pystylometry 1.3.0__tar.gz → 1.3.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pystylometry-1.3.5/LICENSE +21 -0
- pystylometry-1.3.5/PKG-INFO +78 -0
- pystylometry-1.3.5/README.md +51 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pyproject.toml +6 -4
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/__init__.py +42 -3
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/_types.py +205 -3
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/cli.py +321 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/__init__.py +5 -1
- pystylometry-1.3.5/pystylometry/lexical/repetition.py +506 -0
- pystylometry-1.3.5/pystylometry/lexical/ttr.py +340 -0
- pystylometry-1.3.0/PKG-INFO +0 -136
- pystylometry-1.3.0/README.md +0 -106
- pystylometry-1.3.0/pystylometry/lexical/ttr.py +0 -149
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/_normalize.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/_utils.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/additional_methods.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/burrows_delta.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/compression.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/kilgarriff.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/authorship/zeta.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/character/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/character/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/character/character_metrics.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/consistency/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/consistency/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/consistency/_thresholds.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/consistency/drift.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/dialect/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/dialect/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/dialect/_data/dialect_markers.json +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/dialect/_loader.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/dialect/detector.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/advanced_diversity.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/function_words.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/hapax.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/mtld.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/word_frequency_sophistication.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/lexical/yule.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/ngrams/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/ngrams/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/ngrams/entropy.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/ngrams/extended_ngrams.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/prosody/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/prosody/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/prosody/rhythm_prosody.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/additional_formulas.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/ari.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/coleman_liau.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/complex_words.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/flesch.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/gunning_fog.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/smog.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/readability/syllables.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/stylistic/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/stylistic/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/stylistic/cohesion_coherence.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/stylistic/genre_register.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/stylistic/markers.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/stylistic/vocabulary_overlap.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/syntactic/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/syntactic/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/syntactic/advanced_syntactic.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/syntactic/pos_ratios.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/syntactic/sentence_stats.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/syntactic/sentence_types.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/tokenizer.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/README.md +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/drift.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/jsx/__init__.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/jsx/_base.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/jsx/report.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/jsx/timeline.py +0 -0
- {pystylometry-1.3.0 → pystylometry-1.3.5}/pystylometry/viz/jsx/viewer.py +0 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Craig Trim
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: pystylometry
|
|
3
|
+
Version: 1.3.5
|
|
4
|
+
Summary: Comprehensive Python package for stylometric analysis
|
|
5
|
+
License: MIT
|
|
6
|
+
Keywords: stylometry,nlp,text-analysis,authorship,readability,lexical-diversity,readability-metrics
|
|
7
|
+
Author: Craig Trim
|
|
8
|
+
Author-email: craigtrim@gmail.com
|
|
9
|
+
Requires-Python: >=3.9,<4.0
|
|
10
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
11
|
+
Classifier: Intended Audience :: Developers
|
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
19
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
20
|
+
Classifier: Topic :: Text Processing :: Linguistic
|
|
21
|
+
Classifier: Typing :: Typed
|
|
22
|
+
Project-URL: Homepage, https://github.com/craigtrim/pystylometry
|
|
23
|
+
Project-URL: Issues, https://github.com/craigtrim/pystylometry/issues
|
|
24
|
+
Project-URL: Repository, https://github.com/craigtrim/pystylometry
|
|
25
|
+
Description-Content-Type: text/markdown
|
|
26
|
+
|
|
27
|
+
# pystylometry
|
|
28
|
+
|
|
29
|
+
[](https://badge.fury.io/py/pystylometry)
|
|
30
|
+
[](https://pepy.tech/project/pystylometry)
|
|
31
|
+
[](https://pepy.tech/project/pystylometry)
|
|
32
|
+
[](https://www.python.org/downloads/)
|
|
33
|
+
[](https://opensource.org/licenses/MIT)
|
|
34
|
+
[]()
|
|
35
|
+
|
|
36
|
+
Stylometric analysis and authorship attribution for Python. 50+ metrics across 11 modules, from vocabulary diversity to AI-generation detection.
