pywib 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pywib-0.1.0/.gitignore +7 -0
- pywib-0.1.0/LICENSE +201 -0
- pywib-0.1.0/PKG-INFO +35 -0
- pywib-0.1.0/README.md +7 -0
- pywib-0.1.0/pyproject.toml +42 -0
- pywib-0.1.0/requirements.txt +1 -0
- pywib-0.1.0/setup.py +48 -0
- pywib-0.1.0/src/pywib/__init__.py +43 -0
- pywib-0.1.0/src/pywib/constants.py +54 -0
- pywib-0.1.0/src/pywib/core/keyboard.py +5 -0
- pywib-0.1.0/src/pywib/core/movement.py +226 -0
- pywib-0.1.0/src/pywib/core/timing.py +129 -0
- pywib-0.1.0/src/pywib/utils/__init__.py +14 -0
- pywib-0.1.0/src/pywib/utils/segmentation.py +42 -0
- pywib-0.1.0/src/pywib/utils/utils.py +26 -0
- pywib-0.1.0/src/pywib/utils/validation.py +24 -0
- pywib-0.1.0/src/pywib/utils/validator.py +23 -0
- pywib-0.1.0/src/pywib/utils/visualization.py +23 -0
- pywib-0.1.0/test/__init__.py +0 -0
- pywib-0.1.0/test/movement.py +60 -0
- pywib-0.1.0/test/utils.py +43 -0
pywib-0.1.0/.gitignore
ADDED
pywib-0.1.0/LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
+
|
|
7
|
+
1. Definitions.
|
|
8
|
+
|
|
9
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
10
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
11
|
+
|
|
12
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
13
|
+
the copyright owner that is granting the License.
|
|
14
|
+
|
|
15
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
16
|
+
other entities that control, are controlled by, or are under common
|
|
17
|
+
control with that entity. For the purposes of this definition,
|
|
18
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
19
|
+
direction or management of such entity, whether by contract or
|
|
20
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
21
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
22
|
+
|
|
23
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
24
|
+
exercising permissions granted by this License.
|
|
25
|
+
|
|
26
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
27
|
+
including but not limited to software source code, documentation
|
|
28
|
+
source, and configuration files.
|
|
29
|
+
|
|
30
|
+
"Object" form shall mean any form resulting from mechanical
|
|
31
|
+
transformation or translation of a Source form, including but
|
|
32
|
+
not limited to compiled object code, generated documentation,
|
|
33
|
+
and conversions to other media types.
|
|
34
|
+
|
|
35
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
36
|
+
Object form, made available under the License, as indicated by a
|
|
37
|
+
copyright notice that is included in or attached to the work
|
|
38
|
+
(an example is provided in the Appendix below).
|
|
39
|
+
|
|
40
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
41
|
+
form, that is based on (or derived from) the Work and for which the
|
|
42
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
43
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
44
|
+
of this License, Derivative Works shall not include works that remain
|
|
45
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
46
|
+
the Work and Derivative Works thereof.
|
|
47
|
+
|
|
48
|
+
"Contribution" shall mean any work of authorship, including
|
|
49
|
+
the original version of the Work and any modifications or additions
|
|
50
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
51
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
52
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
53
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
54
|
+
means any form of electronic, verbal, or written communication sent
|
|
55
|
+
to the Licensor or its representatives, including but not limited to
|
|
56
|
+
communication on electronic mailing lists, source code control systems,
|
|
57
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
58
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
59
|
+
excluding communication that is conspicuously marked or otherwise
|
|
60
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
61
|
+
|
|
62
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
63
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
64
|
+
subsequently incorporated within the Work.
|
|
65
|
+
|
|
66
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
67
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
68
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
69
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
70
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
71
|
+
Work and such Derivative Works in Source or Object form.
|
|
72
|
+
|
|
73
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
74
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
+
(except as stated in this section) patent license to make, have made,
|
|
77
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
78
|
+
where such license applies only to those patent claims licensable
|
|
79
|
+
by such Contributor that are necessarily infringed by their
|
|
80
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
81
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
82
|
+
institute patent litigation against any entity (including a
|
|
83
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
84
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
85
|
+
or contributory patent infringement, then any patent licenses
|
|
86
|
+
granted to You under this License for that Work shall terminate
|
|
87
|
+
as of the date such litigation is filed.
|
|
88
|
+
|
|
89
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
90
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
91
|
+
modifications, and in Source or Object form, provided that You
|
|
92
|
+
meet the following conditions:
|
|
93
|
+
|
|
94
|
+
(a) You must give any other recipients of the Work or
|
|
95
|
+
Derivative Works a copy of this License; and
|
|
96
|
+
|
|
97
|
+
(b) You must cause any modified files to carry prominent notices
|
|
98
|
+
stating that You changed the files; and
|
|
99
|
+
|
|
100
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
101
|
+
that You distribute, all copyright, patent, trademark, and
|
|
102
|
+
attribution notices from the Source form of the Work,
|
|
103
|
+
excluding those notices that do not pertain to any part of
|
|
104
|
+
the Derivative Works; and
|
|
105
|
+
|
|
106
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
107
|
+
distribution, then any Derivative Works that You distribute must
|
|
108
|
+
include a readable copy of the attribution notices contained
|
|
109
|
+
within such NOTICE file, excluding those notices that do not
|
|
110
|
+
pertain to any part of the Derivative Works, in at least one
|
|
111
|
+
of the following places: within a NOTICE text file distributed
|
|
112
|
+
as part of the Derivative Works; within the Source form or
|
|
113
|
+
documentation, if provided along with the Derivative Works; or,
|
|
114
|
+
within a display generated by the Derivative Works, if and
|
|
115
|
+
wherever such third-party notices normally appear. The contents
|
|
116
|
+
of the NOTICE file are for informational purposes only and
|
|
117
|
+
do not modify the License. You may add Your own attribution
|
|
118
|
+
notices within Derivative Works that You distribute, alongside
|
|
119
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
120
|
+
that such additional attribution notices cannot be construed
|
|
121
|
+
as modifying the License.
|
|
122
|
+
|
|
123
|
+
You may add Your own copyright statement to Your modifications and
|
|
124
|
+
may provide additional or different license terms and conditions
|
|
125
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
126
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
127
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
128
|
+
the conditions stated in this License.
|
|
129
|
+
|
|
130
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
131
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
132
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
133
|
+
this License, without any additional terms or conditions.
|
|
134
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
135
|
+
the terms of any separate license agreement you may have executed
|
|
136
|
+
with Licensor regarding such Contributions.
|
|
137
|
+
|
|
138
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
139
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
140
|
+
except as required for reasonable and customary use in describing the
|
|
141
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
142
|
+
|
|
143
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
144
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
145
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
146
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
147
|
+
implied, including, without limitation, any warranties or conditions
|
|
148
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
149
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
150
|
+
appropriateness of using or redistributing the Work and assume any
|
|
151
|
+
risks associated with Your exercise of permissions under this License.
