pytour 3.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pytour-3.0.0/LICENSE +21 -0
- pytour-3.0.0/PKG-INFO +27 -0
- pytour-3.0.0/README.md +2 -0
- pytour-3.0.0/pytour.egg-info/PKG-INFO +27 -0
- pytour-3.0.0/pytour.egg-info/SOURCES.txt +19 -0
- pytour-3.0.0/pytour.egg-info/dependency_links.txt +1 -0
- pytour-3.0.0/pytour.egg-info/requires.txt +5 -0
- pytour-3.0.0/pytour.egg-info/top_level.txt +1 -0
- pytour-3.0.0/setup.cfg +4 -0
- pytour-3.0.0/setup.py +41 -0
- pytour-3.0.0/tests/test_dataset.py +141 -0
- pytour-3.0.0/tour/__init__.py +1 -0
- pytour-3.0.0/tour/artifacts_removal.py +122 -0
- pytour-3.0.0/tour/backend.py +34 -0
- pytour-3.0.0/tour/dataclass/__init__.py +0 -0
- pytour-3.0.0/tour/dataclass/dataset.py +465 -0
- pytour-3.0.0/tour/dataclass/io.py +225 -0
- pytour-3.0.0/tour/dataclass/stim.py +33 -0
- pytour-3.0.0/tour/package_manage.py +13 -0
- pytour-3.0.0/tour/torch_trainer.py +339 -0
- pytour-3.0.0/tour/vis.py +201 -0
pytour-3.0.0/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2018 Jin Dou
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
pytour-3.0.0/PKG-INFO
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: pytour
|
3
|
+
Version: 3.0.0
|
4
|
+
Home-page: https://github.com/powerfulbean/pytour
|
5
|
+
Author: Powerfulbean
|
6
|
+
Author-email: powerfulbean@gmail.com
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Classifier: Operating System :: OS Independent
|
10
|
+
Description-Content-Type: text/markdown
|
11
|
+
License-File: LICENSE
|
12
|
+
Requires-Dist: mne
|
13
|
+
Requires-Dist: numpy
|
14
|
+
Requires-Dist: scipy
|
15
|
+
Requires-Dist: matplotlib
|
16
|
+
Requires-Dist: h5py
|
17
|
+
Dynamic: author
|
18
|
+
Dynamic: author-email
|
19
|
+
Dynamic: classifier
|
20
|
+
Dynamic: description
|
21
|
+
Dynamic: description-content-type
|
22
|
+
Dynamic: home-page
|
23
|
+
Dynamic: license-file
|
24
|
+
Dynamic: requires-dist
|
25
|
+
|
26
|
+
# tour | 托
|
27
|
+
A framework for boosting the implementation of stimulus-response research code in the field of cognitive science and neuroscience
|
pytour-3.0.0/README.md
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: pytour
|
3
|
+
Version: 3.0.0
|
4
|
+
Home-page: https://github.com/powerfulbean/pytour
|
5
|
+
Author: Powerfulbean
|
6
|
+
Author-email: powerfulbean@gmail.com
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Classifier: Operating System :: OS Independent
|
10
|
+
Description-Content-Type: text/markdown
|
11
|
+
License-File: LICENSE
|
12
|
+
Requires-Dist: mne
|
13
|
+
Requires-Dist: numpy
|
14
|
+
Requires-Dist: scipy
|
15
|
+
Requires-Dist: matplotlib
|
16
|
+
Requires-Dist: h5py
|
17
|
+
Dynamic: author
|
18
|
+
Dynamic: author-email
|
19
|
+
Dynamic: classifier
|
20
|
+
Dynamic: description
|
21
|
+
Dynamic: description-content-type
|
22
|
+
Dynamic: home-page
|
23
|
+
Dynamic: license-file
|
24
|
+
Dynamic: requires-dist
|
25
|
+
|
26
|
+
# tour | 托
|
27
|
+
A framework for boosting the implementation of stimulus-response research code in the field of cognitive science and neuroscience
