pypharm 1.3.5__tar.gz → 1.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pypharm
3
- Version: 1.3.5
3
+ Version: 1.4.0
4
4
  Summary: Module for solving pharmacokinetic problems
5
5
  Home-page: https://github.com/Krash13/PyPharm
6
6
  Author: Krash13
@@ -272,8 +272,72 @@ plt.show()
272
272
  в таком случае, искомое нужно просто задать как None. Тогда вектор неизвестных это
273
273
  x = [configuration_matrix (неизвестные), outputs(неизвестные), volumes(неизвестные), release_parameters(неизвестные), v_release]
274
274
 
275
+ **6) Использование PBPK модели**
275
276
 
276
- **6) Использование shared_memory**
277
+ Вы можете использовать PBPK модель как для рассчёта по известным
278
+ данным так и для поиска параметров, исходя из ваших экспериментальных данных.
279
+
280
+ Чтобы задать исзвестные вам константы, при инициализации объекта следует использовать
281
+ параметры know_k и know_cl, которые содержат словари с известными параметрами, имена органов следует брать
282
+ из класса ORGAN_NAMES.
283
+
284
+ Ниже приведен пример поиска параметров и построение кривых распределения вещества
285
+ в органах с использованием генетического алгоритма.
286
+
287
+ ```python
288
+ from PyPharm import PBPKmod
289
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
290
+
291
+ model = PBPKmod()
292
+ print(model.get_unknown_params())
293
+ model.load_optimization_data(
294
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
295
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
296
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
297
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
298
+ },
299
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
300
+ )
301
+ result = model.optimize(
302
+ method='GA',
303
+ x_min=17 * [0.0001],
304
+ x_max=17 * [5],
305
+ genes=17 * [16],
306
+ n=300,
307
+ child_percent=0.3,
308
+ mutation_chance=0.5,
309
+ max_mutation=5,
310
+ t_max=300,
311
+ printing=True,
312
+ )
313
+ model.update_know_params(result)
314
+
315
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
316
+ model.plot_last_result(
317
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
318
+ user_names={
319
+ ORGAN_NAMES.LUNG: 'Лёгкие',
320
+ ORGAN_NAMES.LIVER: 'Печень',
321
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
322
+ },
323
+ theoretic_data={
324
+ ORGAN_NAMES.LIVER: {
325
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
326
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
327
+ },
328
+ ORGAN_NAMES.LUNG: {
329
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
330
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
331
+ },
332
+ ORGAN_NAMES.SPLEEN: {
333
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
334
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
335
+ }
336
+ }
337
+ )
338
+ ```
339
+
340
+ **7) Использование shared_memory**
277
341
 
278
342
  Начиная с версии 1.3.0, вы можете использовать **shared_memory** для получения текущих данных
279
343
  оптимизации. Имя нужного вам участка памяти хранится в поле **memory_name**.
@@ -549,7 +613,72 @@ The release_parameters and v_release parameters can be optimized
549
613
  in this case, you just need to set the desired value as None. Then the vector of unknowns is
550
614
  x = [configuration_matrix (unknown), outputs(unknown), volumes(unknown), release_parameters(unknown), v_release]
551
615
 
552
- **6) Using shared_memory**
616
+ **6) Using the PBPK model**
617
+
618
+ You can use the PBPK model both for calculations based on known
619
+ data and for searching for parameters based on your experimental data.
620
+
621
+ To set constants known to you, when initializing an object, you should use the
622
+ parameters know_k and know_cl, which contain dictionaries with known parameters, the names of organs should be taken
623
+ from the ORGAN_NAMES class.
624
+
625
+ Below is an example of searching for parameters and constructing distribution curves of a substance
626
+ in organs using a genetic algorithm.
627
+
628
+ ```python
629
+ from PyPharm import PBPKmod
630
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
631
+
632
+ model = PBPKmod()
633
+ print(model.get_unknown_params())
634
+ model.load_optimization_data(
635
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
636
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
637
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
638
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
639
+ },
640
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
641
+ )
642
+ result = model.optimize(
643
+ method='GA',
644
+ x_min=17 * [0.0001],
645
+ x_max=17 * [5],
646
+ genes=17 * [16],
647
+ n=300,
648
+ child_percent=0.3,
649
+ mutation_chance=0.5,
650
+ max_mutation=5,
651
+ t_max=300,
652
+ printing=True,
653
+ )
654
+ model.update_know_params(result)
655
+
656
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
657
+ model.plot_last_result(
658
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
659
+ user_names={
660
+ ORGAN_NAMES.LUNG: 'Лёгкие',
661
+ ORGAN_NAMES.LIVER: 'Печень',
662
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
663
+ },
664
+ theoretic_data={
665
+ ORGAN_NAMES.LIVER: {
666
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
667
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
668
+ },
669
+ ORGAN_NAMES.LUNG: {
670
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
671
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
672
+ },
673
+ ORGAN_NAMES.SPLEEN: {
674
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
675
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
676
+ }
677
+ }
678
+ )
679
+ ```
680
+
681
+ **7) Using shared_memory**
553
682
 
