qdesc 0.0.4__tar.gz → 0.0.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of qdesc might be problematic. Click here for more details.

qdesc-0.0.6/PKG-INFO ADDED
@@ -0,0 +1,33 @@
1
+ Metadata-Version: 2.1
2
+ Name: qdesc
3
+ Version: 0.0.6
4
+ Summary: Quick and Easy way to do descriptive analysis.
5
+ Author: Paolo Hilado
6
+ Author-email: datasciencepgh@proton.me
7
+ Description-Content-Type: text/markdown
8
+ License-File: LICENCE.txt
9
+
10
+ This is a package for quick and easy descriptive analysis.
11
+ Required packages include: pandas, numpy, and SciPy version 1.14.1
12
+ Be sure to run the following prior to using the "qd.desc" function:
13
+
14
+ - import pandas as pd
15
+ - import numpy as np
16
+ - from scipy.stats import anderson
17
+ - import qdesc as qd
18
+
19
+ The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
20
+
21
+ Run the function qd.desc(df) to get the following statistics:
22
+ * count - number of observations
23
+ * mean - measure of central tendency for normal distribution
24
+ * std - measure of spread for normal distribution
25
+ * median - measure of central tendency for skewed distributions or those with outliers
26
+ * MAD - measure of spread for skewed distributions or those with outliers; this is manual Median Absolute Deviation (MAD) which is more robust when dealing with non-normal distributions.
27
+ * min - lowest observed value
28
+ * max - highest observed value
29
+ * AD_stat - Anderson - Darling Statistic
30
+ * 5% crit_value - critical value for a 5% Significance Level
31
+ * 1% crit_value - critical value for a 1% Significance Level
32
+
33
+ Later versions will include data visualizations handy for exploring the distribution of the data set.
@@ -0,0 +1,33 @@
1
+ Metadata-Version: 2.1
2
+ Name: qdesc
3
+ Version: 0.0.6
4
+ Summary: Quick and Easy way to do descriptive analysis.
5
+ Author: Paolo Hilado
6
+ Author-email: datasciencepgh@proton.me
7
+ Description-Content-Type: text/markdown
8
+ License-File: LICENCE.txt
9
+
10
+ This is a package for quick and easy descriptive analysis.
11
+ Required packages include: pandas, numpy, and SciPy version 1.14.1
12
+ Be sure to run the following prior to using the "qd.desc" function:
13
+
14
+ - import pandas as pd
15
+ - import numpy as np
16
+ - from scipy.stats import anderson
17
+ - import qdesc as qd
18
+
19
+ The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
20
+
21
+ Run the function qd.desc(df) to get the following statistics:
22
+ * count - number of observations
23
+ * mean - measure of central tendency for normal distribution
24
+ * std - measure of spread for normal distribution
25
+ * median - measure of central tendency for skewed distributions or those with outliers
26
+ * MAD - measure of spread for skewed distributions or those with outliers; this is manual Median Absolute Deviation (MAD) which is more robust when dealing with non-normal distributions.
27
+ * min - lowest observed value
28
+ * max - highest observed value
29
+ * AD_stat - Anderson - Darling Statistic
30
+ * 5% crit_value - critical value for a 5% Significance Level
31
+ * 1% crit_value - critical value for a 1% Significance Level
32
+
33
+ Later versions will include data visualizations handy for exploring the distribution of the data set.
@@ -3,17 +3,18 @@ from pathlib import Path
3
3
 
4
4
  # Read the contents of the README file
5
5
  this_directory = Path(__file__).parent
6
- long_description = (this_directory / "README.txt").read_text()
6
+ long_description = (this_directory / "README.md").read_text()
7
7
 
8
8
  setup(
9
9
  name='qdesc',
10
- version='0.0.4',
10
+ version='0.0.6',
11
11
  packages=find_packages(),
12
12
  install_requires=[
13
13
  # List your dependencies here, e.g., pandas if your function requires it
14
14
  ],
15
15
  author='Paolo Hilado',
16
16
  author_email='datasciencepgh@proton.me',
17
+ description= 'Quick and Easy way to do descriptive analysis.',
17
18
  long_description=long_description,
18
19
  long_description_content_type='text/markdown', # or 'text/x-rst' for reStructuredText # other metadata fields... )
19
20
  )
qdesc-0.0.4/PKG-INFO DELETED
@@ -1,30 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: qdesc
3
- Version: 0.0.4
4
- Author: Paolo Hilado
5
- Author-email: datasciencepgh@proton.me
6
- Description-Content-Type: text/markdown
7
- License-File: LICENCE.txt
8
-
9
- This is a package for quick and easy descriptive analysis.
10
- Required packages include: pandas, numpy, and SciPy version 1.14.1
11
- Be sure to run the following prior to using the "qd.desc" function:
12
-
13
- import pandas as pd
14
- import numpy as np
15
- from scipy.stats import anderson
16
- import qdesc as qd
17
-
18
- The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
19
-
20
- run the function qd.desc(df) to get the following statistics:
21
- count - number of observations
22
- mean - measure of central tendency for normal distribution
23
- std - measure of spread for normal distribution
24
- median - measure of central tendency for skewed distributions or those with outliers
25
- MAD - measure of spread for skewed distributions or those with outliers; this is manual Median Absolute Deviation (MAD) which is more robust when dealing with non-normal distributions.
26
- min - lowest observed value
27
- max - highest observed value
28
- AD_stat - Anderson - Darling Statistic
29
- 5% crit_value - critical value for a 5% Significance Level
30
- 1% crit_value - critical value for a 1% Significance Level
@@ -1,30 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: qdesc
3
- Version: 0.0.4
4
- Author: Paolo Hilado
5
- Author-email: datasciencepgh@proton.me
6
- Description-Content-Type: text/markdown
7
- License-File: LICENCE.txt
8
-
9
- This is a package for quick and easy descriptive analysis.
10
- Required packages include: pandas, numpy, and SciPy version 1.14.1
11
- Be sure to run the following prior to using the "qd.desc" function:
12
-
13
- import pandas as pd
14
- import numpy as np
15
- from scipy.stats import anderson
16
- import qdesc as qd
17
-
18
- The qdesc package provides a quick and easy approach to do descriptive analysis for quantitative data.
19
-
20
- run the function qd.desc(df) to get the following statistics:
21
- count - number of observations
22
- mean - measure of central tendency for normal distribution
23
- std - measure of spread for normal distribution
24
- median - measure of central tendency for skewed distributions or those with outliers
25
- MAD - measure of spread for skewed distributions or those with outliers; this is manual Median Absolute Deviation (MAD) which is more robust when dealing with non-normal distributions.
26
- min - lowest observed value
27
- max - highest observed value
28
- AD_stat - Anderson - Darling Statistic
29
- 5% crit_value - critical value for a 5% Significance Level
30
- 1% crit_value - critical value for a 1% Significance Level
File without changes
File without changes
File without changes
File without changes