|
@@ -0,0 +1,19 @@
|
|
1
|
+
LICENSE
|
2
|
+
README.md
|
3
|
+
setup.py
|
4
|
+
pytour.egg-info/PKG-INFO
|
5
|
+
pytour.egg-info/SOURCES.txt
|
6
|
+
pytour.egg-info/dependency_links.txt
|
7
|
+
pytour.egg-info/requires.txt
|
8
|
+
pytour.egg-info/top_level.txt
|
9
|
+
tests/test_dataset.py
|
10
|
+
tour/__init__.py
|
11
|
+
tour/artifacts_removal.py
|
12
|
+
tour/backend.py
|
13
|
+
tour/package_manage.py
|
14
|
+
tour/torch_trainer.py
|
15
|
+
tour/vis.py
|
16
|
+
tour/dataclass/__init__.py
|
17
|
+
tour/dataclass/dataset.py
|
18
|
+
tour/dataclass/io.py
|
19
|
+
tour/dataclass/stim.py
|
@@ -0,0 +1 @@
|
|
1
|
+
|
@@ -0,0 +1 @@
|
|
1
|
+
tour
|
pytour-3.0.0/setup.cfg
ADDED
pytour-3.0.0/setup.py
ADDED
@@ -0,0 +1,41 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
"""
|
3
|
+
Created on Sat Aug 31 00:52:16 2019
|
4
|
+
|
5
|
+
@author: Jin Dou
|
6
|
+
"""
|
7
|
+
|
8
|
+
import setuptools
|
9
|
+
import re
|
10
|
+
|
11
|
+
with open("./README.md", "r", encoding='UTF-8') as fh:
|
12
|
+
long_description = fh.read()
|
13
|
+
|
14
|
+
with open("tour/__init__.py") as file:
|
15
|
+
for line in file.readlines():
|
16
|
+
m = re.match("__version__ *= *['\"](.*)['\"]", line)
|
17
|
+
if m:
|
18
|
+
version = m.group(1)
|
19
|
+
|
20
|
+
setuptools.setup(
|
21
|
+
name="pytour",
|
22
|
+
version=version,
|
23
|
+
author="Powerfulbean",
|
24
|
+
author_email="powerfulbean@gmail.com",
|
25
|
+
long_description=long_description,
|
26
|
+
long_description_content_type="text/markdown",
|
27
|
+
url="https://github.com/powerfulbean/pytour",
|
28
|
+
packages=setuptools.find_packages(),
|
29
|
+
classifiers=[
|
30
|
+
"Programming Language :: Python :: 3",
|
31
|
+
"License :: OSI Approved :: MIT License",
|
32
|
+
"Operating System :: OS Independent",
|
33
|
+
],
|
34
|
+
install_requires=[
|
35
|
+
"mne",
|
36
|
+
"numpy",
|
37
|
+
"scipy",
|
38
|
+
"matplotlib",
|
39
|
+
"h5py"
|
40
|
+
],
|
41
|
+
)
|
@@ -0,0 +1,141 @@
|
|
1
|
+
import os
|
2
|
+
import mne
|
3
|
+
import h5py
|
4
|
+
import json
|
5
|
+
import numpy as np
|
6
|
+
from collections import OrderedDict
|
7
|
+
from StellarInfra import siIO
|
8
|
+
from tour.dataclass.io import (
|
9
|
+
mne_montage_to_h5py_group,
|
10
|
+
mne_montage_from_h5py_group,
|
11
|
+
data_record_from_h5py_group,
|
12
|
+
data_record_to_h5py_group,
|
13
|
+
stim_dict_to_hdf5,
|
14
|
+
stim_dict_from_hdf5
|
15
|
+
)
|
16
|
+
from tour.dataclass.dataset import Dataset, DataRecord
|
17
|
+
from StimRespFlow.DataStruct.DataSet import CDataSet, CDataRecord
|
18
|
+
|
19
|
+
|
20
|
+
current_folder = os.path.dirname(os.path.abspath(__file__))
|
21
|
+
|
22
|
+
def to_impulses(vectors, timestamps, f:float,padding_s = 0):
|
23
|
+
'''
|
24
|
+
# align the vectors into impulses with specific sampling rate
|
25
|
+
'''
|
26
|
+
startTimes = timestamps[0]
|
27
|
+
endTimes = timestamps[1]
|
28
|
+
secLen = endTimes[-1] + padding_s
|
29
|
+
nLen = np.ceil( secLen * f).astype(int)