554
683
  Since version 1.3.0, you can use **shared_memory** to get current data
555
684
  optimization. The name of the memory location you need is stored in the **memory_name** field.
@@ -1 +1,3 @@
1
- from .models import BaseCompartmentModel, MagicCompartmentModel, ReleaseCompartmentModel
1
+ from .models import BaseCompartmentModel, MagicCompartmentModel, ReleaseCompartmentModel, PBPKmod
2
+
3
+
File without changes
@@ -467,4 +467,3 @@ class CountriesAlgorithm:
467
467
  self.memory_list[i + 1] = float(result.x[i])
468
468
  self.memory_list[-1] = float(result.f)
469
469
  return (result.x, result.f, False, ti)
470
-
@@ -345,30 +345,31 @@ class CountriesAlgorithm:
345
345
  f_min=f_min,
346
346
  f_max=f_max
347
347
  )
348
- # country.extinction(
349
- # m_min=self.m[0],
350
- # m_max=self.m[1],
351
- # f_min=f_min,
352
- # f_max=f_max
353
- # )
354
- self.countries = sorted(self.countries, key=attrgetter('best_function'))
355
- f_min = self.countries[0].best_function
356
- f_max = self.countries[-1].best_function
357
- s = sum(country.roulette_function(f_min, f_max) for country in self.countries if len(country.population) > 1)
358
- self.countries.reverse()
359
- for country in self.countries:
360
- plus = 0
361
- if len(country.population) >= 1:
362
- res = country.extinction1(
363
- max(self.N // 2, ceil(country.roulette_function(f_min, f_max) / s * self.N * self.M)) + plus
348
+ country.extinction(
349
+ m_min=self.m[0],
350
+ m_max=self.m[1],
351
+ f_min=f_min,
352
+ f_max=f_max
364
353
  )
365
- if res:
366
- plus += res
367
- else:
368
- plus = 0
369
-
370
- indexes = np.where(vector_check_population(self.countries) == True)
371
- self.countries = [self.countries[i] for i in indexes[0]]
354
+ self.countries = [country for country in self.countries if len(country.population)]
355
+ # self.countries = sorted(self.countries, key=attrgetter('best_function'))
356
+ # f_min = self.countries[0].best_function
357
+ # f_max = self.countries[-1].best_function
358
+ # s = sum(country.roulette_function(f_min, f_max) for country in self.countries if len(country.population) > 1)
359
+ # self.countries.reverse()
360
+ # for country in self.countries:
361
+ # plus = 0
362
+ # if len(country.population) >= 1:
363
+ # res = country.extinction1(
364
+ # max(self.N // 2, ceil(country.roulette_function(f_min, f_max) / s * self.N * self.M)) + plus
365
+ # )
366
+ # if res:
367
+ # plus += res
368
+ # else:
369
+ # plus = 0
370
+ #
371
+ # indexes = np.where(vector_check_population(self.countries) == True)
372
+ # self.countries = [self.countries[i] for i in indexes[0]]
372
373
 
373
374
  for individual in e_individuals:
374
375
  random_country = self.countries[random.randint(0, len(self.countries) - 1)]
@@ -392,32 +393,33 @@ class CountriesAlgorithm:
392
393
  for i in range(len(result.real_x)):
393
394
  self.memory_list[i + 1] = float(result.real_x[i])
394
395
  self.memory_list[-1] = float(result.f)
396
+
395
397
  return (result.real_x, result.f, False, ti)
396
398
 
397
399
 
398
400
 
399
- # def f(x):
400
- # return sum([(xi ** 4 - 16 * xi ** 2 + 5 *xi) / 2 for xi in x])
401
- # #
402
- # # k = 0
403
- # # for i in range(100):
404
- # CA = CountriesAlgorithm(
405
- # f=f,
406
- # Xmin=[-5.12 for i in range(3)],
407
- # Xmax=[5.12 for i in range(3)],
408
- # genes=[16 for i in range(3)],
409
- # M=20,
410
- # N=15,
411
- # n=[1, 10],
412
- # m=[3, 8],
413
- # k=8,
414
- # l=3,
415
- # ep=[0.2, 0.4],
416
- # max_mutation=16,
417
- # tmax=300,
418
- # printing=True,
419
- # )
420
- # r = CA.start()
401
+ def f(x):
402
+ return sum([(xi ** 4 - 16 * xi ** 2 + 5 *xi) / 2 for xi in x])
403
+ #
404
+ # k = 0
405
+ # for i in range(100):
406
+ CA = CountriesAlgorithm(
407
+ f=f,
408
+ Xmin=[-5.12 for i in range(20)],
409
+ Xmax=[5.12 for i in range(20)],
410
+ genes=[16 for i in range(20)],
411
+ M=20,
412
+ N=15,
413
+ n=[1, 10],
414
+ m=[3, 8],
415
+ k=8,
416
+ l=3,
417
+ ep=[0.2, 0.4],
418
+ max_mutation=16,
419
+ tmax=300,
420
+ printing=True,
421
+ )
422
+ r = CA.start()
421
423
 
422
424
  # print(i, r[2], r[0], r[1])
423
425
  # if r[2]:
@@ -0,0 +1,56 @@
1
+ MODEL_CONST = {
2
+ 'human':{
3
+ 'adipose': {'V':143, 'Q':3.7},
4
+ 'bone': {'V':124, 'Q': 3.6} ,
5
+ 'brain': {'V':20.7, 'Q': 10} ,
6
+ 'gut': {'V':23.6, 'Q': 13} ,
7
+ 'heart': {'V':3.8, 'Q': 2.14},
8
+ 'kidney': {'V':4.4, 'Q': 15.7} ,
9
+ 'liver': {'V':24.1, 'Q': 21} ,
10
+ 'lung': {'V':16.7, 'Q': 71} ,
11
+ 'muscle': {'V':429, 'Q': 10.7} ,
12
+ 'pancreas': {'V':1.2, 'Q': 1.9} ,
13
+ 'skin': {'V':111, 'Q': 4.3} ,
14
+ 'spleen': {'V':2.7, 'Q': 1.1},
15
+ 'stomach': {'V':2.2, 'Q':0.56},
16
+ 'teaster': {'V':0.51, 'Q':0.04},
17
+ 'arterial_blood': {'V':25.7} ,
18
+ 'venous_blood': {'V':51.4}
19
+ },
20
+ 'rat':{
21
+ 'adipose': {'V':40, 'Q':1.6},
22
+ 'bone': {'V':53.2, 'Q': 10.12},
23
+ 'brain': {'V':6.8, 'Q': 5.32} ,
24
+ 'gut': {'V':40, 'Q': 52} ,
25
+ 'heart': {'V':3.2, 'Q': 15.68},
26
+ 'kidney': {'V':9.2, 'Q': 36.92},
27
+ 'liver': {'V':41.2, 'Q': 80} ,
28
+ 'lung': {'V':4, 'Q': 203.2} ,
29
+ 'muscle': {'V':487.6, 'Q': 30} ,
30
+ 'pancreas': {'V':5.2, 'Q': 4} ,
31
+ 'skin': {'V':160, 'Q': 20} ,
32
+ 'spleen': {'V':2.4, 'Q': 5} ,
33
+ 'stomach': {'V':4.4, 'Q':8.2} ,
34
+ 'teaster': {'V':10, 'Q':1.8} ,
35
+ 'arterial_blood': {'V':22.4, 'Q':10.8} ,
36
+ 'venous_blood': {'V':45.2}
37
+ }
38
+ }
39
+
40
+ class ORGAN_NAMES:
41
+
42
+ LUNG = 'lung'
43
+ HEART = 'heart'
44
+ BRAIN = 'brain'
45
+ MUSCLE = 'muscle'
46
+ ADIPOSE = 'adipose'
47
+ SKIN = 'skin'
48
+ BONE = 'bone'
49
+ KIDNEY = 'kidney'
50
+ LIVER = 'liver'
51
+ GUT = 'gut'
52
+ SPLEEN = 'spleen'
53
+ STOMACH = 'stomach'
54
+ PANCREAS = 'pancreas'
55
+ VENOUS = 'venous_blood'
56
+ ARTERIAL = 'arterial_blood'
@@ -0,0 +1,2 @@
1
+ from .compartment_models import BaseCompartmentModel, MagicCompartmentModel, ReleaseCompartmentModel
2
+ from .pbpk import PBPKmod
@@ -4,9 +4,9 @@ import numpy as np
4
4
  from scipy.integrate import solve_ivp, RK45
5
5
  from scipy.integrate import simps
6
6
  from scipy.optimize import minimize
7
- from .country_optimization import CountriesAlgorithm
8
- from .country_optimization_v2 import CountriesAlgorithm_v2
9
- from .genetic_optimization import GeneticAlgorithm
7
+ from ..algorithms.country_optimization import CountriesAlgorithm
8
+ from ..algorithms.country_optimization_v2 import CountriesAlgorithm_v2
9
+ from ..algorithms.genetic_optimization import GeneticAlgorithm
10
10
  from numba import njit
11
11
  import matplotlib.pyplot as plt
12
12
 