|
|
152
|
+
|
|
153
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
154
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
155
|
+
unless required by applicable law (such as deliberate and grossly
|
|
156
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
157
|
+
liable to You for damages, including any direct, indirect, special,
|
|
158
|
+
incidental, or consequential damages of any character arising as a
|
|
159
|
+
result of this License or out of the use or inability to use the
|
|
160
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
161
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
162
|
+
other commercial damages or losses), even if such Contributor
|
|
163
|
+
has been advised of the possibility of such damages.
|
|
164
|
+
|
|
165
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
166
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
167
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
168
|
+
or other liability obligations and/or rights consistent with this
|
|
169
|
+
License. However, in accepting such obligations, You may act only
|
|
170
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
171
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
172
|
+
defend, and hold each Contributor harmless for any liability
|
|
173
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
174
|
+
of your accepting any such warranty or additional liability.
|
|
175
|
+
|
|
176
|
+
END OF TERMS AND CONDITIONS
|
|
177
|
+
|
|
178
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
179
|
+
|
|
180
|
+
To apply the Apache License to your work, attach the following
|
|
181
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
182
|
+
replaced with your own identifying information. (Don't include
|
|
183
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
184
|
+
comment syntax for the file format. We also recommend that a
|
|
185
|
+
file or class name and description of purpose be included on the
|
|
186
|
+
same "printed page" as the copyright notice for easier
|
|
187
|
+
identification within third-party archives.
|
|
188
|
+
|
|
189
|
+
Copyright [yyyy] [name of copyright owner]
|
|
190
|
+
|
|
191
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
192
|
+
you may not use this file except in compliance with the License.
|
|
193
|
+
You may obtain a copy of the License at
|
|
194
|
+
|
|
195
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
196
|
+
|
|
197
|
+
Unless required by applicable law or agreed to in writing, software
|
|
198
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
199
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
200
|
+
See the License for the specific language governing permissions and
|
|
201
|
+
limitations under the License.
|
pywib-0.1.0/PKG-INFO
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: pywib
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: HCI Web Interaction Analyzer - A library for analyzing web user interactions
|
|
5
|
+
Project-URL: Homepage, https://github.com/HumanCommunicationInteraction/pywib
|
|
6
|
+
Project-URL: Bug Tracker, https://github.com/HumanCommunicationInteraction/pywib/issues
|
|
7
|
+
Project-URL: Documentation, https://pywib.readthedocs.io/
|
|
8
|
+
Project-URL: Repository, https://github.com/HumanCommunicationInteraction/pywib.git
|
|
9
|
+
Author-email: Guillermo Dylan Carvajal Aza <carvajalguillermo@uniovi.es>, Alejandro Álvarez Varela <avarela@uniovi.es>
|
|
10
|
+
License-File: LICENSE
|
|
11
|
+
Classifier: Development Status :: 3 - Alpha
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: Intended Audience :: Science/Research
|
|
14
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
15
|
+
Classifier: Operating System :: OS Independent
|
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
21
|
+
Classifier: Topic :: Scientific/Engineering
|
|
22
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
23
|
+
Requires-Python: >=3.9
|
|
24
|
+
Requires-Dist: matplotlib>=3.5.0
|
|
25
|
+
Requires-Dist: numpy>=1.21.0
|
|
26
|
+
Requires-Dist: pandas>=1.3.0
|
|
27
|
+
Description-Content-Type: text/markdown
|
|
28
|
+
|
|
29
|
+
# pywib
|
|
30
|
+
|
|
31
|
+
Pywib (Python Web Interaction Behaviour) is a library desgined for analysing and obtaning metrics from users interaction with web pages.
|
|
32
|
+
|
|
33
|
+
## How to
|
|
34
|
+
|
|
35
|
+
```
|
pywib-0.1.0/README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["hatchling >= 1.26"]
|
|
3
|
+
build-backend = "hatchling.build"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "pywib"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
authors = [
|
|
9
|
+
{ name="Guillermo Dylan Carvajal Aza", email="carvajalguillermo@uniovi.es" },
|
|
10
|
+
{ name="Alejandro Álvarez Varela", email="avarela@uniovi.es"}
|
|
11
|
+
]
|
|
12
|
+
description = "HCI Web Interaction Analyzer - A library for analyzing web user interactions"
|
|
13
|
+
readme = "README.md"
|
|
14
|
+
requires-python = ">=3.9"
|
|
15
|
+
dependencies = [
|
|
16
|
+
"pandas>=1.3.0",
|
|
17
|
+
"numpy>=1.21.0",
|
|
18
|
+
"matplotlib>=3.5.0",
|
|
19
|
+
]
|
|
20
|
+
classifiers = [
|
|
21
|
+
"Development Status :: 3 - Alpha",
|
|
22
|
+
"Intended Audience :: Developers",
|
|
23
|
+
"Intended Audience :: Science/Research",
|
|
24
|
+
"License :: OSI Approved :: MIT License",
|
|
25
|
+
"Operating System :: OS Independent",
|
|
26
|
+
"Programming Language :: Python :: 3",
|
|
27
|
+
"Programming Language :: Python :: 3.9",
|
|
28
|
+
"Programming Language :: Python :: 3.10",
|
|
29
|
+
"Programming Language :: Python :: 3.11",
|
|
30
|
+
"Programming Language :: Python :: 3.12",
|
|
31
|
+
"Topic :: Scientific/Engineering",
|
|
32
|
+
"Topic :: Software Development :: Libraries :: Python Modules",
|
|
33
|
+
]
|
|
34
|
+
|
|
35
|
+
[project.urls]
|
|
36
|
+
Homepage = "https://github.com/HumanCommunicationInteraction/pywib"
|
|
37
|
+
"Bug Tracker" = "https://github.com/HumanCommunicationInteraction/pywib/issues"