|
30
|
+
nDim = vectors.shape[0]
|
31
|
+
out = np.zeros((nDim,nLen))
|
32
|
+
|
33
|
+
timeIndices = np.round(startTimes * f).astype(int)
|
34
|
+
out[:,timeIndices] = vectors
|
35
|
+
return out
|
36
|
+
|
37
|
+
def test_save_mne_montage():
|
38
|
+
output_fd = os.environ['box_root']
|
39
|
+
montage = mne.channels.make_standard_montage('biosemi128')
|
40
|
+
fig = montage.plot(show = False)
|
41
|
+
fig.savefig(f"{current_folder}/target_montage.png")
|
42
|
+
# pos_dict = montage.get_positions()
|
43
|
+
with h5py.File(f"{output_fd}/Collab-Project/CompiledDataset/biosemi128_montage.h5", "w") as f:
|
44
|
+
mne_montage_to_h5py_group(montage, f)
|
45
|
+
|
46
|
+
def test_load_montage_in_mne():
|
47
|
+
output_fd = os.environ['box_root']
|
48
|
+
with h5py.File(f"{output_fd}/Collab-Project/CompiledDataset/biosemi128_montage.h5", "r") as f:
|
49
|
+
montage = mne_montage_from_h5py_group(f)
|
50
|
+
fig = montage.plot(show = False)
|
51
|
+
fig.savefig(f"{current_folder}/loaded_montage.png")
|
52
|
+
|
53
|
+
|
54
|
+
data_path = f"{os.environ['box_root']}/Collab-Project/CompiledDataset/ns.pkl"
|
55
|
+
dataset:CDataSet = CDataSet.load(siIO.loadObject(data_path))
|
56
|
+
# print(dataset.records[0])
|
57
|
+
|
58
|
+
|
59
|
+
dataset_name = 'lalorlab_oldman'
|
60
|
+
dataset_new = Dataset(
|
61
|
+
name = dataset_name,
|
62
|
+
srate = dataset.srate
|
63
|
+
)
|
64
|
+
|
65
|
+
stim_dict = dataset.stimuliDict
|
66
|
+
old_stim_ids = list(stim_dict.keys())
|
67
|
+
for old_stim_id in old_stim_ids:
|
68
|
+
values = stim_dict[old_stim_id]
|
69
|
+
# print(old_stim_id, values.keys())
|
70
|
+
new_stim_id = old_stim_id.replace('phonemes','oldman')
|
71
|
+
words = values['words']
|
72
|
+
timeinfo = values['lex_sur']['timeinfo']
|
73
|
+
x = values['lex_sur']['x']
|
74
|
+
uniqueness_point = values['uni_pnt']['x']
|
75
|
+
values['lexical_surprisal'] = {
|
76
|
+
'tag': words,
|
77
|
+
'timeinfo': timeinfo,
|
78
|
+
'x': x
|
79
|
+
}
|
80
|
+
values['uniqueness_point'] = {
|
81
|
+
'tag': words,
|
82
|
+
'timeinfo': timeinfo,
|
83
|
+
'x': uniqueness_point
|
84
|
+
}
|
85
|
+
values['lexical_surprisal_fs64'] = to_impulses(
|
86
|
+
x,
|
87
|
+
timeinfo,
|
88
|
+
dataset.srate
|
89
|
+
)
|
90
|
+
ones = np.ones(x.shape)
|
91
|
+
# print(x.shape, timeinfo.shape)
|
92
|
+
values['word_onset_fs64'] = to_impulses(
|
93
|
+
ones,
|
94
|
+
timeinfo,
|
95
|
+
dataset.srate
|
96
|
+
)
|
97
|
+
values['envelope_fs64'] = values['env']
|
98
|
+
del values['lex_sur']
|
99
|
+
del values['onset']
|
100
|
+
del values['words']
|
101
|
+
del values['env']
|
102
|
+
del values['uni_pnt']
|
103
|
+
stim_dict[new_stim_id] = stim_dict[old_stim_id]
|
104
|
+
del stim_dict[old_stim_id]
|
105
|
+
|
106
|
+
# print(stim_dict)
|
107
|
+
for record in dataset.records:
|
108
|
+
record:CDataRecord
|
109
|
+
data = record.data
|
110
|
+
old_info = record.descInfo
|
111
|
+
stim_id = 'oldman' + str(old_info['stim'])
|
112
|
+
trial_id = old_info['stim']
|
113
|
+
subj_id = old_info['subj']