@@ -0,0 +1,375 @@
1
+ from multiprocessing import shared_memory
2
+ import datetime
3
+ import numpy as np
4
+ from scipy.integrate import solve_ivp, RK45, odeint
5
+ from scipy.integrate import simps
6
+ from scipy.optimize import minimize
7
+ from PyPharm.algorithms.country_optimization import CountriesAlgorithm
8
+ from PyPharm.algorithms.country_optimization_v2 import CountriesAlgorithm_v2
9
+ from PyPharm.algorithms.genetic_optimization import GeneticAlgorithm
10
+ from PyPharm.constants import MODEL_CONST, ORGAN_NAMES
11
+ from numba import njit, types
12
+ from numba.typed import Dict
13
+ import matplotlib.pyplot as plt
14
+
15
+ cnst_rat = MODEL_CONST['rat']
16
+ cnst_human = MODEL_CONST['human']
17
+
18
+
19
+ class PBPKmod:
20
+
21
+ _organs = ['lung', 'heart', 'brain', 'muscle', 'adipose', 'skin', 'bone', 'kidney',
22
+ 'liver', 'gut', 'spleen', 'stomach', 'pancreas', 'venous_blood', 'arterial_blood']
23
+ _cl_organs = ['kidney', 'liver']
24
+ _optim = False
25
+ know_k = {}
26
+ know_cl = {}
27
+
28
+ def __init__(self, know_k=None, know_cl=None, numba_option=False):
29
+ if know_k is not None:
30
+ self.know_k = know_k
31
+
32
+ if know_cl is not None:
33
+ self.know_cl = know_cl
34
+
35
+ self.numba_option = numba_option
36
+ if numba_option:
37
+ self.cnst_v_rat = Dict.empty(
38
+ key_type=types.unicode_type,
39
+ value_type=types.float64
40
+ )
41
+ for k, v in cnst_rat.items():
42
+ self.cnst_v_rat[k] = v['V']
43
+ self.cnst_v_human = Dict.empty(
44
+ key_type=types.unicode_type,
45
+ value_type=types.float64
46
+ )
47
+ for k, v in cnst_human.items():
48
+ self.cnst_v_human[k] = v['V']
49
+ self.cnst_q_rat = Dict.empty(
50
+ key_type=types.unicode_type,
51
+ value_type=types.float64
52
+ )
53
+ for k, v in cnst_rat.items():
54
+ if v.get('Q'):
55
+ self.cnst_q_rat[k] = v['Q']
56
+ self.cnst_q_human = Dict.empty(
57
+ key_type=types.unicode_type,
58
+ value_type=types.float64
59
+ )
60
+ for k, v in cnst_human.items():
61
+ if v.get('Q'):
62
+ self.cnst_q_human[k] = v['Q']
63
+
64
+ def load_optimization_data(self, time_exp, dict_c_exp, start_c_in_venous, is_human=False):
65
+ self.time_exp = time_exp
66
+ self.dict_c_exp = dict_c_exp
67
+ self.start_c_in_venous = start_c_in_venous
68
+ self.is_human = is_human
69
+
70
+ def fitness(self, k_cl):
71
+
72
+ self.k_cl = k_cl
73
+
74
+ sol_difurs = self(max(self.time_exp), self.start_c_in_venous, self.is_human)
75
+ # Список для хранения результатов
76
+ present_organs_indices = []
77
+
78
+ # Проверяем, какие ключи из 'organs' есть в 'dict_n'
79
+ for organ in self._organs:
80
+ if organ in self.dict_c_exp:
81
+ index = self._organs.index(organ) # Получаем индекс органа в списке organs
82
+ present_organs_indices.append((organ, index))
83
+
84
+ rez_err = 0
85
+ for organ, index in present_organs_indices:
86
+ mean_y = sum(sol_difurs[:, index]) / len(sol_difurs[:, index])
87
+ a = [(sol_difurs[:, index][self.time_exp[i]] - self.dict_c_exp[organ][i]) ** 2 for i in range(len(self.dict_c_exp[organ]))]
88
+ a = sum(a)
89
+ b = [(mean_y - self.dict_c_exp[organ][i]) ** 2 for i in
90
+ range(len(self.dict_c_exp[organ]))]
91
+ b = sum(b)
92
+ rez_err += a / b
93
+ # rez_err += sum([abs(sol_difurs[:, index][self.time_exp[i]] - self.dict_c_exp[organ][i]) for i in
94
+ # range(len(self.dict_c_exp[organ]))])
95
+
96
+ return rez_err
97
+
98
+ def __call__(self, max_time, start_c_in_venous, is_human=False, step=1):
99
+ self.y0 = [0 for _ in range(15)] # всего в модели 15 органов
100
+ self.y0[-2] = start_c_in_venous
101
+ t = np.linspace(0, max_time, max_time + 1 if self._optim else int(1 / step * max_time) + 1)
102
+
103
+ if not hasattr(self, 'k_cl'):
104
+ self.k_cl = []
105
+
106
+ full_k = []
107
+ i = 0
108
+ for name in self._organs:
109
+ know_k = self.know_k.get(name)
110
+ if know_k is not None:
111
+ full_k.append(know_k)
112
+ else:
113
+ full_k.append(self.k_cl[i])
114
+ i += 1
115
+ full_cl = []
116
+
117
+ for name in self._cl_organs:
118
+ know_k = self.know_cl.get(name)
119
+ if know_k is not None:
120
+ full_cl.append(know_k)
121
+ else:
122
+ full_cl.append(self.k_cl[i])
123
+ i += 1
124
+ if not self.numba_option:
125
+ sol_difurs = odeint(
126
+ self.fullPBPKmodel,
127
+ self.y0,
128
+ t,
129
+ args=([*full_k, *full_cl], is_human)
130
+ )
131
+ else:
132
+ k_cl = np.array([*full_k, *full_cl])
133
+ if is_human:
134
+ cnst_v = self.cnst_v_human
135
+ cnst_q = self.cnst_q_human
136
+ else:
137
+ cnst_v = self.cnst_v_rat
138
+ cnst_q = self.cnst_q_rat
139
+ function = lambda c, t: self.numba_fullPBPK_for_optimization(
140
+ y=c,
141
+ t=t,
142
+ K_CL=k_cl.astype(np.float64),
143
+ cnst_q=cnst_q,
144
+ cnst_v=cnst_v
145
+ )
146
+ sol_difurs = odeint(
147
+ function,
148
+ self.y0,
149
+ t
150
+ )
151
+ if self._optim:
152
+ return sol_difurs
153
+
154
+ self.last_result = {
155
+ 't': t
156
+ }
157
+ for organ in self._organs:
158
+ index = self._organs.index(organ)