|
|
37
|
+
|
|
38
|
+
## Install
|
|
39
|
+
|
|
40
|
+
```bash
|
|
41
|
+
pip install pystylometry # Core (lexical metrics)
|
|
42
|
+
pip install pystylometry[all] # Everything
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
## Modules
|
|
46
|
+
|
|
47
|
+
| Module | Metrics | Description |
|
|
48
|
+
|--------|---------|-------------|
|
|
49
|
+
| [**lexical**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/lexical) | TTR, MTLD, Yule's K/I, Hapax, MATTR, VocD-D, HD-D, MSTTR, function words, word frequency | Vocabulary diversity and richness |
|
|
50
|
+
| [**readability**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/readability) | Flesch, Flesch-Kincaid, SMOG, Gunning Fog, Coleman-Liau, ARI, Dale-Chall, Fry, FORCAST, Linsear Write, Powers-Sumner-Kearl | Grade-level and difficulty scoring |
|
|
51
|
+
| [**syntactic**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/syntactic) | POS ratios, sentence types, parse tree depth, clausal density, passive voice, T-units, dependency distance | Sentence and parse structure (requires spaCy) |
|
|
52
|
+
| [**authorship**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/authorship) | Burrows' Delta, Cosine Delta, Zeta, Kilgarriff chi-squared, MinMax, John's Delta, NCD | Author attribution and text comparison |
|
|
53
|
+
| [**stylistic**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/stylistic) | Contractions, hedges, intensifiers, modals, punctuation, vocabulary overlap (Jaccard/Dice/Cosine/KL), cohesion, genre/register | Style markers and text similarity |
|
|
54
|
+
| [**character**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/character) | Letter frequencies, digit/uppercase ratios, special characters, whitespace | Character-level fingerprinting |
|
|
55
|
+
| [**ngrams**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/ngrams) | Word/character/POS n-grams, Shannon entropy, skipgrams | N-gram profiles and entropy |
|
|
56
|
+
| [**dialect**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/dialect) | British/American classification, spelling/grammar/vocabulary markers, markedness | Regional dialect detection |
|
|
57
|
+
| [**consistency**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/consistency) | Sliding-window chi-squared drift, pattern classification | Intra-document style analysis |
|
|
58
|
+
| [**prosody**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/prosody) | Syllable stress, rhythm regularity | Prose rhythm (requires spaCy) |
|
|
59
|
+
| [**viz**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/viz) | Timeline, scatter, report (PNG + interactive HTML) | Drift detection visualization |
|
|
60
|
+
|
|
61
|
+
## Development
|
|
62
|
+
|
|
63
|
+
```bash
|
|
64
|
+
git clone https://github.com/craigtrim/pystylometry && cd pystylometry
|
|
65
|
+
pip install -e ".[dev,all]"
|
|
66
|
+
make test # 1022 tests
|
|
67
|
+
make lint # ruff + mypy
|
|
68
|
+
make all # lint + test + build
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
## License
|
|
72
|
+
|
|
73
|
+
MIT
|
|
74
|
+
|
|
75
|
+
## Author
|
|
76
|
+
|
|
77
|
+
Craig Trim -- craigtrim@gmail.com
|
|
78
|
+
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# pystylometry
|
|
2
|
+
|
|
3
|
+
[](https://badge.fury.io/py/pystylometry)
|
|
4
|
+
[](https://pepy.tech/project/pystylometry)
|
|
5
|
+
[](https://pepy.tech/project/pystylometry)
|
|
6
|
+
[](https://www.python.org/downloads/)
|
|
7
|
+
[](https://opensource.org/licenses/MIT)
|
|
8
|
+
[]()
|
|
9
|
+
|
|
10
|
+
Stylometric analysis and authorship attribution for Python. 50+ metrics across 11 modules, from vocabulary diversity to AI-generation detection.