|
|
38
|
+
Documentation = "https://pywib.readthedocs.io/"
|
|
39
|
+
Repository = "https://github.com/HumanCommunicationInteraction/pywib.git"
|
|
40
|
+
|
|
41
|
+
[tool.hatch.build.targets.wheel]
|
|
42
|
+
packages = ["pywib"]
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
pandas>=1.3.0
|
pywib-0.1.0/setup.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
from setuptools import setup, find_packages
|
|
2
|
+
|
|
3
|
+
with open("README.md", "r", encoding="utf-8") as fh:
|
|
4
|
+
long_description = fh.read()
|
|
5
|
+
|
|
6
|
+
with open("requirements.txt", "r", encoding="utf-8") as fh:
|
|
7
|
+
requirements = [line.strip() for line in fh if line.strip() and not line.startswith("#")]
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
setup(
|
|
11
|
+
name='pywib',
|
|
12
|
+
packages=find_packages(),
|
|
13
|
+
version='0.1.0',
|
|
14
|
+
description='HCI Web Interaction Analyzer - A library for analyzing web user interactions',
|
|
15
|
+
long_description=long_description,
|
|
16
|
+
long_description_content_type="text/markdown",
|
|
17
|
+
url="https://github.com/HumanCommunicationInteraction/pywib",
|
|
18
|
+
packages=find_packages(),
|
|
19
|
+
author='Guillermo Dylan Carvajal Aza',
|
|
20
|
+
author_email='carvajalguillermo@uniovi.es',
|
|
21
|
+
keywords=['HCI', 'Web Interaction', 'Analyzer'],
|
|
22
|
+
classifiers=[
|
|
23
|
+
"Development Status :: 3 - Alpha",
|
|
24
|
+
"Intended Audience :: Developers",
|
|
25
|
+
"Intended Audience :: Science/Research",
|
|
26
|
+
"License :: OSI Approved :: MIT License",
|
|
27
|
+
"Operating System :: OS Independent",
|
|
28
|
+
"Programming Language :: Python :: 3",
|
|
29
|
+
"Programming Language :: Python :: 3.9",
|
|
30
|
+
"Programming Language :: Python :: 3.10",
|
|
31
|
+
"Programming Language :: Python :: 3.11",
|
|
32
|
+
"Programming Language :: Python :: 3.12",
|
|
33
|
+
"Topic :: Scientific/Engineering",
|
|
34
|
+
"Topic :: Software Development :: Libraries :: Python Modules",
|
|
35
|
+
],
|
|
36
|
+
python_requires=">=3.9",
|
|
37
|
+
install_requires=requirements,
|
|
38
|
+
extras_require={
|
|
39
|
+
"dev": [
|
|
40
|
+
"pytest>=6.0",
|
|
41
|
+
"pytest-cov",
|
|
42
|
+
"black",
|
|
43
|
+
"flake8",
|
|
44
|
+
],
|
|
45
|
+
},
|
|
46
|
+
include_package_data=True,
|
|
47
|
+
zip_safe=False,
|
|
48
|
+
)
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
"""
|
|
2
|
+
"""
|
|
3
|
+
|
|
4
|
+
__version__ = "0.1.0"
|
|
5
|
+
__author__ = "Guillermo Dylan Carvajal Aza"
|
|
6
|
+
__email__ = "carvajalguillermo@uniovi.es"
|
|
7
|
+
|
|
8
|
+
from .constants import *
|
|
9
|
+
from .utils import validate_dataframe, validate_dataframe_keyboard, extract_traces_by_session, visualize_trace
|
|
10
|
+
from .core.movement import velocity, acceleration, jerkiness, path, auc_ratio
|
|
11
|
+
from .core.timing import execution_time, movement_time, pauses_metrics
|
|
12
|
+
from .utils.utils import compute_space_time_diff
|
|
13
|
+
|
|
14
|
+
__all__ = [
|
|
15
|
+
# Version info
|
|
16
|
+
"__version__",
|
|
17
|
+
"__author__",
|
|
18
|
+
"__email__",
|
|
19
|
+
|
|
20
|
+
# Constants
|
|
21
|
+
"EventTypes",
|
|
22
|
+
"ComponentTypes",
|
|
23
|
+
|
|
24
|
+
# Utility functions
|
|
25
|
+
"validate_dataframe",
|
|
26
|
+
"validate_dataframe_keyboard",
|
|
27
|
+
"extract_trace",
|
|
28
|
+
"visualize_trace",
|
|
29
|
+
|
|
30
|
+
# Movement functions
|
|
31
|
+
"velocity",
|
|
32
|
+
"acceleration",
|
|
33
|
+
"auc_ratio",
|
|
34
|
+
"jerkiness",
|
|
35
|
+
"path",
|
|
36
|
+
|
|
37
|
+
# Timing
|
|
38
|
+
"pauses_metrics",
|
|
39
|
+
|
|
40
|
+
# Utils
|
|
41
|
+
"compute_space_time_diff",
|
|
42
|
+
"extract_traces_by_session",
|
|
43
|
+
]
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
# Version and library information
|
|
6
|
+
LIBRARY_NAME = "pywib"
|
|
7
|
+
LIBRARY_VERSION = "0.1.0"
|
|
8
|
+
|
|
9
|
+
# Event types for interaction tracking
|
|
10
|
+
class EventTypes:
|
|
11
|
+
""" Event type constants for interaction tracking."""
|
|
12
|
+
EVENT_ON_MOUSE_MOVE = 0
|
|
13
|
+
EVENT_ON_CLICK = 1
|
|
14
|
+
EVENT_ON_DOUBLE_CLICK = 2
|
|
15
|
+
EVENT_ON_MOUSE_DOWN = 3
|
|
16
|
+
EVENT_ON_MOUSE_UP = 4
|
|
17
|
+
EVENT_ON_WHEEL = 5
|
|
18
|
+
EVENT_CONTEXT_MENU = 6
|
|
19
|
+
EVENT_ON_TOUCH_MOVE = 7
|
|
20
|
+
EVENT_WINDOW_SCROLL = 11
|
|
21
|
+
EVENT_WINDOW_RESIZE = 12
|
|
22
|
+
EVENT_KEY_DOWN = 13
|
|
23
|
+
EVENT_KEY_PRESS = 14
|
|
24
|
+
EVENT_KEY_UP = 15
|
|
25
|
+
EVENT_FOCUS = 16
|
|
26
|
+
EVENT_BLUR = 17
|
|
27
|
+
EVENT_ON_CHANGE_SELECTION_OBJECT = 18
|
|
28
|
+
EVENT_ON_CLICK_SELECTION_OBJECT = 19
|
|
29
|
+
EVENT_INIT_TRACKING = 100
|
|
30
|
+
EVENT_TRACKING_END = 200
|
|
31
|
+
|
|
32
|
+
class ComponentTypes:
|
|
33
|
+
""" Component type constants for UI elements."""
|
|
34
|
+
COMPONENT_TEXT_FIELD = 1
|
|
35
|
+
COMPONENT_COMBOBOX = 2
|
|
36
|
+
COMPONENT_OPTION = 3
|
|
37
|
+
COMPONENT_RADIO_BUTTON = 4
|
|
38
|
+
COMPONENT_CHECK_BOX = 5
|
|
39
|
+
|
|
40
|
+
class ColumnNames:
|
|
41
|
+
""" Standard column names for DataFrame operations."""
|
|
42
|
+
SESSION_ID = 'sessionId'
|
|
43
|
+
SCENE_ID = 'sceneId'
|
|
44
|
+
EVENT_TYPE = 'eventType'
|
|
45
|
+
ELEMENT_ID = 'elementId'
|
|
46
|
+
TIME_STAMP = 'timeStamp'
|
|
47
|
+
X = 'x'
|
|
48
|
+
Y = 'y'
|
|
49
|
+
KEY_VALUE_EVENT = 'keyValueEvent'
|
|
50
|
+
KEY_CODE_EVENT = 'keyCodeEvent'
|
|
51
|
+
SOURCE_SESSION_ID = 'sourceSessionId'
|
|
52
|
+
DT = 'dt'
|
|
53
|
+
DX = 'dx'
|
|
54
|
+
DY = 'dy'
|
|
@@ -0,0 +1,226 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import numpy as np
|
|
3
|
+
from ..utils.validation import validate_dataframe
|
|
4
|
+
from ..utils.utils import compute_space_time_diff
|
|
5
|
+
from ..utils.segmentation import extract_traces_by_session
|
|
6
|
+
from ..constants import ColumnNames
|
|
7
|
+
|
|
8
|
+
def velocity(df: pd.DataFrame, traces: dict[str, list[pd.DataFrame]] = None) -> dict:
|
|
9
|
+
"""
|
|
10
|
+
Calculate the velocity for the given DataFrame or traces.