159
+ self.last_result[organ] = np.array([sol_difurs[i][index] for i in range(t.size)])
160
+ return self.last_result
161
+
162
+ def plot_last_result(self, organ_names=[], left=None, right=None, user_names={}, theoretic_data={}, y_lims={}):
163
+ if hasattr(self, 'last_result'):
164
+ for name in organ_names:
165
+ if theoretic_data.get(name):
166
+ plt.plot(theoretic_data[name]['x'], theoretic_data[name]['y'], '*r')
167
+ plt.plot(
168
+ self.last_result['t'],
169
+ self.last_result.get(name),
170
+ )
171
+ plt.title(user_names.get(name, name))
172
+ plt.xlim(left=left, right=right)
173
+ if y_lims.get(name):
174
+ plt.ylim(y_lims.get(name))
175
+ plt.grid()
176
+ plt.show()
177
+
178
+ def optimize(self, method=None, user_method=None, method_is_func=True,
179
+ optimization_func_name='__call__', **kwargs):
180
+ """
181
+ Функция оптимизации модели
182
+
183
+ Args:
184
+ method: Метод оптимизации, любой доступный minimize + 'country_optimization' и 'country_optimization_v2'
185
+ max_step: Максимальный шаг при решении СДУ
186
+ **kwargs: Дополнительные именованные аргументы
187
+
188
+ Returns:
189
+ None
190
+ """
191
+ self._optim = True
192
+ f = lambda x: self.fitness(x)
193
+ if user_method is not None:
194
+ if method_is_func:
195
+ x = user_method(f, **kwargs)
196
+ else:
197
+ optimization_obj = user_method(f, **kwargs)
198
+ x = getattr(optimization_obj, optimization_func_name)()
199
+ else:
200
+ if method == 'country_optimization':
201
+ CA = CountriesAlgorithm(
202
+ f=f,
203
+ memory_list=getattr(self, 'memory', None),
204
+ **kwargs
205
+ )
206
+ CA.start()
207
+ x = CA.countries[0].population[0].x
208
+ elif method == 'country_optimization_v2':
209
+ CA = CountriesAlgorithm_v2(
210
+ f=f,
211
+ **kwargs
212
+ )
213
+ CA.start()
214
+ x = CA.countries[0].population[0].x
215
+ elif method == 'GA':
216
+ CA = GeneticAlgorithm(
217
+ f=f,
218
+ **kwargs
219
+ )
220
+ x = CA.start()
221
+ else:
222
+ res = minimize(
223
+ fun=f,
224
+ method=method,
225
+ **kwargs
226
+ )
227
+ x = res.x
228
+ self._optim = False
229
+ return x
230
+
231
+ def update_know_params(self, k_cl):
232
+ i = 0
233
+ for name in self._organs:
234
+ know_k = self.know_k.get(name)
235
+ if know_k is None:
236
+ self.know_k[name] = k_cl[i]
237
+ i += 1
238
+ for name in self._cl_organs:
239
+ know_cl = self.know_cl.get(name)
240
+ if know_cl is None:
241
+ self.know_cl[name] = k_cl[i]
242
+ i += 1
243
+
244
+ def get_unknown_params(self):
245
+ result = []
246
+ for name in self._organs:
247
+ know_k = self.know_k.get(name)
248
+ if know_k is None:
249
+ result.append(f"k_{name}")
250
+ for name in self._cl_organs:
251
+ know_cl = self.know_cl.get(name)
252
+ if know_cl is None:
253
+ result.append(f"cl_{name}")
254
+ return result
255
+
256
+ def fullPBPKmodel(self, y, t, K_CL, is_human=False): # V, Q, K, CL):
257
+ # 15 органов
258
+ if is_human:
259
+ cnst = cnst_human
260
+ else:
261
+ cnst = cnst_rat
262
+ C_lung, C_heart, C_brain, C_muscle, C_fat, C_skin, C_bone, \
263
+ C_kidney, C_liver, C_gut, C_spleen, C_stomach, C_pancreas, C_V, C_A = y
264
+
265
+ K_lung, K_heart, K_brain, K_muscle, K_fat, K_skin, K_bone, \
266
+ K_kidney, K_liver, K_gut, K_spleen, K_stomach, K_pancreas, K_liver_cl, K_kidney_cl = K_CL[:15]
267
+ CL_kidney, CL_liver = K_CL[15:]
268
+
269
+ dC_lung_dt = cnst['lung']['Q'] * (C_V - C_lung / K_lung) / cnst['lung']['V']
270
+ dC_heart_dt = cnst['heart']['Q'] * (C_A - C_heart / K_heart) / cnst['heart']['V']
271
+ dC_brain_dt = cnst['brain']['Q'] * (C_A - C_brain / K_brain) / cnst['brain']['V']
272
+ dC_muscle_dt = cnst['muscle']['Q'] * (C_A - C_muscle / K_muscle) / cnst['muscle']['V']
273
+ dC_fat_dt = cnst['adipose']['Q'] * (C_A - C_fat / K_fat) / cnst['adipose']['V']
274
+ dC_skin_dt = cnst['skin']['Q'] * (C_A - C_skin / K_skin) / cnst['skin']['V']
275
+ dC_bone_dt = cnst['bone']['Q'] * (C_A - C_bone / K_bone) / cnst['bone']['V']
276
+ # Kidney V(Kidney)*dC(Kidney)/dt = Q(Kidney)*C(A)-Q(Kidney)*CV(Kidney)-CL(Kidney,int)*CV(Kidney,int)?
277
+ dC_kidney_dt = (cnst['kidney']['Q'] * (C_A - C_kidney / K_kidney) - CL_kidney * C_kidney / K_kidney_cl) / \
278
+ cnst['kidney']['V'] # ???
279
+
280
+ # Liver V(Liver)*dC(Liver)/dt = (Q(Liver)-Q(Spleen)-Q(Gut)-Q(Pancreas)-Q(Stomach))*C(A) + Q(Spleen)*CV(Spleen) +
281
+ # + Q(Gut)*CV(Gut) + Q(Pancreas)*CV(Pancreas) + Q(Stomach)*CV(Stomach) -
282
+ # - Q(Liver)*CV(Liver) - CL(Liver,int)*CV(Liver,int)? # тут скорее всего нужно вычитать потоки из друг друга дополнительно по крови что бы сохранить массовый баланс
283
+ Q_liver_in_from_art = cnst['liver']['Q'] - cnst['gut']['Q'] - cnst['spleen']['Q'] - \
284
+ cnst['pancreas']['Q'] - cnst['stomach']['Q']
285
+ dC_liver_dt = (
286
+ Q_liver_in_from_art * C_A + cnst['gut']['Q'] * C_gut / K_gut
287
+ + cnst['spleen']['Q'] * C_spleen / K_spleen
288
+ + cnst['stomach']['Q'] * C_stomach / K_stomach
289
+ + cnst['pancreas']['Q'] * C_pancreas / K_pancreas