|
|
11
|
+
|
|
12
|
+
## Install
|
|
13
|
+
|
|
14
|
+
```bash
|
|
15
|
+
pip install pystylometry # Core (lexical metrics)
|
|
16
|
+
pip install pystylometry[all] # Everything
|
|
17
|
+
```
|
|
18
|
+
|
|
19
|
+
## Modules
|
|
20
|
+
|
|
21
|
+
| Module | Metrics | Description |
|
|
22
|
+
|--------|---------|-------------|
|
|
23
|
+
| [**lexical**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/lexical) | TTR, MTLD, Yule's K/I, Hapax, MATTR, VocD-D, HD-D, MSTTR, function words, word frequency | Vocabulary diversity and richness |
|
|
24
|
+
| [**readability**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/readability) | Flesch, Flesch-Kincaid, SMOG, Gunning Fog, Coleman-Liau, ARI, Dale-Chall, Fry, FORCAST, Linsear Write, Powers-Sumner-Kearl | Grade-level and difficulty scoring |
|
|
25
|
+
| [**syntactic**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/syntactic) | POS ratios, sentence types, parse tree depth, clausal density, passive voice, T-units, dependency distance | Sentence and parse structure (requires spaCy) |
|
|
26
|
+
| [**authorship**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/authorship) | Burrows' Delta, Cosine Delta, Zeta, Kilgarriff chi-squared, MinMax, John's Delta, NCD | Author attribution and text comparison |
|
|
27
|
+
| [**stylistic**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/stylistic) | Contractions, hedges, intensifiers, modals, punctuation, vocabulary overlap (Jaccard/Dice/Cosine/KL), cohesion, genre/register | Style markers and text similarity |
|
|
28
|
+
| [**character**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/character) | Letter frequencies, digit/uppercase ratios, special characters, whitespace | Character-level fingerprinting |
|
|
29
|
+
| [**ngrams**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/ngrams) | Word/character/POS n-grams, Shannon entropy, skipgrams | N-gram profiles and entropy |
|
|
30
|
+
| [**dialect**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/dialect) | British/American classification, spelling/grammar/vocabulary markers, markedness | Regional dialect detection |
|
|
31
|
+
| [**consistency**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/consistency) | Sliding-window chi-squared drift, pattern classification | Intra-document style analysis |
|
|
32
|
+
| [**prosody**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/prosody) | Syllable stress, rhythm regularity | Prose rhythm (requires spaCy) |
|
|
33
|
+
| [**viz**](https://github.com/craigtrim/pystylometry/tree/master/pystylometry/viz) | Timeline, scatter, report (PNG + interactive HTML) | Drift detection visualization |
|
|
34
|
+
|
|
35
|
+
## Development
|
|
36
|
+
|
|
37
|
+
```bash
|
|
38
|
+
git clone https://github.com/craigtrim/pystylometry && cd pystylometry
|
|
39
|
+
pip install -e ".[dev,all]"
|
|
40
|
+
make test # 1022 tests
|
|
41
|
+
make lint # ruff + mypy
|
|
42
|
+
make all # lint + test + build
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
## License
|
|
46
|
+
|
|
47
|
+
MIT
|
|
48
|
+
|
|
49
|
+
## Author
|
|
50
|
+
|
|
51
|
+
Craig Trim -- craigtrim@gmail.com
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[tool.poetry]
|
|
2
2
|
name = "pystylometry"
|
|
3
|
-
version = "1.3.
|
|
3
|
+
version = "1.3.5"
|
|
4
4
|
description = "Comprehensive Python package for stylometric analysis"
|
|
5
5
|
authors = ["Craig Trim <craigtrim@gmail.com>"]
|
|
6
6
|
readme = "README.md"
|
|
@@ -16,7 +16,7 @@ keywords = [
|
|
|
16
16
|
"readability-metrics",
|
|
17
17
|
]
|
|
18
18
|
classifiers = [
|
|
19
|
-
"Development Status ::
|
|
19
|
+