|
114
|
+
meta_info = dict(
|
115
|
+
subj_id = subj_id,
|
116
|
+
trial_id = trial_id,
|
117
|
+
dataset_name = dataset_name
|
118
|
+
)
|
119
|
+
record_new = DataRecord(
|
120
|
+
data,
|
121
|
+
stim_id,
|
122
|
+
meta_info,
|
123
|
+
srate = dataset.srate
|
124
|
+
)
|
125
|
+
dataset_new.append(record_new)
|
126
|
+
|
127
|
+
|
128
|
+
stim_dict_to_hdf5(
|
129
|
+
f"{os.environ['box_root']}/Collab-Project/CompiledDataset/ns_unipnt_lexsur_env_onset.h5",
|
130
|
+
stim_dict
|
131
|
+
)
|
132
|
+
|
133
|
+
stim_dict_new = stim_dict_from_hdf5(
|
134
|
+
f"{os.environ['box_root']}/Collab-Project/CompiledDataset/ns_unipnt_lexsur_env_onset.h5",
|
135
|
+
)
|
136
|
+
|
137
|
+
# test_save_mne_montage()
|
138
|
+
# test_load_montage_in_mne()
|
139
|
+
|
140
|
+
dataset_new.dump(f"{os.environ['box_root']}/Collab-Project/CompiledDataset/ns.h5")
|
141
|
+
new_dataset_new = Dataset.load(f"{os.environ['box_root']}/Collab-Project/CompiledDataset/ns.h5")
|
@@ -0,0 +1 @@
|
|
1
|
+
__version__ = "3.0.0"
|
@@ -0,0 +1,122 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
"""
|
3
|
+
Created on Thu Jul 8 14:41:55 2021
|
4
|
+
|
5
|
+
@author: Jin Dou
|
6
|
+
"""
|
7
|
+
import mne
|
8
|
+
import numpy as np
|
9
|
+
from scipy.stats import zscore
|
10
|
+
|
11
|
+
def mneWrap_lalorlab_detect_EEG_badChannels(mneraw:mne.io.RawArray, montage = None, nNearest = 10):
|
12
|
+
oRaw = mneraw.copy()
|
13
|
+
data = oRaw.get_data()
|
14
|
+
if montage is None:
|
15
|
+
badChansIdx = lalorlab_detect_EEG_badChannels(data,False)
|
16
|
+
else:
|
17
|
+
badChansIdx = lalorlab_detect_EEG_badChannels_covVarNear(data,montage, nNearest = nNearest)
|
18
|
+
oRaw.info['bads'] = [oRaw.info['ch_names'][i] for i in badChansIdx]
|
19
|
+
print(f'bad channels: {",".join(oRaw.info["bads"])}')
|
20
|
+
return oRaw
|
21
|
+
|
22
|
+
|
23
|
+
def lalorlab_detect_EEG_badChannels(eegarray,verbose = True):
|
24
|
+
'''
|
25
|
+
we assume the first dimension is channel dimension
|
26
|
+
|
27
|
+
Parameters
|
28
|
+
----------
|
29
|
+
eegarray : TYPE
|
30
|
+
DESCRIPTION.
|
31
|
+
|
32
|
+
Returns
|
33
|
+
-------
|
34
|
+
None.
|
35
|
+
|
36
|
+
'''
|
37
|
+
eegarray = np.array(eegarray)
|
38
|
+
assert len(eegarray.shape) == 2
|
39
|
+
stdChans = list()
|
40
|
+
badChansIdx = list()
|
41
|
+
for chan in eegarray:
|
42
|
+
stdChans.append(np.std(chan))
|
43
|
+
|
44
|
+
for idx,chan in enumerate(eegarray):
|
45
|
+
if np.std(chan) > 2.5 * np.mean(stdChans):
|
46
|
+
badChansIdx.append(idx)
|
47
|
+
|
48
|
+
stdChans.clear()
|
49
|
+
|
50
|
+
for idx,chan in enumerate(eegarray):
|
51
|
+
if idx not in badChansIdx:
|
52
|
+
stdChans.append(np.std(chan))
|
53
|
+
|
54
|
+
for idx,chan in enumerate(eegarray):
|
55
|
+
if np.std(chan) < np.mean(stdChans) / 2.5:
|
56
|
+
badChansIdx.append(idx)
|
57
|
+
|
58
|
+
if verbose:
|
59
|
+
print(badChansIdx)
|
60
|
+
|
61
|
+
return badChansIdx
|
62
|
+
|
63
|
+
def lalorlab_detect_EEG_badChannels_covVarNear(data, montage, th1 = 2, th2 = 2, nNearest = 6):