290
+ - cnst['liver']['Q'] * C_liver / K_liver
291
+ - CL_liver * C_liver / K_liver_cl # ???
292
+ ) / cnst['liver']['V']
293
+
294
+ dC_gut_dt = cnst['gut']['Q'] * (C_A - C_gut / K_gut) / cnst['gut']['V']
295
+ dC_spleen_dt = cnst['spleen']['Q'] * (C_A - C_spleen / K_spleen) / cnst['spleen']['V']
296
+ dC_stomach_dt = cnst['stomach']['Q'] * (C_A - C_stomach / K_stomach) / cnst['stomach']['V']
297
+ dC_pancreas_dt = cnst['pancreas']['Q'] * (C_A - C_pancreas / K_pancreas) / cnst['pancreas']['V']
298
+
299
+ dC_venouse_dt = (
300
+ cnst['heart']['Q'] * C_heart / K_heart
301
+ + cnst['brain']['Q'] * C_brain / K_brain
302
+ + cnst['muscle']['Q'] * C_muscle / K_muscle
303
+ + cnst['skin']['Q'] * C_skin / K_skin
304
+ + cnst['adipose']['Q'] * C_fat / K_fat
305
+ + cnst['bone']['Q'] * C_bone / K_bone
306
+ + cnst['kidney']['Q'] * C_kidney / K_kidney
307
+ + cnst['liver']['Q'] * C_liver / K_liver
308
+ - cnst['lung']['Q'] * C_V
309
+ ) / cnst['venous_blood']['V']
310
+
311
+ dC_arterial_dt = cnst['lung']['Q'] * (C_lung / K_lung - C_A) / cnst['arterial_blood']['V']
312
+
313
+ y_new = [dC_lung_dt, dC_heart_dt, dC_brain_dt, dC_muscle_dt, dC_fat_dt, dC_skin_dt, dC_bone_dt, \
314
+ dC_kidney_dt, dC_liver_dt, dC_gut_dt, dC_spleen_dt, dC_stomach_dt, dC_pancreas_dt, dC_venouse_dt,
315
+ dC_arterial_dt]
316
+ return y_new
317
+
318
+ @staticmethod
319
+ @njit
320
+ def numba_fullPBPK_for_optimization(y, t, K_CL, cnst_q, cnst_v):
321
+ C_lung, C_heart, C_brain, C_muscle, C_fat, C_skin, C_bone, \
322
+ C_kidney, C_liver, C_gut, C_spleen, C_stomach, C_pancreas, C_V, C_A = y
323
+
324
+ K_lung, K_heart, K_brain, K_muscle, K_fat, K_skin, K_bone, \
325
+ K_kidney, K_liver, K_gut, K_spleen, K_stomach, K_pancreas, K_liver_cl, K_kidney_cl = K_CL[:15]
326
+ CL_kidney, CL_liver = K_CL[15:]
327
+
328
+ dC_lung_dt = cnst_q['lung'] * (C_V - C_lung / K_lung) / cnst_v['lung']
329
+ dC_heart_dt = cnst_q['heart'] * (C_A - C_heart / K_heart) / cnst_v['heart']
330
+ dC_brain_dt = cnst_q['brain'] * (C_A - C_brain / K_brain) / cnst_v['brain']
331
+ dC_muscle_dt = cnst_q['muscle'] * (C_A - C_muscle / K_muscle) / cnst_v['muscle']
332
+ dC_fat_dt = cnst_q['adipose'] * (C_A - C_fat / K_fat) / cnst_v['adipose']
333
+ dC_skin_dt = cnst_q['skin'] * (C_A - C_skin / K_skin) / cnst_v['skin']
334
+ dC_bone_dt = cnst_q['bone'] * (C_A - C_bone / K_bone) / cnst_v['bone']
335
+ # Kidney V(Kidney)*dC(Kidney)/dt = Q(Kidney)*C(A)-Q(Kidney)*CV(Kidney)-CL(Kidney,int)*CV(Kidney,int)?
336
+ dC_kidney_dt = (cnst_q['kidney'] * (C_A - C_kidney / K_kidney) - CL_kidney * C_kidney / K_kidney_cl) / \
337
+ cnst_v['kidney'] # ???
338
+
339
+ # Liver V(Liver)*dC(Liver)/dt = (Q(Liver)-Q(Spleen)-Q(Gut)-Q(Pancreas)-Q(Stomach))*C(A) + Q(Spleen)*CV(Spleen) +
340
+ # + Q(Gut)*CV(Gut) + Q(Pancreas)*CV(Pancreas) + Q(Stomach)*CV(Stomach) -
341
+ # - Q(Liver)*CV(Liver) - CL(Liver,int)*CV(Liver,int)? # тут скорее всего нужно вычитать потоки из друг друга дополнительно по крови что бы сохранить массовый баланс
342
+ Q_liver_in_from_art = cnst_q['liver'] - cnst_q['gut'] - cnst_q['spleen'] - \
343
+ cnst_q['pancreas'] - cnst_q['stomach']
344
+ dC_liver_dt = (
345
+ Q_liver_in_from_art * C_A + cnst_q['gut'] * C_gut / K_gut
346
+ + cnst_q['spleen'] * C_spleen / K_spleen
347
+ + cnst_q['stomach'] * C_stomach / K_stomach
348
+ + cnst_q['pancreas'] * C_pancreas / K_pancreas
349
+ - cnst_q['liver'] * C_liver / K_liver
350
+ - CL_liver * C_liver / K_liver_cl # ???
351
+ ) / cnst_v['liver']
352
+
353
+ dC_gut_dt = cnst_q['gut'] * (C_A - C_gut / K_gut) / cnst_v['gut']
354
+ dC_spleen_dt = cnst_q['spleen'] * (C_A - C_spleen / K_spleen) / cnst_v['spleen']
355
+ dC_stomach_dt = cnst_q['stomach'] * (C_A - C_stomach / K_stomach) / cnst_v['stomach']
356
+ dC_pancreas_dt = cnst_q['pancreas'] * (C_A - C_pancreas / K_pancreas) / cnst_v['pancreas']
357
+
358
+ dC_venouse_dt = (
359
+ cnst_q['heart'] * C_heart / K_heart
360
+ + cnst_q['brain'] * C_brain / K_brain
361
+ + cnst_q['muscle'] * C_muscle / K_muscle
362
+ + cnst_q['skin'] * C_skin / K_skin
363
+ + cnst_q['adipose'] * C_fat / K_fat
364
+ + cnst_q['bone'] * C_bone / K_bone
365
+ + cnst_q['kidney'] * C_kidney / K_kidney
366
+ + cnst_q['liver'] * C_liver / K_liver
367
+ - cnst_q['lung'] * C_V
368
+ ) / cnst_v['venous_blood']
369
+
370
+ dC_arterial_dt = cnst_q['lung'] * (C_lung / K_lung - C_A) / cnst_v['arterial_blood']
371
+
372
+ y_new = np.array([dC_lung_dt, dC_heart_dt, dC_brain_dt, dC_muscle_dt, dC_fat_dt, dC_skin_dt, dC_bone_dt, \
373
+ dC_kidney_dt, dC_liver_dt, dC_gut_dt, dC_spleen_dt, dC_stomach_dt, dC_pancreas_dt, dC_venouse_dt,
374
+ dC_arterial_dt]).astype(np.float64)
375
+ return y_new
@@ -256,8 +256,72 @@ plt.show()
256
256
  в таком случае, искомое нужно просто задать как None. Тогда вектор неизвестных это
257
257
  x = [configuration_matrix (неизвестные), outputs(неизвестные), volumes(неизвестные), release_parameters(неизвестные), v_release]
258
258
 