|
|
11
|
+
This function computes the velocity based on the distance and time difference between consecutive points.
|
|
12
|
+
|
|
13
|
+
Parameters:
|
|
14
|
+
df (pd.DataFrame): DataFrame containing 'x', 'y', and 'timeStamp' columns.
|
|
15
|
+
traces (dict): A dictionary with keys as (sessionId) and values as lists of DataFrames. If None, traces will be computed from df.
|
|
16
|
+
Returns:
|
|
17
|
+
dict: A dictionary with keys as (sessionId) and values as DataFrames with an additional 'velocity' column.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
if traces is None:
|
|
21
|
+
validate_dataframe(df)
|
|
22
|
+
traces = extract_traces_by_session(df)
|
|
23
|
+
|
|
24
|
+
for session_id, session_traces in traces.items():
|
|
25
|
+
for i in range(len(session_traces)):
|
|
26
|
+
validate_dataframe(session_traces[i])
|
|
27
|
+
|
|
28
|
+
for j in range(len(session_traces)):
|
|
29
|
+
session_traces[j] = _path(session_traces[j])
|
|
30
|
+
session_traces[j]['velocity'] = session_traces[j]['distance'] / session_traces[j]['dt']
|
|
31
|
+
# Fix NaN velocity for first point - set to 0
|
|
32
|
+
session_traces[j]['velocity'] = session_traces[j]['velocity'].fillna(0)
|
|
33
|
+
|
|
34
|
+
traces[session_id] = session_traces
|
|
35
|
+
return traces
|
|
36
|
+
|
|
37
|
+
def acceleration(df: pd.DataFrame, traces: dict[str, list[pd.DataFrame]] = None) -> dict:
|
|
38
|
+
"""
|
|
39
|
+
Calculate the acceleration for the given DataFrame.
|
|
40
|
+
This function computes the acceleration based on the change in velocity over time.
|
|
41
|
+
|
|
42
|
+
Parameters:
|
|
43
|
+
df (pd.DataFrame): DataFrame containing 'velocity' and 'dt' columns.
|
|
44
|
+
traces (dict): A dictionary with keys as (sessionId) and values as lists of DataFrames. If None, traces will be computed from df.
|
|
45
|
+
Returns:
|
|
46
|
+
dict: A dictionary with keys as (sessionId) and values as DataFrames with an additional 'acceleration' column.
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
if traces is None:
|
|
50
|
+
validate_dataframe(df)
|
|
51
|
+
traces = extract_traces_by_session(df)
|
|
52
|
+
|
|
53
|
+
for session_id, session_traces in traces.items():
|
|
54
|
+
for i in range(len(session_traces)):
|
|
55
|
+
validate_dataframe(session_traces[i])
|
|
56
|
+
for j in range(len(session_traces)):
|
|
57
|
+
session_traces[j]['acceleration'] = session_traces[j]["velocity"].diff().fillna(0) / session_traces[j]['dt']
|
|
58
|
+
session_traces[j]['acceleration'] = session_traces[j]['acceleration'].fillna(0)
|
|
59
|
+
|
|
60
|
+
traces[session_id] = session_traces
|
|
61
|
+
return traces
|
|
62
|
+
|
|
63
|
+
def jerkiness(df: pd.DataFrame, traces: dict[str, list[pd.DataFrame]] = None) -> dict:
|
|
64
|
+
"""
|
|
65
|
+
Calculate the jerkiness for the given DataFrame.
|
|
66
|
+
This function computes the jerkiness based on the change in acceleration over time.
|
|
67
|
+
|
|
68
|
+
Parameters:
|
|
69
|
+
df (pd.DataFrame): DataFrame containing 'acceleration' and 'dt' columns.
|
|
70
|
+
traces (dict): A dictionary with keys as (sessionId) and values as lists of DataFrames. If None, traces will be computed from df.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
dict: A dictionary with keys as (sessionId) and values as DataFrames with an additional 'jerkiness' column.
|
|
74
|
+
"""
|
|
75
|
+
|
|
76
|
+
if traces is None:
|
|
77
|
+
validate_dataframe(df)
|
|
78
|
+
traces = extract_traces_by_session(df)
|
|
79
|
+
|
|
80
|
+
for session_id, session_traces in traces.items():
|
|
81
|
+
for i in range(len(session_traces)):
|
|
82
|
+
validate_dataframe(session_traces[i])
|
|
83
|
+
# TODO revisar
|
|
84
|
+
for j in range(len(session_traces)):
|
|
85
|
+
session_traces[j] = session_traces[j]["acceleration"].diff().fillna(0) / session_traces[j]['dt']
|
|
86
|
+
|
|
87
|
+
traces[session_id] = session_traces
|
|
88
|
+
|
|
89
|
+
return traces
|
|
90
|
+
|
|
91
|
+
def path(df: pd.DataFrame = None, traces: dict[str, list[pd.DataFrame]] = None) -> pd.DataFrame:
|
|
92
|
+
"""
|
|
93
|
+
Calculate the path length for the given DataFrame.
|
|
94
|
+
This function computes the path length based on the Euclidean distance between consecutive points.
|
|
95
|
+
|
|
96
|
+
Parameters:
|
|
97
|
+
df (pd.DataFrame): DataFrame containing 'x' and 'y' columns.
|
|
98
|
+
traces (dict): A dictionary with keys as (sessionId) and values as lists of DataFrames. If None, traces will be computed from df.
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
pd.DataFrame: DataFrame with an additional 'distance' column representing the path length.
|
|
102
|
+
"""
|
|
103
|
+
|
|
104
|
+
if traces is None:
|
|
105
|
+
validate_dataframe(df)
|
|
106
|
+
traces = extract_traces_by_session(df)
|
|
107
|
+
|
|
108
|
+
for session_id, session_traces in traces.items():
|
|
109
|
+
for i in range(len(session_traces)):
|
|
110
|
+
validate_dataframe(session_traces[i])
|
|
111
|
+
|
|
112
|
+
# Compute the distance for each trace
|
|
113
|
+
for j in range(len(session_traces)):
|
|
114
|
+
session_traces[j]['distance'] = _path(session_traces[j])['distance']
|
|
115
|
+
|
|
116
|
+
# Store the traces with distance in the dictionary
|
|
117
|
+
df[session_id] = session_traces
|
|
118
|
+
|
|
119
|
+
return df
|
|
120
|
+
|
|
121
|
+
def _path(trace: pd.DataFrame) -> pd.DataFrame:
|
|
122
|
+
"""
|
|
123
|
+
Helper function to calculate the path length for a single trace.
|
|
124
|
+
This function computes the path length based on the Euclidean distance between consecutive points.
|
|
125
|
+
|
|
126
|
+
Parameters:
|
|
127
|
+
trace (pd.DataFrame): A single trace DataFrame.
