
|
|
58
|
-
This project is licensed under the GPL-3 License. See the LICENSE file for more details.
|
|
59
|
-
|
|
60
|
-
## Acknowledgements
|
|
61
|
-
Acknowledgement of the libraries used by this package...
|
|
62
|
-
|
|
63
|
-
### Pandas
|
|
64
|
-
Pandas is distributed under the BSD 3-Clause License, pandas is developed by Pandas contributors. Copyright (c) 2008-2024, the pandas development team All rights reserved.
|
|
65
|
-
### NumPy
|
|
66
|
-
NumPy is distributed under the BSD 3-Clause License, numpy is developed by NumPy contributors. Copyright (c) 2005-2024, NumPy Developers. All rights reserved.
|
|
67
|
-
### SciPy
|
|
68
|
-
SciPy is distributed under the BSD License, scipy is developed by SciPy contributors. Copyright (c) 2001-2024, SciPy Developers. All rights reserved.
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
1
|
+
# qdesc - Quick and Easy Descriptive Analysis
|
|
2
|
+
|
|
3
|
+
## Overview
|
|
4
|
+
This is a package for quick and easy descriptive analysis.
|
|
5
|
+
Required packages include: pandas, numpy, and SciPy version 1.14.1
|
|
6
|
+
Be sure to run the following prior to using the "qd.desc" function:
|
|
7
|
+
|
|
8
|
+
- import pandas as pd
|
|
9
|
+
- import numpy as np
|
|
10
|
+
- from scipy.stats import anderson
|
|
11
|
+
- import qdesc as qd
|
|
12
|
+
|
|
13
|
+
The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
|
|
14
|
+
|
|
15
|
+
## qd.desc Function
|
|
16
|
+
Run the function qd.desc(df) to get the following statistics:
|
|
17
|
+
* count - number of observations
|
|
18
|
+
* mean - measure of central tendency for normal distribution
|
|
19
|
+
* std - measure of spread for normal distribution
|
|
20
|
+
* median - measure of central tendency for skewed distributions or those with outliers
|
|
21
|
+
* MAD - measure of spread for skewed distributions or those with outliers; this is manual Median Absolute Deviation (MAD) which is more robust when dealing with non-normal distributions.
|
|
22
|
+
* min - lowest observed value
|
|
23
|
+
* max - highest observed value
|
|
24
|
+
* AD_stat - Anderson - Darling Statistic
|
|
25
|
+
* 5% crit_value - critical value for a 5% Significance Level
|
|
26
|
+
* 1% crit_value - critical value for a 1% Significance Level
|
|
27
|
+
|
|
28
|
+
## qd.freqdist Function
|
|
29
|
+
Run the function qd.freqdist(df, "Variable Name") to easily create a frequency distribution for your chosen categorical variable with the following:
|
|
30
|
+
* Variable Levels (i.e., for Sex Variable: Male and Female)
|
|
31
|
+
* Counts - the number of observations
|
|
32
|
+
* Percentage - percentage of observations from total.
|
|
33
|
+
|
|
34
|
+
## qd.freqdist_a Function
|
|
35
|
+
Run the function qd.freqdist_a(df, ascending = FALSE) to easily create frequency distribution tables, arranged in descending manner (default) or ascending (TRUE), for all
|
|
36
|
+
the categorical variables in your data frame. The resulting table will include columns such as:
|
|
37
|
+
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
38
|
+
* Counts - the number of observations
|
|
39
|
+
* Percentage - percentage of observations from total.
|
|
40
|
+
|
|
41
|
+
## qd.freqdist_to_excel Function
|
|
42
|
+
Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE ) to easily create frequency distribution tables, arranged in descending manner (default) or ascending (TRUE), for all the categorical variables in your data frame and SAVED as separate sheets in the .xlsx File. The resulting table will include columns such as:
|
|
43
|
+
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
44
|
+
* Counts - the number of observations
|
|
45
|
+
* Percentage - percentage of observations from total.