"Development Status :: 5 - Production/Stable",
|
|
20
20
|
"Intended Audience :: Science/Research",
|
|
21
21
|
"Intended Audience :: Developers",
|
|
22
22
|
"License :: OSI Approved :: MIT License",
|
|
@@ -35,6 +35,8 @@ classifiers = [
|
|
|
35
35
|
pystylometry-drift = "pystylometry.cli:drift_cli"
|
|
36
36
|
# pystylometry-viewer drift_analyzer.html
|
|
37
37
|
pystylometry-viewer = "pystylometry.cli:viewer_cli"
|
|
38
|
+
# pystylometry-tokenize manuscript.txt --json --metadata
|
|
39
|
+
pystylometry-tokenize = "pystylometry.cli:tokenize_cli"
|
|
38
40
|
|
|
39
41
|
[tool.poetry.urls]
|
|
40
42
|
Homepage = "https://github.com/craigtrim/pystylometry"
|
|
@@ -43,7 +45,6 @@ Issues = "https://github.com/craigtrim/pystylometry/issues"
|
|
|
43
45
|
|
|
44
46
|
[tool.poetry.dependencies]
|
|
45
47
|
python = "^3.9"
|
|
46
|
-
stylometry-ttr = "^1.0.3"
|
|
47
48
|
|
|
48
49
|
[tool.poetry.group.readability.dependencies]
|
|
49
50
|
pronouncing = "^0.2.0"
|
|
@@ -61,7 +62,7 @@ spacy = "^3.8.0"
|
|
|
61
62
|
# - True neologisms (not in WordNet, not in BNC)
|
|
62
63
|
# - Rare words (in BNC but not WordNet, or vice versa)
|
|
63
64
|
# - Common words (in both lexicons)
|
|
64
|
-
bnc-lookup = "
|
|
65
|
+
bnc-lookup = ">=1.3.0"
|
|
65
66
|
wordnet-lookup = "*"
|
|
66
67
|
|
|
67
68
|
[tool.poetry.group.viz.dependencies]
|
|
@@ -98,6 +99,7 @@ ignore = []
|
|
|
98
99
|
"pystylometry/viz/jsx/*.py" = ["E501"]
|
|
99
100
|
# Test files may have long assertions and test data
|
|
100
101
|
"tests/*.py" = ["E501"]
|
|
102
|
+
"tests/**/*.py" = ["E501", "E402"]
|
|
101
103
|
|
|
102
104
|
[tool.mypy]
|
|
103
105
|
python_version = "3.9"
|
|
@@ -40,14 +40,13 @@ Usage:
|
|
|
40
40
|
print(result.pattern_confidence)
|
|
41
41
|
"""
|
|
42
42
|
|
|
43
|
+
from . import lexical # noqa: E402
|
|
43
44
|
from ._types import AnalysisResult
|
|
45
|
+
from .tokenizer import TokenizationStats, Tokenizer, TokenMetadata
|
|
44
46
|
|
|
45
47
|
# Version
|
|
46
48
|
__version__ = "0.1.0"
|
|
47
49
|
|
|
48
|
-
# Core exports - always available
|
|
49
|
-
from . import lexical
|
|
50
|
-
|
|
51
50
|
# Optional exports - may raise ImportError if dependencies not installed
|
|
52
51
|
try:
|
|
53
52
|
from . import readability # noqa: F401
|
|
@@ -87,6 +86,41 @@ _CONSISTENCY_AVAILABLE = True
|
|
|
87
86
|
_STYLISTIC_AVAILABLE = True
|
|
88
87
|
|
|
89
88
|
|
|
89
|
+
def tokenize(text: str, **kwargs: object) -> list[str]:
|
|
90
|
+
"""Tokenize text using the stylometric tokenizer.
|
|
91
|
+
|
|
92
|
+
Convenience wrapper around Tokenizer.tokenize(). All keyword arguments
|
|
93
|
+
are forwarded to the Tokenizer constructor.
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
text: Input text to tokenize.
|
|
97
|
+
**kwargs: Options forwarded to Tokenizer (lowercase, strip_numbers,
|
|
98
|
+
expand_contractions, etc.).
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
List of token strings.
|
|
102
|
+
|
|
103
|
+
Example:
|
|
104
|
+
>>> from pystylometry import tokenize
|
|
105
|
+
>>> tokenize("Hello, world! It's a test.")
|
|
106
|
+
['hello', 'world', "it's", 'a', 'test']
|
|
107
|
+
"""
|
|
108
|
+
return Tokenizer(**kwargs).tokenize(text) # type: ignore[arg-type]
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def tokenize_with_metadata(text: str, **kwargs: object) -> list[TokenMetadata]:
|
|
112
|
+
"""Tokenize text and return tokens with positional and type metadata.
|
|
113
|
+
|
|
114
|
+
Args:
|
|
115
|
+
text: Input text to tokenize.
|
|
116
|
+
**kwargs: Options forwarded to Tokenizer.
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
List of TokenMetadata objects.