|
|
128
|
+
|
|
129
|
+
Returns:
|
|
130
|
+
pd.DataFrame: DataFrame with an additional 'distance' column representing the path length.
|
|
131
|
+
"""
|
|
132
|
+
|
|
133
|
+
if trace is None:
|
|
134
|
+
raise ValueError("Trace DataFrame must be provided.")
|
|
135
|
+
|
|
136
|
+
validate_dataframe(trace)
|
|
137
|
+
|
|
138
|
+
trace = compute_space_time_diff(trace)
|
|
139
|
+
trace['distance'] = np.sqrt(trace['dx'] ** 2 + trace['dy'] ** 2)
|
|
140
|
+
|
|
141
|
+
return trace
|
|
142
|
+
|
|
143
|
+
def auc(df: pd.DataFrame, validation: bool = True, computeTraces: bool = True) -> float:
|
|
144
|
+
"""
|
|
145
|
+
Calculate the Area Under the Curve (AUC) for the given DataFrame.
|
|
146
|
+
|
|
147
|
+
Parameters:
|
|
148
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' and 'y' columns.
|
|
149
|
+
validation (bool): Whether to validate the DataFrame structure, by default True.
|
|
150
|
+
computeTraces (bool): Whether to compute traces by sessionId, by default True.
|
|
151
|
+
|
|
152
|
+
Returns:
|
|
153
|
+
float: The computed AUC value.
|
|
154
|
+
"""
|
|
155
|
+
|
|
156
|
+
if(validation):
|
|
157
|
+
validate_dataframe(df)
|
|
158
|
+
|
|
159
|
+
if computeTraces:
|
|
160
|
+
df = extract_traces_by_session(df)
|
|
161
|
+
|
|
162
|
+
df = df.sort_values(by=ColumnNames.TIME_STAMP)
|
|
163
|
+
|
|
164
|
+
df = compute_space_time_diff(df)
|
|
165
|
+
|
|
166
|
+
# Área bajo la curva real
|
|
167
|
+
area_real = np.trapezoid(df[ColumnNames.Y], df[ColumnNames.X])
|
|
168
|
+
|
|
169
|
+
return area_real
|
|
170
|
+
|
|
171
|
+
def auc_optimal(df: pd.DataFrame, validation: bool = True, computeTraces: bool = True) -> float:
|
|
172
|
+
"""
|
|
173
|
+
Calculate the Optimal Area Under the Curve (AUC) for the given DataFrame.
|
|
174
|
+
|
|
175
|
+
Parameters:
|
|
176
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' and 'y' columns.
|
|
177
|
+
validation (bool): Whether to validate the DataFrame structure, by default True.
|
|
178
|
+
computeTraces (bool): Whether to compute traces by sessionId, by default True.
|
|
179
|
+
|
|
180
|
+
Returns:
|
|
181
|
+
float: The computed optimal AUC value.
|
|
182
|
+
"""
|
|
183
|
+
|
|
184
|
+
if(validation):
|
|
185
|
+
validate_dataframe(df)
|
|
186
|
+
|
|
187
|
+
if computeTraces:
|
|
188
|
+
df = extract_traces_by_session(df)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
df = compute_space_time_diff(df)
|
|
192
|
+
|
|
193
|
+
# Área bajo la línea óptima
|
|
194
|
+
x0, y0 = df[ColumnNames.X].iloc[0], df[ColumnNames.Y].iloc[0]
|
|
195
|
+
x1, y1 = df[ColumnNames.X].iloc[-1], df[ColumnNames.Y].iloc[-1]
|
|
196
|
+
x_opt = np.linspace(x0, x1, len(df))
|
|
197
|
+
y_opt = np.linspace(y0, y1, len(df))
|
|
198
|
+
area_optimal = np.trapezoid(y_opt, x_opt)
|
|
199
|
+
|
|
200
|
+
return area_optimal
|
|
201
|
+
|
|
202
|
+
def auc_ratio(df: pd.DataFrame, computeTraces: bool = True) -> dict:
|
|
203
|
+
"""
|
|
204
|
+
Calculate the AUC ratio for the given DataFrame.
|
|
205
|
+
|
|
206
|
+
Parameters:
|
|
207
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' and 'y' columns.
|
|
208
|
+
computeTraces (bool): Whether to compute traces by sessionId, by default True. If False, df is assumed to be already segmented by sessionId.
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
auc_per_session (dict): A dictionary with sessionId as keys and a tuple (area_real, area_optimal, auc_ratio) as values.
|
|
212
|
+
"""
|
|
213
|
+
|
|
214
|
+
validate_dataframe(df)
|
|
215
|
+
|
|
216
|
+
if computeTraces:
|
|
217
|
+
df = extract_traces_by_session(df)
|
|
218
|
+
|
|
219
|
+
auc_per_session = {}
|
|
220
|
+
for session_id, session_traces in df.items():
|
|
221
|
+
area_real = auc(session_traces, False, False)
|
|
222
|
+
area_optimal = auc_optimal(session_traces, False, False)
|
|
223
|
+
auc_per_session[session_id] = (area_real, area_optimal, abs(area_real - area_optimal) / (abs(area_optimal) + 1e-6))
|
|
224
|
+
|
|
225
|
+
return auc_per_session
|
|
226
|
+
|
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from ..utils.validation import validate_dataframe
|
|
3
|
+
from ..utils.segmentation import extract_traces_by_session
|
|
4
|
+
from ..utils.utils import compute_space_time_diff
|
|
5
|
+
from ..constants import ColumnNames
|
|
6
|
+
|
|
7
|
+
def execution_time(df: pd.DataFrame) -> float:
|
|
8
|
+
"""
|
|
9
|
+
Calculate the total execution time of a session in seconds.
|
|
10
|
+
|
|
11
|
+
Parameters:
|
|
12
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' column.
|
|
13
|
+
Returns:
|
|
14
|
+
float: Total execution time in seconds.
|
|
15
|
+
"""
|
|
16
|
+
validate_dataframe(df)
|
|
17
|
+
|
|
18
|
+
start_time = df[ColumnNames.TIME_STAMP].min()
|
|
19
|
+
end_time = df[ColumnNames.TIME_STAMP].max()
|
|
20
|
+
total_time = (end_time - start_time) / 1000.0 # Convert milliseconds to seconds
|
|
21
|
+
return total_time
|
|
22
|
+
|
|
23
|
+
def movement_time(df: pd.DataFrame, traces: dict[str, list[pd.DataFrame]] = None) -> float:
|
|
24
|
+
"""
|
|
25
|
+
Calculate the total movement time from traces in seconds.
|
|
26
|
+
|
|
27
|
+
Parameters:
|
|
28
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' column.
|
|
29
|
+
traces (dict): Dictionary with sessionId as keys and list of DataFrames as values.
|
|
30
|
+
Returns:
|
|
31
|
+
float: Total movement time in seconds.