259
+ **6) Использование PBPK модели**
259
260
 
260
- **6) Использование shared_memory**
261
+ Вы можете использовать PBPK модель как для рассчёта по известным
262
+ данным так и для поиска параметров, исходя из ваших экспериментальных данных.
263
+
264
+ Чтобы задать исзвестные вам константы, при инициализации объекта следует использовать
265
+ параметры know_k и know_cl, которые содержат словари с известными параметрами, имена органов следует брать
266
+ из класса ORGAN_NAMES.
267
+
268
+ Ниже приведен пример поиска параметров и построение кривых распределения вещества
269
+ в органах с использованием генетического алгоритма.
270
+
271
+ ```python
272
+ from PyPharm import PBPKmod
273
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
274
+
275
+ model = PBPKmod()
276
+ print(model.get_unknown_params())
277
+ model.load_optimization_data(
278
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
279
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
280
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
281
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
282
+ },
283
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
284
+ )
285
+ result = model.optimize(
286
+ method='GA',
287
+ x_min=17 * [0.0001],
288
+ x_max=17 * [5],
289
+ genes=17 * [16],
290
+ n=300,
291
+ child_percent=0.3,
292
+ mutation_chance=0.5,
293
+ max_mutation=5,
294
+ t_max=300,
295
+ printing=True,
296
+ )
297
+ model.update_know_params(result)
298
+
299
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
300
+ model.plot_last_result(
301
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
302
+ user_names={
303
+ ORGAN_NAMES.LUNG: 'Лёгкие',
304
+ ORGAN_NAMES.LIVER: 'Печень',
305
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
306
+ },
307
+ theoretic_data={
308
+ ORGAN_NAMES.LIVER: {
309
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
310
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
311
+ },
312
+ ORGAN_NAMES.LUNG: {
313
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
314
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
315
+ },
316
+ ORGAN_NAMES.SPLEEN: {
317
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
318
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
319
+ }
320
+ }
321
+ )
322
+ ```
323
+
324
+ **7) Использование shared_memory**
261
325
 