|
|
120
|
+
"""
|
|
121
|
+
return Tokenizer(**kwargs).tokenize_with_metadata(text) # type: ignore[arg-type]
|
|
122
|
+
|
|
123
|
+
|
|
90
124
|
def analyze(
|
|
91
125
|
text: str,
|
|
92
126
|
lexical_metrics: bool = True,
|
|
@@ -225,6 +259,11 @@ __all__ = [
|
|
|
225
259
|
"__version__",
|
|
226
260
|
"analyze",
|
|
227
261
|
"get_available_modules",
|
|
262
|
+
"tokenize",
|
|
263
|
+
"tokenize_with_metadata",
|
|
264
|
+
"Tokenizer",
|
|
265
|
+
"TokenMetadata",
|
|
266
|
+
"TokenizationStats",
|
|
228
267
|
"lexical",
|
|
229
268
|
]
|
|
230
269
|
|
|
@@ -23,7 +23,7 @@ from __future__ import annotations
|
|
|
23
23
|
|
|
24
24
|
import statistics
|
|
25
25
|
from dataclasses import dataclass
|
|
26
|
-
from typing import Any
|
|
26
|
+
from typing import Any, Optional
|
|
27
27
|
|
|
28
28
|
# ===== Distribution and Chunking =====
|
|
29
29
|
# Related to GitHub Issue #27: Native chunked analysis with Distribution dataclass
|
|
@@ -316,8 +316,8 @@ class HapaxLexiconResult:
|
|
|
316
316
|
class TTRResult:
|
|
317
317
|
"""Result from Type-Token Ratio (TTR) analysis.
|
|
318
318
|
|
|
319
|
-
|
|
320
|
-
|
|
319
|
+
Measures vocabulary richness through the ratio of unique words (types)
|
|
320
|
+
to total words (tokens).
|
|
321
321
|
|
|
322
322
|
All numeric metrics include both a mean value (convenient access) and
|
|
323
323
|
a full distribution with per-chunk values and statistics.
|
|
@@ -370,6 +370,208 @@ class TTRResult:
|
|
|
370
370
|
metadata: dict[str, Any]
|
|
371
371
|
|
|
372
372
|
|
|
373
|
+
@dataclass
|
|
374
|
+
class TTRAggregateResult:
|
|
375
|
+
"""Aggregated TTR statistics for a collection of texts.
|
|
376
|
+
|
|
377
|
+
Computes group-level summary statistics (mean, std, min, max, median)
|
|
378
|
+
across multiple ``TTRResult`` objects. Useful for comparative analysis
|
|
379
|
+
across authors, genres, or time periods.
|
|
380
|
+
|
|
381
|
+
Related GitHub Issue:
|
|
382
|
+
#43 - Inline stylometry-ttr into pystylometry (remove external dependency)
|
|
383
|
+
https://github.com/craigtrim/pystylometry/issues/43
|
|
384
|
+
|
|
385
|
+
Example:
|
|
386
|
+
>>> from pystylometry.lexical import compute_ttr, TTRAggregator
|
|
387
|
+
>>> results = [compute_ttr(t) for t in texts]
|
|
388
|
+
>>> agg = TTRAggregator()
|
|
389
|
+
>>> stats = agg.aggregate(results, group_id="Austen")
|
|
390
|
+
>>> stats.ttr_mean
|
|
391
|
+
0.412
|
|
392
|
+
"""
|
|
393
|
+
|
|
394
|
+
group_id: str
|
|
395
|
+
text_count: int
|
|
396
|
+
total_words: int
|
|
397
|
+
|
|
398
|
+
# Raw TTR statistics
|
|
399
|
+
ttr_mean: float
|
|
400
|
+
ttr_std: float
|
|
401
|
+
ttr_min: float
|
|
402
|
+
ttr_max: float
|
|
403
|
+
ttr_median: float
|
|
404
|
+
|
|
405
|
+
# Root TTR (Guiraud's index) statistics
|
|
406
|
+
root_ttr_mean: float
|
|
407
|
+
root_ttr_std: float
|
|
408
|
+
|
|
409
|
+
# Log TTR (Herdan's C) statistics
|
|
410
|
+
log_ttr_mean: float
|
|
411
|
+
log_ttr_std: float
|
|
412
|
+
|
|
413
|
+
# STTR statistics (None if no texts had enough words for STTR)
|
|
414
|
+
sttr_mean: Optional[float]
|
|
415
|
+
sttr_std: Optional[float]
|
|
416
|
+
|
|
417
|
+
# Delta std mean (None if no texts had delta metrics)
|
|
418
|
+
delta_std_mean: Optional[float]
|
|
419
|
+
|
|
420
|
+
metadata: dict[str, Any]
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
# ===== Repetition Detection Results =====
|
|
424
|
+
# Related to GitHub Issue #28: Verbal tics detection for slop analysis
|
|
425
|
+
# https://github.com/craigtrim/pystylometry/issues/28
|
|
426
|
+
|
|
427
|
+
|
|
428
|
+
@dataclass
|
|
429
|
+
class RepetitiveWord:
|
|
430
|
+
"""A single word flagged as abnormally repetitive.