|
|
32
|
+
"""
|
|
33
|
+
if traces is None:
|
|
34
|
+
validate_dataframe(df)
|
|
35
|
+
traces = extract_traces_by_session(df)
|
|
36
|
+
|
|
37
|
+
total_movement_time = 0.0
|
|
38
|
+
for session_id, session_traces in traces.items():
|
|
39
|
+
for trace in session_traces:
|
|
40
|
+
trace = compute_space_time_diff(trace)
|
|
41
|
+
total_movement_time += trace[ColumnNames.DT].sum() / 1000.0 # Convert milliseconds to seconds
|
|
42
|
+
|
|
43
|
+
return total_movement_time
|
|
44
|
+
|
|
45
|
+
def num_pauses(df: pd.DataFrame, threshold: float = 100, computeTraces: bool = True) -> tuple[dict, dict]:
|
|
46
|
+
"""
|
|
47
|
+
Calculate the number of pauses in the DataFrame.
|
|
48
|
+
|
|
49
|
+
Parameters:
|
|
50
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' column.
|
|
51
|
+
threshold (float): Time threshold in milliseconds to consider a pause, by default 100 ms.
|
|
52
|
+
computeTraces (bool): Whether to compute traces by sessionId, by default True. If False, df is assumed to be already segmented by sessionId.
|
|
53
|
+
|
|
54
|
+
Returns:
|
|
55
|
+
tuple (tuple[dict, dict]): A tuple containing two dictionaries with the number of pauses per session and the mean number of pauses per trace, with the sessionId as keys.
|
|
56
|
+
"""
|
|
57
|
+
|
|
58
|
+
if computeTraces:
|
|
59
|
+
validate_dataframe(df)
|
|
60
|
+
df = extract_traces_by_session(df)
|
|
61
|
+
|
|
62
|
+
num_pauses_per_session = {}
|
|
63
|
+
mean_pause_per_trace = {}
|
|
64
|
+
for session_id, session_traces in df.items():
|
|
65
|
+
total_pauses_session = 0
|
|
66
|
+
for trace in session_traces:
|
|
67
|
+
df_pauses = _num_pauses_trace(trace, threshold)
|
|
68
|
+
total_pauses_session += df_pauses.shape[0]
|
|
69
|
+
num_pauses_per_session[session_id] = total_pauses_session
|
|
70
|
+
mean_pause_per_trace[session_id] = total_pauses_session / len(session_traces) if len(session_traces) > 0 else 0
|
|
71
|
+
return num_pauses_per_session, mean_pause_per_trace
|
|
72
|
+
|
|
73
|
+
def _num_pauses_trace(df: pd.DataFrame, threshold: float) -> pd.DataFrame:
|
|
74
|
+
"""
|
|
75
|
+
Helper function to calculate pauses in a single trace.
|
|
76
|
+
"""
|
|
77
|
+
df = df.sort_values(by=ColumnNames.TIME_STAMP).reset_index(drop=True)
|
|
78
|
+
df[ColumnNames.DT] = df[ColumnNames.TIME_STAMP].diff().fillna(0)
|
|
79
|
+
pauses = df[df[ColumnNames.DT] > threshold]
|
|
80
|
+
return pauses
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def pauses_metrics(df: pd.DataFrame, threshold: float = 100, traces: dict[str, list[pd.DataFrame]] = None) -> dict:
|
|
84
|
+
"""
|
|
85
|
+
Calculate pause metrics for the given DataFrame.
|
|
86
|
+
|
|
87
|
+
Parameters:
|
|
88
|
+
df (pd.DataFrame): DataFrame containing 'timeStamp' column.
|
|
89
|
+
threshold (float): Time threshold in milliseconds to consider a pause, by default 100 ms.
|
|
90
|
+
traces (dict): Dictionary with sessionId as keys and list of DataFrames as values.
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
dict: A dictionary with sessionId as keys and a dictionary of pause metrics as values.
|
|
94
|
+
"""
|
|
95
|
+
|
|
96
|
+
if traces is None:
|
|
97
|
+
validate_dataframe(df)
|
|
98
|
+
traces = extract_traces_by_session(df)
|
|
99
|
+
|
|
100
|
+
pause_metrics_per_session = {}
|
|
101
|
+
number_pauses_session, number_pauses_trace = num_pauses(traces, threshold, computeTraces=False)
|
|
102
|
+
for session_id, session_traces in traces.items():
|
|
103
|
+
total_pauses = 0
|
|
104
|
+
total_pause_duration = 0.0
|
|
105
|
+
pause_durations = []
|
|
106
|
+
|
|
107
|
+
for trace in session_traces:
|
|
108
|
+
trace = compute_space_time_diff(trace)
|
|
109
|
+
pauses = trace[trace[ColumnNames.DT] > threshold]
|
|
110
|
+
total_pauses += pauses.shape[0]
|
|
111
|
+
total_pause_duration += pauses[ColumnNames.DT].sum()
|
|
112
|
+
pause_durations.extend(pauses[ColumnNames.DT].tolist())
|
|
113
|
+
|
|
114
|
+
# Compute pause metrics for the session
|
|
115
|
+
if total_pauses > 0:
|
|
116
|
+
mean_pause_duration = total_pause_duration / total_pauses
|
|
117
|
+
else:
|
|
118
|
+
mean_pause_duration = 0
|
|
119
|
+
|
|
120
|
+
pause_metrics_per_session[session_id] = {
|
|
121
|
+
"total_pauses": total_pauses,
|
|
122
|
+
"mean_pause_duration": mean_pause_duration,
|
|
123
|
+
"pause_durations": pause_durations,
|
|
124
|
+
"mean_pauses_per_trace": number_pauses_trace.get(session_id, 0),
|
|
125
|
+
"max_pause": max(pause_durations) if pause_durations else 0,
|
|
126
|
+
"min_pause": min(pause_durations) if pause_durations else 0,
|
|
127
|
+
}
|
|
128
|
+
|
|
129
|
+
return pause_metrics_per_session
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Utility functions for PyWib
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from .validation import validate_dataframe, validate_dataframe_keyboard
|
|
6
|
+
from .segmentation import extract_traces_by_session
|
|
7
|
+
from .visualization import visualize_trace
|
|
8
|
+
|
|
9
|
+
__all__ = [
|
|
10
|
+
'validate_dataframe',
|
|
11
|
+
'validate_dataframe_keyboard',
|
|
12
|
+
'extract_traces_by_session',
|
|
13
|
+
'visualize_trace'
|
|
14
|
+
]
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from ..constants import EventTypes, ColumnNames
|
|
3
|
+
from ..utils.validation import validate_dataframe
|
|
4
|
+
|
|
5
|
+
def extract_trace(dt: pd.DataFrame) -> list:
|
|
6
|
+
"""
|
|
7
|
+
Extracts trace from the DataFrame.
|
|
8
|
+
Each trace is considered as a sequence of consecutive ON_MOUSE_MOVE events
|
|
9
|
+
between two non-move events.
|
|
10
|
+
Returns a list of DataFrames, each corresponding to a trace.