262
326
  Начиная с версии 1.3.0, вы можете использовать **shared_memory** для получения текущих данных
263
327
  оптимизации. Имя нужного вам участка памяти хранится в поле **memory_name**.
@@ -533,7 +597,72 @@ The release_parameters and v_release parameters can be optimized
533
597
  in this case, you just need to set the desired value as None. Then the vector of unknowns is
534
598
  x = [configuration_matrix (unknown), outputs(unknown), volumes(unknown), release_parameters(unknown), v_release]
535
599
 
536
- **6) Using shared_memory**
600
+ **6) Using the PBPK model**
601
+
602
+ You can use the PBPK model both for calculations based on known
603
+ data and for searching for parameters based on your experimental data.
604
+
605
+ To set constants known to you, when initializing an object, you should use the
606
+ parameters know_k and know_cl, which contain dictionaries with known parameters, the names of organs should be taken
607
+ from the ORGAN_NAMES class.
608
+
609
+ Below is an example of searching for parameters and constructing distribution curves of a substance
610
+ in organs using a genetic algorithm.
611
+
612
+ ```python
613
+ from PyPharm import PBPKmod
614
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
615
+
616
+ model = PBPKmod()
617
+ print(model.get_unknown_params())
618
+ model.load_optimization_data(
619
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
620
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
621
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
622
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
623
+ },
624
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
625
+ )
626
+ result = model.optimize(
627
+ method='GA',
628
+ x_min=17 * [0.0001],
629
+ x_max=17 * [5],
630
+ genes=17 * [16],
631
+ n=300,
632
+ child_percent=0.3,
633
+ mutation_chance=0.5,
634
+ max_mutation=5,
635
+ t_max=300,
636
+ printing=True,
637
+ )
638
+ model.update_know_params(result)
639
+
640
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
641
+ model.plot_last_result(
642
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
643
+ user_names={
644
+ ORGAN_NAMES.LUNG: 'Лёгкие',
645
+ ORGAN_NAMES.LIVER: 'Печень',
646
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
647
+ },
648
+ theoretic_data={
649
+ ORGAN_NAMES.LIVER: {
650
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
651
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
652
+ },
653
+ ORGAN_NAMES.LUNG: {
654
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
655
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
656
+ },
657
+ ORGAN_NAMES.SPLEEN: {
658
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
659
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
660
+ }
661
+ }
662
+ )
663
+ ```
664
+
665
+ **7) Using shared_memory**
537
666
 
538
667
  Since version 1.3.0, you can use **shared_memory** to get current data
539
668
  optimization. The name of the memory location you need is stored in the **memory_name** field.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pypharm
3
- Version: 1.3.5
3
+ Version: 1.4.0
4
4
  Summary: Module for solving pharmacokinetic problems
5
5
  Home-page: https://github.com/Krash13/PyPharm
6
6
  Author: Krash13
@@ -272,8 +272,72 @@ plt.show()
272
272
  в таком случае, искомое нужно просто задать как None. Тогда вектор неизвестных это
273
273
  x = [configuration_matrix (неизвестные), outputs(неизвестные), volumes(неизвестные), release_parameters(неизвестные), v_release]
274
274
 
275
+ **6) Использование PBPK модели**
275
276
 
276
- **6) Использование shared_memory**
277
+ Вы можете использовать PBPK модель как для рассчёта по известным
278
+ данным так и для поиска параметров, исходя из ваших экспериментальных данных.
279
+
280
+ Чтобы задать исзвестные вам константы, при инициализации объекта следует использовать
281
+ параметры know_k и know_cl, которые содержат словари с известными параметрами, имена органов следует брать
282
+ из класса ORGAN_NAMES.
283
+
284
+ Ниже приведен пример поиска параметров и построение кривых распределения вещества
285
+ в органах с использованием генетического алгоритма.
286
+
287
+ ```python
288
+ from PyPharm import PBPKmod
289
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
290
+
291
+ model = PBPKmod()
292
+ print(model.get_unknown_params())
293
+ model.load_optimization_data(
294
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
295
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
296
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
297
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
298
+ },
299
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
300
+ )
301
+ result = model.optimize(
302
+ method='GA',
303
+ x_min=17 * [0.0001],
304
+ x_max=17 * [5],
305
+ genes=17 * [16],
306
+ n=300,
307
+ child_percent=0.3,
308
+ mutation_chance=0.5,
309
+ max_mutation=5,
310
+ t_max=300,
311
+ printing=True,
312
+ )
313
+ model.update_know_params(result)
314
+
315
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
316
+ model.plot_last_result(
317
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
318
+ user_names={
319
+ ORGAN_NAMES.LUNG: 'Лёгкие',
320
+ ORGAN_NAMES.LIVER: 'Печень',
321
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
322
+ },
323
+ theoretic_data={
324
+ ORGAN_NAMES.LIVER: {
325
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
326
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
327
+ },
328
+ ORGAN_NAMES.LUNG: {
329
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
330
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
331
+ },
332
+ ORGAN_NAMES.SPLEEN: {
333
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
334
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
335
+ }
336
+ }
337
+ )
338
+ ```
339
+
340
+ **7) Использование shared_memory**
277
341
 
278
342
  Начиная с версии 1.3.0, вы можете использовать **shared_memory** для получения текущих данных
279
343
  оптимизации. Имя нужного вам участка памяти хранится в поле **memory_name**.
@@ -549,7 +613,72 @@ The release_parameters and v_release parameters can be optimized
549
613
  in this case, you just need to set the desired value as None. Then the vector of unknowns is
550
614
  x = [configuration_matrix (unknown), outputs(unknown), volumes(unknown), release_parameters(unknown), v_release]
551
615
 