|
|
431
|
+
|
|
432
|
+
The repetition_score is the ratio of observed count to expected count
|
|
433
|
+
based on the word's frequency in the British National Corpus (BNC).
|
|
434
|
+
Higher scores indicate stronger overrepresentation.
|
|
435
|
+
|
|
436
|
+
Related GitHub Issue:
|
|
437
|
+
#28 - Verbal tics detection for slop analysis
|
|
438
|
+
https://github.com/craigtrim/pystylometry/issues/28
|
|
439
|
+
|
|
440
|
+
Attributes:
|
|
441
|
+
word: The flagged word (lowercased).
|
|
442
|
+
count: Observed count in the text.
|
|
443
|
+
expected_count: Expected count based on BNC relative frequency × text length.
|
|
444
|
+
0.0 if word not found in BNC.
|
|
445
|
+
repetition_score: count / expected_count. float('inf') if expected_count is 0.
|
|
446
|
+
bnc_bucket: BNC frequency bucket (1-100, 1=most frequent). None if not in BNC.
|
|
447
|
+
chunk_counts: Per-chunk occurrence counts (for distribution analysis).
|
|
448
|
+
distribution_entropy: Shannon entropy of the word's chunk distribution.
|
|
449
|
+
Low entropy = suspiciously even spread (model tic).
|
|
450
|
+
High entropy = clustered usage (human writing about a specific scene).
|
|
451
|
+
distribution_variance: Variance of per-chunk counts.
|
|
452
|
+
"""
|
|
453
|
+
|
|
454
|
+
word: str
|
|
455
|
+
count: int
|
|
456
|
+
expected_count: float
|
|
457
|
+
repetition_score: float
|
|
458
|
+
bnc_bucket: int | None
|
|
459
|
+
chunk_counts: list[int]
|
|
460
|
+
distribution_entropy: float
|
|
461
|
+
distribution_variance: float
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
@dataclass
|
|
465
|
+
class RepetitiveUnigramsResult:
|
|
466
|
+
"""Result from repetitive unigram detection.
|
|
467
|
+
|
|
468
|
+
Identifies content words that appear far more frequently than expected
|
|
469
|
+
based on their frequency in the British National Corpus (BNC, ~100M tokens).
|
|
470
|
+
This is a key indicator of AI-generated "slop" where models exhibit verbal
|
|
471
|
+
tics — repeating certain words with suspicious regularity.
|
|
472
|
+
|
|
473
|
+
Related GitHub Issue:
|
|
474
|
+
#28 - Verbal tics detection for slop analysis
|
|
475
|
+
https://github.com/craigtrim/pystylometry/issues/28
|
|
476
|
+
|
|
477
|
+
The slop_score provides a single aggregate metric:
|
|
478
|
+
slop_score = flagged_words_per_10k × mean_repetition_score
|
|
479
|
+
|
|
480
|
+
Where:
|
|
481
|
+
- flagged_words_per_10k = count of flagged words / (total content words / 10000)
|
|
482
|
+
- mean_repetition_score = mean repetition_score across all flagged words
|
|
483
|
+
|
|
484
|
+
Higher slop_score = more likely AI-generated verbal tics.
|
|
485
|
+
|
|
486
|
+
References:
|
|
487
|
+
British National Corpus Consortium. (2007). The British National Corpus,
|
|
488
|
+
version 3 (BNC XML Edition). http://www.natcorp.ox.ac.uk/
|
|
489
|
+
|
|
490
|
+
Example:
|
|
491
|
+
>>> result = compute_repetitive_unigrams(text)
|
|
492
|
+
>>> for w in result.repetitive_words[:5]:
|
|
493
|
+
... print(f"{w.word}: {w.count}x (expected {w.expected_count:.1f}, "
|
|
494
|
+
... f"score {w.repetition_score:.1f})")
|
|
495
|
+
shimmered: 23x (expected 0.1, score 266.2)
|
|
496
|
+
>>> result.slop_score
|
|
497
|
+
42.7
|
|
498
|
+
"""
|
|
499
|
+
|
|
500
|
+
repetitive_words: list[RepetitiveWord] # Sorted by repetition_score descending
|
|
501
|
+
total_content_words: int
|
|
502
|
+
flagged_count: int # Number of words exceeding threshold
|
|
503
|
+
flagged_words_per_10k: float # flagged_count / (total_content_words / 10000)
|
|
504
|
+
mean_repetition_score: float # Mean score across flagged words
|
|
505
|
+
slop_score: float # Aggregate: flagged_words_per_10k × mean_repetition_score
|
|
506
|
+
total_content_words_dist: Distribution
|
|
507
|
+
chunk_size: int
|
|
508
|
+
chunk_count: int
|
|
509
|
+
metadata: dict[str, Any]
|
|
510
|
+
|
|
511
|
+
|
|
512
|
+
@dataclass
|
|
513
|
+
class RepetitiveNgram:
|
|
514
|
+
"""A single n-gram flagged as abnormally repetitive.