|
|
11
|
+
"""
|
|
12
|
+
validate_dataframe(dt)
|
|
13
|
+
dt = dt.sort_values(by=ColumnNames.TIME_STAMP).reset_index(drop=True)
|
|
14
|
+
is_move = (dt[ColumnNames.EVENT_TYPE] == EventTypes.EVENT_ON_MOUSE_MOVE) | (dt[ColumnNames.EVENT_TYPE] == EventTypes.EVENT_ON_TOUCH_MOVE)
|
|
15
|
+
group_id = (~is_move).cumsum()
|
|
16
|
+
traces = []
|
|
17
|
+
for _, group in dt[is_move].groupby(group_id[is_move]):
|
|
18
|
+
if len(group) > 1:
|
|
19
|
+
traces.append(group)
|
|
20
|
+
return traces
|
|
21
|
+
|
|
22
|
+
def extract_traces_by_session(dt: pd.DataFrame) -> dict:
|
|
23
|
+
"""
|
|
24
|
+
Extracts traces from the DataFrame, grouped by (sessionId, sceneId).
|
|
25
|
+
Each trace is considered as a sequence of consecutive ON_MOUSE_MOVE events
|
|
26
|
+
between two non-move events.
|
|
27
|
+
|
|
28
|
+
Returns:
|
|
29
|
+
dict: a dictionary with keys as (sessionId) and values as lists of DataFrames.
|
|
30
|
+
"""
|
|
31
|
+
validate_dataframe(dt)
|
|
32
|
+
dt = dt.sort_values(by=ColumnNames.TIME_STAMP).reset_index(drop=True)
|
|
33
|
+
traces_by_session = {}
|
|
34
|
+
for session_id, group in dt.groupby(ColumnNames.SESSION_ID):
|
|
35
|
+
is_move = (group[ColumnNames.EVENT_TYPE] == EventTypes.EVENT_ON_MOUSE_MOVE) | (group[ColumnNames.EVENT_TYPE] == EventTypes.EVENT_ON_TOUCH_MOVE)
|
|
36
|
+
group_id = (~is_move).cumsum()
|
|
37
|
+
traces = []
|
|
38
|
+
for _, sub_group in group[is_move].groupby(group_id[is_move]):
|
|
39
|
+
if len(sub_group) > 1:
|
|
40
|
+
traces.append(sub_group)
|
|
41
|
+
traces_by_session[session_id] = traces
|
|
42
|
+
return traces_by_session
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from ..constants import ColumnNames
|
|
3
|
+
|
|
4
|
+
def compute_space_time_diff(df: pd.DataFrame) -> pd.DataFrame:
|
|
5
|
+
"""
|
|
6
|
+
Compute space and time differences (dx, dy, dt) for the given DataFrame.
|
|
7
|
+
|
|
8
|
+
Parameters:
|
|
9
|
+
df (pd.DataFrame): DataFrame containing 'x', 'y', and 'timeStamp' columns.
|
|
10
|
+
|
|
11
|
+
Returns:
|
|
12
|
+
pd.DataFrame: DataFrame with additional 'dx', 'dy', and 'dt' columns.
|
|
13
|
+
"""
|
|
14
|
+
if(ColumnNames.X not in df.columns or
|
|
15
|
+
ColumnNames.Y not in df.columns or
|
|
16
|
+
ColumnNames.TIME_STAMP not in df.columns or
|
|
17
|
+
ColumnNames.SESSION_ID not in df.columns):
|
|
18
|
+
raise ValueError(f"DataFrame must contain '{ColumnNames.X}', '{ColumnNames.Y}', '{ColumnNames.TIME_STAMP}', and '{ColumnNames.SESSION_ID}' columns.")
|
|
19
|
+
|
|
20
|
+
df = df.copy()
|
|
21
|
+
df.sort_values(by=[ColumnNames.TIME_STAMP], inplace=True)
|
|
22
|
+
df[ColumnNames.TIME_STAMP] = pd.to_numeric(df[ColumnNames.TIME_STAMP], errors='coerce')
|
|
23
|
+
df['dt'] = df.groupby([ColumnNames.SESSION_ID])[ColumnNames.TIME_STAMP].diff().fillna(0)
|
|
24
|
+
df['dx'] = df.groupby([ColumnNames.SESSION_ID])[ColumnNames.X].diff().fillna(0)
|
|
25
|
+
df['dy'] = df.groupby([ColumnNames.SESSION_ID])[ColumnNames.Y].diff().fillna(0)
|
|
26
|
+
return df
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from ..constants import ColumnNames
|
|
3
|
+
|
|
4
|
+
required_columns = [
|
|
5
|
+
ColumnNames.SESSION_ID, ColumnNames.EVENT_TYPE, ColumnNames.TIME_STAMP, ColumnNames.X, ColumnNames.Y
|
|
6
|
+
]
|
|
7
|
+
|
|
8
|
+
keyboard_columns = [
|
|
9
|
+
ColumnNames.KEY_VALUE_EVENT, ColumnNames.KEY_CODE_EVENT
|
|
10
|
+
]
|
|
11
|
+
|
|
12
|
+
def validate_dataframe(df: pd.DataFrame):
|
|
13
|
+
|
|
14
|
+
for col in required_columns:
|
|
15
|
+
if col not in df.columns:
|
|
16
|
+
raise ValueError(f"Missing required column: {col}")
|
|
17
|
+
|
|
18
|
+
def validate_dataframe_keyboard(df: pd.DataFrame):
|
|
19
|
+
|
|
20
|
+
columns_to_check = required_columns + keyboard_columns
|
|
21
|
+
|
|
22
|
+
for col in columns_to_check:
|
|
23
|
+
if col not in df.columns:
|
|
24
|
+
raise ValueError(f"Missing required column: {col}")
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
|
|
3
|
+
required_columns = [
|
|
4
|
+
"id", "eventType", "timeStamp", "x", "y"
|
|
5
|
+
]
|
|
6
|
+
|
|
7
|
+
keyboard_columns = [
|
|
8
|
+
"keyValueEvent", "keyCodeEvent"
|
|
9
|
+
]
|
|
10
|
+
|
|
11
|
+
def validate_dataframe(df: pd.DataFrame):
|
|
12
|
+
|
|
13
|
+
for col in required_columns:
|
|
14
|
+
if col not in df.columns:
|
|
15
|
+
raise ValueError(f"Missing required column: {col}")
|
|
16
|
+
|
|
17
|
+
def validate_dataframe_keyboard(df: pd.DataFrame):
|
|
18
|
+
|
|
19
|
+
columns_to_check = required_columns + keyboard_columns
|
|
20
|
+
|
|
21
|
+
for col in columns_to_check:
|
|
22
|
+
if col not in df.columns:
|
|
23
|
+
raise ValueError(f"Missing required column: {col}")
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
|
|
3
|
+
def visualize_trace(df, stroke_indices, stroke_id):
|
|
4
|
+
stroke_data = df.loc[stroke_indices]
|
|
5
|
+
plt.figure(figsize=(10, 8))
|
|
6
|
+
plt.plot(stroke_data['x'], stroke_data['y'], 'b-o', linewidth=2, markersize=4, label='Trazo real')
|
|
7
|
+
|
|
8
|
+
x_start, y_start = stroke_data['x'].iloc[0], stroke_data['y'].iloc[0]
|
|
9
|
+
x_end, y_end = stroke_data['x'].iloc[-1], stroke_data['y'].iloc[-1]