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
49
|
+
|
|
50
|
+
## Installation
|
|
51
|
+
pip install qdesc
|
|
52
|
+
|
|
53
|
+
## Usage - doing descriptive analysis using qdesc
|
|
54
|
+
### import qdesc as qd
|
|
55
|
+
### qd.desc(df)
|
|
56
|
+
|
|
57
|
+
## License
|
|
58
|
+
This project is licensed under the GPL-3 License. See the LICENSE file for more details.
|
|
59
|
+
|
|
60
|
+
## Acknowledgements
|
|
61
|
+
Acknowledgement of the libraries used by this package...
|
|
62
|
+
|
|
63
|
+
### Pandas
|
|
64
|
+
Pandas is distributed under the BSD 3-Clause License, pandas is developed by Pandas contributors. Copyright (c) 2008-2024, the pandas development team All rights reserved.
|
|
65
|
+
### NumPy
|
|
66
|
+
NumPy is distributed under the BSD 3-Clause License, numpy is developed by NumPy contributors. Copyright (c) 2005-2024, NumPy Developers. All rights reserved.
|
|
67
|
+
### SciPy
|
|
68
|
+
SciPy is distributed under the BSD License, scipy is developed by SciPy contributors. Copyright (c) 2001-2024, SciPy Developers. All rights reserved.
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
|
|
@@ -68,3 +68,36 @@ def freqdist_a(df, ascending=False):
|
|
|
68
68
|
results.append(distribution)
|
|
69
69
|
final_df = pd.concat(results, ignore_index=True)
|
|
70
70
|
return final_df
|
|
71
|
+
|
|
72
|
+
def clean_sheet_name(name):
|
|
73
|
+
# Remove invalid characters
|
|
74
|
+
name = re.sub(r'[:\\/?*\[\]]', '', name)
|
|
75
|
+
# Limit to 31 characters
|
|
76
|
+
name = name.strip()[:31]
|
|
77
|
+
return name
|
|
78
|
+
|
|
79
|
+
def freqdist_to_excel(df, output_path, sort_by='Percentage', ascending=False, top_n=None):
|
|
80
|
+
used_names = set()
|
|
81
|
+
with pd.ExcelWriter(output_path, engine='xlsxwriter') as writer:
|
|
82
|
+
for column in df.select_dtypes(include=['object', 'category']).columns:
|
|
83
|
+
frequency_table = df[column].value_counts()
|
|
84
|
+
percentage_table = df[column].value_counts(normalize=True) * 100
|
|
85
|
+
|
|
86
|
+
distribution = pd.DataFrame({
|
|
87
|
+
'Value': frequency_table.index,
|
|
88
|
+
'Count': frequency_table.values,
|
|
89
|
+
'Percentage': percentage_table.values
|
|
90
|
+
})
|
|
91
|
+
distribution = distribution.sort_values(by=sort_by, ascending=ascending)
|
|
92
|
+
if top_n is not None:
|
|
93
|
+
distribution = distribution.head(top_n)
|
|
94
|
+
# Generate safe sheet name
|
|
95
|
+
base_name = clean_sheet_name(column)
|
|
96
|
+
sheet_name = base_name
|
|
97
|
+
count = 1
|
|
98
|
+
while sheet_name.lower() in used_names:
|
|
99
|
+
sheet_name = f"{base_name[:28]}_{count}" # stay within 31 char limit
|
|
100
|
+
count += 1
|
|
101
|
+
used_names.add(sheet_name.lower())
|
|
102
|
+
distribution.to_excel(writer, sheet_name=sheet_name, index=False)
|
|
103
|
+
print(f"Frequency distributions written to {output_path}")
|
|
@@ -1,64 +1,82 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
-
|
|
9
|
-
|
|
10
|
-
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
*
|
|
29
|
-
*
|
|
30
|
-
*
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
*
|
|
35
|
-
*
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: qdesc
|
|
3
|
+
Version: 0.1.6
|
|
4
|
+
Summary: Quick and Easy way to do descriptive analysis.
|
|
5
|
+
Author: Paolo Hilado
|
|
6
|
+
Author-email: datasciencepgh@proton.me
|
|
7
|
+
Description-Content-Type: text/markdown
|
|
8
|
+
License-File: LICENCE.txt
|
|
9
|
+
|
|
10
|
+
# qdesc - Quick and Easy Descriptive Analysis
|
|
11
|
+
|
|
12
|
+
## Overview
|
|
13
|
+
This is a package for quick and easy descriptive analysis.