|
|
515
|
+
|
|
516
|
+
Content n-grams (bigrams, trigrams, etc.) should rarely repeat verbatim
|
|
517
|
+
in natural writing. N-grams that repeat beyond a length-scaled threshold
|
|
518
|
+
are flagged.
|
|
519
|
+
|
|
520
|
+
Related GitHub Issue:
|
|
521
|
+
#28 - Verbal tics detection for slop analysis
|
|
522
|
+
https://github.com/craigtrim/pystylometry/issues/28
|
|
523
|
+
|
|
524
|
+
Attributes:
|
|
525
|
+
ngram: The flagged n-gram as a tuple of words.
|
|
526
|
+
count: Observed count in the text.
|
|
527
|
+
frequency_per_10k: Occurrences per 10,000 n-grams.
|
|
528
|
+
chunk_counts: Per-chunk occurrence counts.
|
|
529
|
+
distribution_entropy: Shannon entropy of the n-gram's chunk distribution.
|
|
530
|
+
distribution_variance: Variance of per-chunk counts.
|
|
531
|
+
"""
|
|
532
|
+
|
|
533
|
+
ngram: tuple[str, ...]
|
|
534
|
+
count: int
|
|
535
|
+
frequency_per_10k: float
|
|
536
|
+
chunk_counts: list[int]
|
|
537
|
+
distribution_entropy: float
|
|
538
|
+
distribution_variance: float
|
|
539
|
+
|
|
540
|
+
|
|
541
|
+
@dataclass
|
|
542
|
+
class RepetitiveNgramsResult:
|
|
543
|
+
"""Result from repetitive n-gram detection.
|
|
544
|
+
|
|
545
|
+
Detects bigrams, trigrams, or higher-order n-grams that repeat more than
|
|
546
|
+
expected within the text. No external corpus is required — content n-grams
|
|
547
|
+
should not repeat verbatim often in natural writing.
|
|
548
|
+
|
|
549
|
+
N-grams composed entirely of function words (e.g., "of the", "in a") are
|
|
550
|
+
excluded since their repetition is expected.
|
|
551
|
+
|
|
552
|
+
Related GitHub Issue:
|
|
553
|
+
#28 - Verbal tics detection for slop analysis
|
|
554
|
+
https://github.com/craigtrim/pystylometry/issues/28
|
|
555
|
+
|
|
556
|
+
Example:
|
|
557
|
+
>>> result = compute_repetitive_ngrams(text, n=2)
|
|
558
|
+
>>> for ng in result.repetitive_ngrams[:5]:
|
|
559
|
+
... print(f"{' '.join(ng.ngram)}: {ng.count}x "
|
|
560
|
+
... f"({ng.frequency_per_10k:.1f} per 10k)")
|
|
561
|
+
uncomfortable truth: 8x (1.6 per 10k)
|
|
562
|
+
"""
|
|
563
|
+
|
|
564
|
+
repetitive_ngrams: list[RepetitiveNgram] # Sorted by count descending
|
|
565
|
+
n: int | tuple[int, ...] # N-gram order(s) analyzed
|
|
566
|
+
total_ngrams: int
|
|
567
|
+
flagged_count: int
|
|
568
|
+
flagged_per_10k: float # flagged_count / (total_ngrams / 10000)
|
|
569
|
+
total_ngrams_dist: Distribution
|
|
570
|
+
chunk_size: int
|
|
571
|
+
chunk_count: int
|
|
572
|
+
metadata: dict[str, Any]
|
|
573
|
+
|
|
574
|
+
|
|
373
575
|
# ===== Readability Results =====
|
|
374
576
|
|
|
375
577
|
|