|
64
|
+
# data: (nChan, nSamples)
|
65
|
+
data = np.array(data)
|
66
|
+
assert data.ndim == 2
|
67
|
+
|
68
|
+
### prepare the nearest channels
|
69
|
+
if nNearest > 0:
|
70
|
+
chanloc = montage.get_positions()['ch_pos']
|
71
|
+
chnames = []
|
72
|
+
poses = []
|
73
|
+
for n,pos in chanloc.items():
|
74
|
+
chnames.append(n)
|
75
|
+
poses.append(pos)
|
76
|
+
|
77
|
+
assert data.shape[0] == len(chnames)
|
78
|
+
chanDistMat = np.zeros((len(chanloc), len(chanloc)))
|
79
|
+
|
80
|
+
fDist = lambda pos1,pos2: np.sqrt(np.sum((pos1 - pos2)**2))
|
81
|
+
|
82
|
+
for i in range(len(chnames)):
|
83
|
+
for j in range(len(chnames)):
|
84
|
+
chanDistMat[i,j] = fDist(poses[i], poses[j])
|
85
|
+
|
86
|
+
nearChanIdx = []
|
87
|
+
for i in range(len(chnames)):
|
88
|
+
nearChanIdx.append(np.argsort(chanDistMat[i])[1:nNearest+1])
|
89
|
+
else:
|
90
|
+
nearChanIdx = [None] * data.shape[1]
|
91
|
+
### find the bad channels
|
92
|
+
dataz = zscore(data, axis = 1)
|
93
|
+
XTX = np.matmul(dataz ,dataz.T)
|
94
|
+
stdXTX = np.std(XTX, axis = 1)
|
95
|
+
stdEEG = np.std(data, axis = 1)
|
96
|
+
|
97
|
+
badChans = []
|
98
|
+
if nNearest <=0 :
|
99
|
+
badChans.append(np.where(stdXTX < np.mean(stdXTX) / th1))
|
100
|
+
badChans.append(np.where(stdEEG > np.mean(stdEEG) * th2))
|
101
|
+
else:
|
102
|
+
for chanIdx in range(data.shape[0]):
|
103
|
+
# print(stdXTX[chanIdx],
|
104
|
+
# stdEEG[chanIdx],
|
105
|
+
# np.mean(stdXTX[nearChanIdx[chanIdx]]) / th1,
|
106
|
+
# np.mean(stdEEG[nearChanIdx[chanIdx]]) * th2)
|
107
|
+
if stdXTX[chanIdx] < np.mean(stdXTX[nearChanIdx[chanIdx]]) / th1:
|
108
|
+
badChans.append(chanIdx)
|
109
|
+
if stdEEG[chanIdx] > np.mean(stdEEG[nearChanIdx[chanIdx]]) * th2:
|
110
|
+
badChans.append(chanIdx)
|
111
|
+
|
112
|
+
return list(set(badChans))
|
113
|
+
|
114
|
+
def plotChanWithNamesAtIdx(montage, idxs):
|
115
|
+
chnames = montage.ch_names
|
116
|
+
montage.plot(show_names = [chnames[idx] for idx in idxs])
|
117
|
+
|
118
|
+
|
119
|
+
# def
|
120
|
+
|
121
|
+
|
122
|
+
|
@@ -0,0 +1,34 @@
|
|
1
|
+
import numbers
|
2
|
+
from typing import TypeVar
|
3
|
+
|
4
|
+
try:
|
5
|
+
import torch
|
6
|
+
except:
|
7
|
+
torch = None
|
8
|
+
|
9
|
+
try:
|
10
|
+
import numpy as np
|
11
|
+
except:
|
12
|
+
np = None
|
13
|
+
|
14
|
+
Array = TypeVar("Array")
|
15
|
+
|
16
|
+
def get_numeric_backend(data: Array):
|
17
|
+
if isinstance(data, torch.Tensor):
|
18
|
+
return torch
|
19
|
+
elif isinstance(data, np.ndarray):
|
20
|
+
return np
|
21
|
+
elif isinstance(data, numbers.Number):
|
22
|
+
return np
|
23
|
+
else:
|
24
|
+
raise ValueError(f"input is not an numeric variable")
|
25
|
+
|
26
|
+
def is_tensor(data: Array):
|
27
|
+
if isinstance(data, torch.Tensor):
|
28
|
+
return True
|
29
|
+
elif isinstance(data, np.ndarray):
|
30
|
+
return False
|
31
|
+
elif isinstance(data, numbers.Number):
|
32
|
+
return False
|
33
|
+
else:
|
34
|
+
raise ValueError(f"input is not an numeric variable")
|
File without changes
|