552
- **6) Using shared_memory**
616
+ **6) Using the PBPK model**
617
+
618
+ You can use the PBPK model both for calculations based on known
619
+ data and for searching for parameters based on your experimental data.
620
+
621
+ To set constants known to you, when initializing an object, you should use the
622
+ parameters know_k and know_cl, which contain dictionaries with known parameters, the names of organs should be taken
623
+ from the ORGAN_NAMES class.
624
+
625
+ Below is an example of searching for parameters and constructing distribution curves of a substance
626
+ in organs using a genetic algorithm.
627
+
628
+ ```python
629
+ from PyPharm import PBPKmod
630
+ from PyPharm.constants import ORGAN_NAMES, MODEL_CONST
631
+
632
+ model = PBPKmod()
633
+ print(model.get_unknown_params())
634
+ model.load_optimization_data(
635
+ time_exp=[12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
636
+ dict_c_exp = {ORGAN_NAMES.LIVER: [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
637
+ ORGAN_NAMES.LUNG: [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
638
+ ORGAN_NAMES.SPLEEN: [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
639
+ },
640
+ start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V']
641
+ )
642
+ result = model.optimize(
643
+ method='GA',
644
+ x_min=17 * [0.0001],
645
+ x_max=17 * [5],
646
+ genes=17 * [16],
647
+ n=300,
648
+ child_percent=0.3,
649
+ mutation_chance=0.5,
650
+ max_mutation=5,
651
+ t_max=300,
652
+ printing=True,
653
+ )
654
+ model.update_know_params(result)
655
+
656
+ result = model(max_time=24 * 60, start_c_in_venous=150 * 1e-3 / MODEL_CONST['rat']['venous_blood']['V'], step=0.1)
657
+ model.plot_last_result(
658
+ organ_names=[ORGAN_NAMES.LUNG, ORGAN_NAMES.LIVER, ORGAN_NAMES.SPLEEN],
659
+ user_names={
660
+ ORGAN_NAMES.LUNG: 'Лёгкие',
661
+ ORGAN_NAMES.LIVER: 'Печень',
662
+ ORGAN_NAMES.SPLEEN: 'Селезёнка',
663
+ },
664
+ theoretic_data={
665
+ ORGAN_NAMES.LIVER: {
666
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
667
+ 'y': [103.2 * 1e-6, 134.54 * 1e-6, 87.89 * 1e-6, 81.87 * 1e-6, 45.83 * 1e-6, 28.48 * 1e-6],
668
+ },
669
+ ORGAN_NAMES.LUNG: {
670
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
671
+ 'y': [26.96 * 1e-6, 22.67 * 1e-6, 15.51 * 1e-6, 12.07 * 1e-6, 4.53 * 1e-6, 0 * 1e-6],
672
+ },
673
+ ORGAN_NAMES.SPLEEN: {
674
+ 'x': [12, 60, 3 * 60, 5* 60, 15 * 60, 24 * 60],
675
+ 'y': [11.84 * 1e-6, 12.22 * 1e-6, 8.52 * 1e-6, 7.01 * 1e-6, 3.65 * 1e-6, 2.16 * 1e-6]
676
+ }
677
+ }
678
+ )
679
+ ```
680
+
681
+ **7) Using shared_memory**
553
682
 
554
683
  Since version 1.3.0, you can use **shared_memory** to get current data
555
684
  optimization. The name of the memory location you need is stored in the **memory_name** field.
@@ -0,0 +1,19 @@
1
+ README.md
2
+ setup.cfg
3
+ setup.py
4
+ PyPharm/__init__.py
5
+ PyPharm/constants.py
6
+ PyPharm/algorithms/__init__.py
7
+ PyPharm/algorithms/country_optimization.py
8
+ PyPharm/algorithms/country_optimization_v2.py
9
+ PyPharm/algorithms/country_optimization_v3.py
10
+ PyPharm/algorithms/genetic_optimization.py
11
+ PyPharm/algorithms/gold_digger_optimization.py
12
+ PyPharm/models/__init__.py
13
+ PyPharm/models/compartment_models.py
14
+ PyPharm/models/pbpk.py
15
+ pypharm.egg-info/PKG-INFO
16
+ pypharm.egg-info/SOURCES.txt
17
+ pypharm.egg-info/dependency_links.txt
18
+ pypharm.egg-info/requires.txt
19
+ pypharm.egg-info/top_level.txt
@@ -2,3 +2,4 @@ numpy>=1.22.1
2
2
  scipy>=1.8.0
3
3
  numba>=0.58.1
4
4
  matplotlib>=3.5.1
5
+ graycode>=1.0.5
@@ -6,7 +6,7 @@ def readme():
6
6
 
7
7
  setup(
8
8
  name='pypharm',
9
- version='1.3.5',
9
+ version='1.4.0',
10
10
  author='Krash13',
11
11
  author_email='krasheninnikov.r.s@muctr.ru',
12
12
  description='Module for solving pharmacokinetic problems',
@@ -14,7 +14,7 @@ setup(
14
14
  long_description_content_type='text/markdown',
15
15
  url='https://github.com/Krash13/PyPharm',
16
16
  packages=find_packages(),
17
- install_requires=['numpy>=1.22.1', 'scipy>=1.8.0', 'numba>=0.58.1', 'matplotlib>=3.5.1'],
17
+ install_requires=['numpy>=1.22.1', 'scipy>=1.8.0', 'numba>=0.58.1', 'matplotlib>=3.5.1', 'graycode>=1.0.5'],
18
18
  classifiers=[
19
19
  'Programming Language :: Python :: 3.9',
20
20
  'License :: OSI Approved :: BSD License',
@@ -1,15 +0,0 @@
1
- README.md
2
- setup.cfg
3
- setup.py
4
- PyPharm/__init__.py
5
- PyPharm/country_optimization.py
6
- PyPharm/country_optimization_v2.py
7
- PyPharm/country_optimization_v3.py
8
- PyPharm/genetic_optimization.py
9
- PyPharm/gold_digger_optimization.py
10
- PyPharm/models.py
11
- pypharm.egg-info/PKG-INFO
12
- pypharm.egg-info/SOURCES.txt
13
- pypharm.egg-info/dependency_links.txt
14
- pypharm.egg-info/requires.txt
15
- pypharm.egg-info/top_level.txt
File without changes