|
|
14
|
+
Required packages include: pandas, numpy, and SciPy version 1.14.1
|
|
15
|
+
Be sure to run the following prior to using the "qd.desc" function:
|
|
16
|
+
|
|
17
|
+
- import pandas as pd
|
|
18
|
+
- import numpy as np
|
|
19
|
+
- from scipy.stats import anderson
|
|
20
|
+
- import qdesc as qd
|
|
21
|
+
|
|
22
|
+
The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
|
|
23
|
+
|
|
24
|
+
## qd.desc Function
|
|
25
|
+
Run the function qd.desc(df) to get the following statistics:
|
|
26
|
+
* count - number of observations
|
|
27
|
+
* mean - measure of central tendency for normal distribution
|
|
28
|
+
* std - measure of spread for normal distribution
|
|
29
|
+
* median - measure of central tendency for skewed distributions or those with outliers
|
|
30
|
+
* MAD - measure of spread for skewed distributions or those with outliers; this is manual Median Absolute Deviation (MAD) which is more robust when dealing with non-normal distributions.
|
|
31
|
+
* min - lowest observed value
|
|
32
|
+
* max - highest observed value
|
|
33
|
+
* AD_stat - Anderson - Darling Statistic
|
|
34
|
+
* 5% crit_value - critical value for a 5% Significance Level
|
|
35
|
+
* 1% crit_value - critical value for a 1% Significance Level
|
|
36
|
+
|
|
37
|
+
## qd.freqdist Function
|
|
38
|
+
Run the function qd.freqdist(df, "Variable Name") to easily create a frequency distribution for your chosen categorical variable with the following:
|
|
39
|
+
* Variable Levels (i.e., for Sex Variable: Male and Female)
|
|
40
|
+
* Counts - the number of observations
|
|
41
|
+
* Percentage - percentage of observations from total.
|
|
42
|
+
|
|
43
|
+
## qd.freqdist_a Function
|
|
44
|
+
Run the function qd.freqdist_a(df, ascending = FALSE) to easily create frequency distribution tables, arranged in descending manner (default) or ascending (TRUE), for all
|
|
45
|
+
the categorical variables in your data frame. The resulting table will include columns such as:
|
|
46
|
+
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
47
|
+
* Counts - the number of observations
|
|
48
|
+
* Percentage - percentage of observations from total.
|
|
49
|
+
|
|
50
|
+
## qd.freqdist_to_excel Function
|
|
51
|
+
Run the function qd.freqdist_to_excel(df, "Name of file.xlsx", ascending = FALSE ) to easily create frequency distribution tables, arranged in descending manner (default) or ascending (TRUE), for all the categorical variables in your data frame and SAVED as separate sheets in the .xlsx File. The resulting table will include columns such as:
|
|
52
|
+
* Variable levels (i.e., for Satisfaction: Very Low, Low, Moderate, High, Very High)
|
|
53
|
+
* Counts - the number of observations
|
|
54
|
+
* Percentage - percentage of observations from total.
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
Later versions will include data visualizations handy for exploring the distribution of the data set.
|
|
58
|
+
|
|
59
|
+
## Installation
|
|
60
|
+
pip install qdesc
|
|
61
|
+
|
|
62
|
+
## Usage - doing descriptive analysis using qdesc
|
|
63
|
+
### import qdesc as qd
|
|
64
|
+
### qd.desc(df)
|
|
65
|
+
|
|
66
|
+
## License
|
|
67
|
+
This project is licensed under the GPL-3 License. See the LICENSE file for more details.
|
|
68
|
+
|
|
69
|
+
## Acknowledgements
|
|
70
|
+
Acknowledgement of the libraries used by this package...
|
|
71
|
+
|
|
72
|
+
### Pandas
|
|
73
|
+
Pandas is distributed under the BSD 3-Clause License, pandas is developed by Pandas contributors. Copyright (c) 2008-2024, the pandas development team All rights reserved.
|
|
74
|
+
### NumPy
|
|
75
|
+
NumPy is distributed under the BSD 3-Clause License, numpy is developed by NumPy contributors. Copyright (c) 2005-2024, NumPy Developers. All rights reserved.
|
|
76
|
+
### SciPy
|
|
77
|
+
SciPy is distributed under the BSD License, scipy is developed by SciPy contributors. Copyright (c) 2001-2024, SciPy Developers. All rights reserved.
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|