|
|
10
|
+
plt.plot([x_start, x_end], [y_start, y_end], 'r--', linewidth=2, label='Línea óptima')
|
|
11
|
+
|
|
12
|
+
plt.plot(x_start, y_start, 'go', markersize=8, label='Inicio')
|
|
13
|
+
plt.plot(x_end, y_end, 'ro', markersize=8, label='Fin')
|
|
14
|
+
|
|
15
|
+
duration = stroke_data['timeStamp'].iloc[-1] - stroke_data['timeStamp'].iloc[0]
|
|
16
|
+
plt.xlabel('X (píxeles)')
|
|
17
|
+
plt.ylabel('Y (píxeles)')
|
|
18
|
+
plt.title(f'Trazo {stroke_id} - Duración: {duration:.0f}ms - Puntos: {len(stroke_data)}')
|
|
19
|
+
plt.legend()
|
|
20
|
+
plt.grid(True, alpha=0.3)
|
|
21
|
+
plt.gca().invert_yaxis()
|
|
22
|
+
plt.show()
|
|
23
|
+
|
|
File without changes
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
import unittest
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
# Now you can import directly since the package is installed
|
|
6
|
+
from src.pywib.core.movement import velocity, acceleration
|
|
7
|
+
from src.pywib.utils.utils import compute_space_time_diff
|
|
8
|
+
from utils import process_csv
|
|
9
|
+
|
|
10
|
+
class TestMovement(unittest.TestCase):
|
|
11
|
+
|
|
12
|
+
def setUp(self):
|
|
13
|
+
"""Set up test data"""
|
|
14
|
+
# Create sample test data instead of relying on external CSV
|
|
15
|
+
self.test_data = process_csv('E:\\Documents\\Guille\\Uni\\2025\\HCI-Web-Interaction-Analyzer\\test_window_resize_error.csv')
|
|
16
|
+
|
|
17
|
+
def test_velocity(self):
|
|
18
|
+
"""Test velocity calculation"""
|
|
19
|
+
# Compute space-time differences
|
|
20
|
+
df = compute_space_time_diff(self.test_data.copy())
|
|
21
|
+
|
|
22
|
+
# Calculate velocity
|
|
23
|
+
df_velocity = velocity(df)
|
|
24
|
+
|
|
25
|
+
# Check if the velocity column is added
|
|
26
|
+
for session_id, traces in df_velocity.items():
|
|
27
|
+
for trace in traces:
|
|
28
|
+
self.assertIn('velocity', trace.columns)
|
|
29
|
+
# Check if velocity values are non-negative
|
|
30
|
+
self.assertTrue((trace['velocity'] >= 0).all())
|
|
31
|
+
self.assertGreaterEqual(trace['velocity'].mean(), 0)
|
|
32
|
+
# Verify velocity calculation
|
|
33
|
+
dt = trace.timeStamp.diff()
|
|
34
|
+
dx = trace.x.diff()
|
|
35
|
+
dy = trace.y.diff()
|
|
36
|
+
expected_velocity = np.sqrt(dx**2 + dy**2) / dt
|
|
37
|
+
expected_velocity.fillna(0, inplace=True)
|
|
38
|
+
np.testing.assert_allclose(trace['velocity'], expected_velocity, rtol=1e-5, atol=1e-8)
|
|
39
|
+
|
|
40
|
+
def test_acceleration(self):
|
|
41
|
+
"""Test acceleration calculation"""
|
|
42
|
+
df = compute_space_time_diff(self.test_data.copy())
|
|
43
|
+
traces_velocity = velocity(df)
|
|
44
|
+
|
|
45
|
+
# Calculate acceleration
|
|
46
|
+
df_acceleration = acceleration(None, traces_velocity)
|
|
47
|
+
|
|
48
|
+
# Check if the acceleration column is added
|
|
49
|
+
for session_id, traces in df_acceleration.items():
|
|
50
|
+
for trace in traces:
|
|
51
|
+
self.assertIn('acceleration', trace.columns)
|
|
52
|
+
# Verify acceleration calculation
|
|
53
|
+
dt = trace.timeStamp.diff()
|
|
54
|
+
dv = trace['velocity'].diff()
|
|
55
|
+
expected_acceleration = dv / dt
|
|
56
|
+
expected_acceleration.fillna(0, inplace=True)
|
|
57
|
+
np.testing.assert_allclose(trace['acceleration'], expected_acceleration, rtol=1e-5, atol=1e-8)
|
|
58
|
+
|
|
59
|
+
if __name__ == '__main__':
|
|
60
|
+
unittest.main()
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from collections import defaultdict
|
|
3
|
+
|
|
4
|
+
def process_csv(file_path):
|
|
5
|
+
"""
|
|
6
|
+
Reads a semicolon-separated CSV file and processes it into matrices grouped by sessionId and sceneId.
|
|
7
|
+
Args:
|
|
8
|
+
file_path (str): Path to the CSV file.
|
|
9
|
+
"""
|
|
10
|
+
# Read the CSV file with semicolon separator
|
|
11
|
+
df = pd.read_csv(file_path, encoding='utf-8', sep=',')
|
|
12
|
+
|
|
13
|
+
# Dictionary to store matrices for each sessionId and sceneId
|
|
14
|
+
matrices = defaultdict(list)
|
|
15
|
+
|
|
16
|
+
# Process each row in the DataFrame
|
|
17
|
+
for _, row in df.iterrows():
|
|
18
|
+
session_id = row['sessionId']
|
|
19
|
+
|
|
20
|
+
# Create a key combining sessionId and sceneId
|
|
21
|
+
key = (session_id)
|
|
22
|
+
|
|
23
|
+
# Extract the relevant values and append to the matrix
|
|
24
|
+
matrices[key].append([
|
|
25
|
+
row['eventType'],
|
|
26
|
+
row['timeStamp'],
|
|
27
|
+
row['x'],
|
|
28
|
+
row['y'],
|
|
29
|
+
row['keyValueEvent'],
|
|
30
|
+
row['keyCodeEvent'],
|
|
31
|
+
])
|
|
32
|
+
|
|
33
|
+
all_sessions = []
|
|
34
|
+
for (session_id), matrix in matrices.items():
|
|
35
|
+
df = pd.DataFrame(matrix, columns=[
|
|
36
|
+
'eventType', 'timeStamp', 'x', 'y', 'keyValueEvent', 'keyCodeEvent' ])
|
|
37
|
+
df['sessionId'] = session_id
|
|
38
|
+
all_sessions.append(df)
|
|
39
|
+
|
|
40
|
+
df_all_sessions = pd.concat(all_sessions, ignore_index=True)
|
|
41
|
+
df_all_sessions['timeStamp'] = df_all_sessions['timeStamp'].astype(str).str.replace(',', '', regex=False)
|
|
42
|
+
df_all_sessions['timeStamp'] = pd.to_numeric(df_all_sessions['timeStamp'], errors='coerce')
|
|
43
|
+
return df_all_sessions
|